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Abstract 

A (v, k, i) trade of volume m consists of two disjoint collections Tl and T2 , 

each of m k-subsets (blocks) of a v-set V, such that each i-subset of V is 
contained in the same number of blocks of TI and of T2 • A (v, k, i) trade 
is simple if it has no repeated blocks, and has index i if some i-subset 
occurs in i blocks of TI but no i-subset occurs in more than i blocks. 
In this paper we investigate the spectrum (that is, the set of possible 
vol urnes) of simple (v, k, 2) trades of index i. 

1 Introduction 

Let V be a v-set and T I , T2 be collections of m k-subsets (blocks) of V. We say that 
TI and T2 are t-balanced if each i-subset of V is contained in the same number of 
blocks of TI and of T2. If TI and T2 are disjoint and i-balanced, then T = {TI' T2} is 
said to be a (v, k, i) trade of volume m. If TI = T2 = 0, the trade is said to be void. 

Note that not all elements of V need appear in the blocks of T. The subset of V 
contained in TI is called the foundation, denoted by F(Td. If T is a trade then 
F(Td = F(T2), so we define F(T) = F(TI ). We also write f(T) = IF(T)I and 
m(T) = m. Where we do not know, or have no interest in, v, we speak of a (k, i) 
trade. 

To avoid trivialities, we assume throughout that k > i > 0, and we ignore the void 
trade. When writing blocks and sets of blocks, we omit separating commas and 
braces where possible. It is convenient to think of the blocks of TI being labelled '+' 
and those of T2 labelled '-', and to write a trade in the form T = TI - T2. 

EXAMPLE 1: Let T = TI - T2 = + 135 + 146 + 236 + 245 - 136 - 145 - 235 - 246. 
Then T is a (3,2) trade, with m(T) = 4, F(T) = {I, 2, 3,4,5, 6} and f(T) = 6. 

As well as being interesting in their own right, trades (also known as null i-designs) 
have many uses in design theory. They can be used to construct i-designs with 
different support sizes [5], and are related to the design intersection problem [2] and 
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the problem of finding defining sets of designs [8]. Trades are also frequently used 
implicitly, in a variety of guises: e.g., in [1] (n, i)-partitionable sets are used in halving 
the complete design. When n = 2, (n, i)-partitionable sets are trades. 

Let P = {4, 6, 7, 8, 9, ... }. It is well-known that there is a (k,2) trade of volume rn 

if and only if m E P. A trade T is said to be simple if both T1 and T2 are sets, 
as opposed to multisets. It is easy to establish that there is a simple (k, 2) trade of 
volume rn if and only if m E P. If T1 - T2 is a (k, i) trade and no i-subset occurs in 
more than one block of T1 , then the trade is said to be Steiner. Steiner trades are 
obviously simple. For Steiner (k,2) trades, k -f:. 3, the set of possible volumes is a 
proper subset of P (see Theorem 4 below). In this paper, we consider the possible 
volumes of simple (k, 2) trades as a function of how 'non-Steiner' they are. 

DEFINITION 2: Suppose that B is a set of blocks, and that S ~ F(B). We say that 
S has multiplicity rs in B if S is in rs blocks of B. We use rx and r xy for r{x} and 
r{x,y} respectively. IfT = Tl T2 is a (k, i) trade, then we define 

i = max{rs : S ~ F(Tr), lSI = i} 

to be the index of T. 

DEFINITION 3: For k 2: i + 1 and i 2: 1, the spectrum of simple (k, i) trades of 
index i is 

5 i (k, i) = {m(T) : T is a simple (k, i) trade of index i}. 

It is the spectra Si(k, 2), k 2: 3, i 2: 1, which we study in this paper. For convenience, 
we also define Si(k, 2) = P \ 5 i (k, 2). Steiner trades obviously have index one, and 
the spectra 5 1 (k, 2) are known for all k 2: 3. 

THEOREM 4: ([3,4,7]) For k 2: 3, let Nk = {rn : 2k - 2 :::; m < 3k - 3, rn even} U 
{m : m 2: 3k - 3}. Then: 
(1) If k -f:. 7, then 51 (k, 2) = Nk ; 

(2) Sl (7,2) = Nk U {15}. 0 

In the next section we review the necessary background material on trades. In 
Section 3 we present some basic results, and show how (k, 1) trades of particular 
forms can be used to construct (k,2) trades with specific indices. As part of this, we 
determine 5 i ( k, 1), for all k 2: 2, i 2: 1. We also show how two (k, 2) trades can be 
combined in various ways to generate (k,2) trades of different volumes and indices. 
The values of k partition naturally into three classes, k = 3, k = 4 and k 2: 5, and 
Sections 4, 5 and 6 consider these in turn. We completely solve the k = 4 case, and 
we discuss the work remaining in the ather cases in Section 7. We also make some 
suggestions regarding other interesting spectra problems. 

We use I x 1 to denote the least integer greater than or equal to x. Set union is 
sometimes denoted by juxtaposition, and is assumed to 'distribute': so, e.g., 50 51 = 
So U SI and XTI = {{x} U A : A E Td. 
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2 Review 

We start our review of the basic properties of trades with a fundamental result. 

LEMMA 5: ([5, 6]) Let T = Tl - T2 be a non-void (k, t) trade. Then: 
(1) T is a (k, s) trade for all 0 < s < t; 
(2) m(T) ~ 2t; 
(3) f(T) ~ k + t + 1. 

The following result is an immediate conseq~ence of Lemma 5(1). 

o 

LEMMA 6: Suppose that T = Tl - T2 is a (k, t) trade, and x and yare distinct 
elements not in F(T). Then: 
(1) +XTI + yT2 - yTl - XT2 is a (k + 1, t + 1) trade of volume 2m(T); 
(2) XTI - XT2 is a (k + 1, t) trade of volume m(T). 0 

If A is a collection of blocks, then define AX = {B \ {x} : x E B, B E A} and 
Ax = {B : x 1:. B, B E A}. Then we have the following result. 

LEMMA 7: ([6]) Suppose that T = Tl - T2 is a (k, t) trade, and x E F(T). Then: 
(1) TX = T{ - T{ is a (k - 1, t - 1) trade of volume rx; 
(2) Tx = Tf- T2 is a (k, t - 1) trade of volume m(T) - rx; 
(3) xTx = xT{ - xT{ is a (k, t - 1) trade of volume rx . 0 

Note that if T is simple in Lemmas 6 and 7 then so are the trades constructed from 
T. We can also add trades, provided that we 'cancel' any blocks common to the two 
halves. 

LEMMA 8: ([5]) Suppose that To = Tl - T2 and Tb = T3 - T4 are (k, t) trades. Then 
T = Tl + T3 - T2 - T4 is a (k, t) trade of volume 

o 

Lemmas 5(2) and 7(1,2) easily yield the following result regarding the multiplicity 
of elements in the foundation. 

LEMMA 9: Suppose that T is a (k, t) trade and x E F(T). Then: 
(1) Tx ~ 2t

-
l

; 

(2) Ift > 1, then rx i- 1, m(T) - 1. o 

By Lemma 5(2), non-void (k,2) trades must have volume at least four. Such trades 
have been completely characterised. 

THEOREM 10: ([6]) Volume four (k,2) trades exist for all k ~ 3, and necessarily 
have the following structure. 

T=+~~~~+~~~~+~~~~+~~~~ 

-SOSIS3S6 - SOS1S4S5 - SOS2S3S5 - SOS2 S4S 6, 

where: Si ~ F(T), 0 ~ i ~ 6; Si n Sj = 0, 0 ~ i < j ~ 6; ISol ~ 0; ISil = ISi+ll > 0, 
i = 1,3,5; and ISol + ISll + IS31 + IS51 = k. 0 
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3 General results 

We begin with a basic result regarding 'small' volumes. 

LEMMA 11: Suppose that m E Si(k, 2). Then: 
(1) m ~ i; (2) m -I i + 1. 

PROOF: Part (1) is obvious, so suppose that T = T1 -T2 is a simple (k, 2) trade with 
index i and volume i + 1. Suppose that 12 ~ F(T) has multiplicity i in TI . Thus 
T1 and T2 are at least i = m(T) - 1. By Lemma 9(2), neither Tl nor T2 can equal i. 
Thus Tl = T2 = i + 1, and so 12 has multiplicity i + 1 in T1 , a contradiction. 0 

Our next result establishes when 4 E 5 i (k, 2). Note how this result partitions the 
possible values of k into three classes. As we will see, this partitioning is reflected in 
the differing structure of Si(k, 2) for k = 3, k = 4 and k ~ 5. 

LEMMA 12: Apart from the cases listed in (1)--(3) below, 4 E Si(k, 2). 
(1) 4 E 5 1(3,2); 
(2) 4 E 5 2 (4,2); 
(3) If k ~ 5, then 4 E S2(k, 2) and 4 E S4(k, 2). 

PROOF: Consider Theorem 10, and note that any (k, 2) trade of volume 4 must have 
index 1, 2 or 4. (1) If k = 3, then So = ° and ISil = 1, 1 ::; i ::; 6. So the trade 
has index 1. (2) If k = 4 and So = 0, then ISil = ISi+ll = 2 for some i = 1, 3 or 5, 
and so the trade has index 2. If 150 1 = 1, then ISil = 1, 1 ::; i ::; 6, and the trade 
has index 2. (3) If k ~ 5 and 150 1 ~ 2, then the trade has index 4. If 150 1 ::; 1, then 
lSi I = I Si+ll ~ 2 for some i = 1, 3 or 5, and so the trade has index 2. 0 

The following pair of constructions enable us to construct simple (k,2) trades with 
specified index from simple (k, 1) trades of a particular form. 

LEMMA 13: Let T = Tl - T2 be a simple (k, 1) trade of volume m and index i. 
(1) Ifk ~ 2, i ~ 2, and f(T) = mk - i + 1, then 2m E 5 i (k + 1,2); 
(2) If k ~ 3, i ~ 1, 12 ~ F(T) has multiplicity i in both Tl and T2, and f(T) = 
mk - 2i + 2, then 2m E S2i(k + 1,2). 

PROOF: Let x, y be distinct elements not in F(T). By Lemma 7(2), T* = +xT1 + 
yT2 - yTl - XT2 is a simple (k +1,2) trade of volume 2m. 

(1) By supposition, some element of F(T), say 1, occurs in precisely i sets of Tl and 
of T2 , and all other elements of F(T) occur precisely once in Tl and in T2 • Thus the 
pairs xl and y1 have index i in T*. Pairs of the form xa and ya, where 1 -I a E F(T), 
have multiplicity 1 in T*. Pairs of the form 1a and a(3, where 1 g {a,(3} ~ F(T), 
have multiplicity at most 2 in T*. Since i ~ 2, the result follows. 

(2) By supposition, elements 1 and 2 occur in precisely i sets of Tl and of T2 and 
are always paired, and all other elements of F(T) occur precisely once in T1 and in 
T2 . Obviously, 12 has index 2i in T*, and it is easy to see that any other pair from 
F(T*) has multiplicity 1, 2 or i. 0 
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It is trivial that SI (k, 1), the spectrum of Steiner (k, 1) trades, is equal to {2, 3,4, ... } 
for all k 2 2. We will call a (k,l) trade T of index i 2 2 and f(T) = mk - i + 1 
a near-Steiner (k, 1) trade of index i. We now determine 5i (k, 1) for all i 2 2 and 
k 2 2, and show that in all cases we can construct a near-Steiner trade. 

THEOREM 14: Suppose that i 2 2, and let s = i3i/2l Then: 
(1) Si(2, 1) = {s, s + 1, s + 2, ... }; 
(2) Ifk 23, then 5 i (k, 1) = {i,i + 1,i + 2, ... }. 
In all cases, a near-Steiner trade exists. 

PROOF: Let T Tl - T2 be a simple (k, 1)' trade of index i and volume m. That 
m 2:: i is obvious. Suppose that k = 2, and let 1 E F(T) be an element with 
multiplicity i. Then the i elements that occur with 1 in Tl and in T2 must all be 
distinct, since Tl n T2 = 0 and k = 2. Thus, those elements which occur with 1 in T2 
must occur in sets not containing 1 in Tl . So m 2:: i + i/2. It remains to construct a 
near-Steiner trade in all cases. 

(1) We need only prove the cases m = sand m = s + 1. As 51 (2,1) = {2, 3, 4, ... }, 
the other cases follow from Lemma 8 by adding a Steiner (2, 1) trade of appropriate 
volume and disjoint foundation. First note that, given F(T), Tl is fixed, up to 
a permutation of F(T). By considering the cases i even or odd, and m = s or 
m = s + 1, it is easy to see that the blocks of Tl that do not contain 1 contain a 
total of i, i + 1, i + 2 or i + 3 distinct elements from F(T). Further, it is always 
possible to pick i of these points such that at least one point from each of the blocks 
not containing 1 is chosen. Now use any bijection between these points and the i 
points which occur with 1 to form T2 from Tl . 

(2) As in (1), Tl is fixed, up to a permutation of F(T). Recall that a derangement 
is a permutation with no fixed points. To form T2 from Tl , chose one element, not 
equal to 1, from each set of Tl and apply any derangement. 0 

The (k, 1) trades required by Lemma 13(2) are also straightforward to construct. 

LEMMA 15: If i 2:: 1 then there exists a simple (k, 1) trade T = Tl - T2 of volume 
m and f(T) mk - 2i + 2, with some pair xy ~ F(T) having multiplicity i in Tl 
and in T2 , if and only if: 
(1) k = 3 and m 2:: i4i/3l = s; 
(2) k 2:: 4 and m 2:: i. 

PROOF: Let T T1-T2 be a simple (k, 1) trade of volume m with f(T) = mk-2i+2, 
and suppose that 12 ~ F(T) has multiplicity i in Tl and in T2. Obviously, k > 2. 

(1) The i elements which occur with 12 in Tl must be distinct, and cannot occur 
with 12 in T2 ; so m 2 i + i/3. As in the proof of Theorem 14(1), we need only prove 
existence for m = sand m = s + 1. By considering the cases i == 0,1,2 (mod 3), 
and m = s or m = s + 1, it is easy to see that the blocks of Tl that do not contain 
1 contain a total of i, ... ,i + 5 distinct elements from F(T). Except when i = 1 
and m s + 1 3, it is always possible to pick i of these points such that at least 
one point from each of the blocks not containing 1 is chosen. Now use any bijection 
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between these points and the i points vvhich occur with 1 to form T2 from T1 . For 
the i = 1 and m = 3 case, use the trade +123 + 456 + 789 126 - 459 - 783. 

(2) Obviously, m ;:::: i is necessary. To see sufficiency, note first that, given F(T), Tl 
is fixed, up to a permutation of F(T). Now form T2 from by chasing one element 
from F(T), not equal to 1 or 2, from each set of Tl and permuting these elements 
using any derangement. 0 

vVe now show how (k, 2) trades can be combined to yield (k, 2) trades of other volumes 
and indices. In particular, part (3) of the following result can be used to generate 
trades of odd volume from the even volume trades constructed using Lemma 13. 
N ate also that if we set i = j in part (1), then we see that Si (k, 2) is closed under 
addition. 

THEOREM 

(1) m + n 
(2) m + n 
(3) m + n 

16: Suppose that m E Si(k, 2) and n E Sj(k, 2). 
Smax(i,j)(k, 2),­
Si+j(k, 2),-
1 E Si+j-l (k, 2). 

Then: 

PROOF: Let Ta = Tl - T2 (resp. n = T3 - T4) be a simple (k, 2) trade of volume m 
(resp. n) and index i (resp. j). We can assume that F(Ta) n F(n) = 0; for if not, 
simply relabel the elements of, say, F(n). 

(1) Ta + n + Tl + T3 - T2 - T4 is obviously a simple (k, 2) tracJ.e with volume m + n 
and index max(i,j). 

(2) Let xy ~ F(Ta) and zw ~ F(n) have indices i and j in Ta and Tb respectively. 
Now relabel {z,w} so that {x,y} = {z,w}. Since k > 2, then Ta and n have no 
blocks in common, so Ta + Tb is a simple (k,2) trade with volume m + n; by our 
choice of foundations, it has index i + j. 
(3) Let xy ~ F(Ta) and zw ~ F(n) have indices i and j in Ta and n respectively, and 
suppose that xy ~ M E Tl and zw ~ N E T4 • Now relabel the elements of N so that 
!vI = Nand {x,y} = {z,w}. Since Ta and n are simple, and IF(Ta) n F(n)1 = k, 
there is precisely one block common to Tl + T3 and T2 + T4. So Ta + n is a simple 
(k,2) trade with volume m + n - 1. The pair xy obviously has index i + j - 1 in 
Ta + n. If a pair ab has index greater than i + j 1 in Ta + Tb , it must have index i 
in n and index j in Ta, and ab ~ F(Ta) n F(Tb). But any pair in F(Ta) n F(n) can 
have index at most i + j - 1 in Ta + n, a contradiction. 0 

EXAMPLE 17: Using Lemma 13(1) and Theorem 14(2) (resp. Lemmas 13(2) and 
15(1)) we can construct the trades 

Ta = +x123 + x145 + .x678 + y125 + y148 + y673 

-y123 - y145 - y678 - x125 x148 - x673, 

n = +z129 + z12a + zbcd + w12b + w12c + wa9d 

-w129 - w12a - wbcd + z12b - z12c za9d, 

which demonstrate that 6 E S2( 4,2) (resp. 6 E S4( 4,2)). These can be combined 
using Theorem 16(3), relabelling wand 9 in n to x and 3 respectively, to yield the 
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trade 

+x145 + x678 + y125 + y148 + y673 + z123 + z12a + zbcd + x12b + x12c + xa3d 
-y123 - y145 - y678 - x125 - x148 - x673 - x12a - xbcd + z12b - z12c - za3d. 

o 

Lemma 13, with Theorem 14 and Lemma 15, provides all even volumes in Si(k,2) 
which are 'large' in relation to i, for all i ~ 2 and k ~ 3. Theorem 16 can now be 
used with these, and the trades of Theorem 4 and Lemma 12, to fill in the 'large' 
odd volumes and many 'smaller' volumes. In the following three sections, we prove 
results concerning the volumes not covered by these theorems. Note that, as new 
volumes are proved to exist, Theorem 16 can be reapplied to fill in further missing 
volumes. 

4 Results for k = 3 

In this section, we prove the following result regarding Si(3, 2). 

THEOREM 18: 
(1) S2(3, 2) = P \ {4}; 
(2) S3(3, 2)= P \ {4, 6, 7}; 
(3) S4(3, 2) = P \ {4, 6, ... ,10}; 
(4a) For i ~ 5, define 

depending as i is ev~n or odd, respectively. Then Si(3, 2) ;;2 {4, 6, ... ,r}. 
(4b) For i :2: 5, define 

8i - 3 
s =--

3 ' 

8i - 2 

3 

8i -1 

3 

depending as i == 0, 1, 2 (mod 3), respectively. Then Si(3, 2) ;;2 P \ {4, 6, ... , s}. 

LEMMA 19: Suppose that m E Si(3, 2). Then m ~ 2i + fi/3l if i is even, and 
m :2: 2i + 1 + f(i - 2)/3l ifi is odd. 

PROOF: Let T = TI - T2 be a simple (3,2) trade of volume m and index i. We can 
suppose, without loss of generality, that {12xI, ... , 12xd ~ T I , {12YI,"" 12Yi} ~ 
T2 , and that these 2i sets are distinct. Now the pairs 1Yj and 2Yj, 1 :::; j :::; i, must 
occur in TI . Since the pair 12 cannot occur again, this requires two sets of blocks, 
each of at least fi/2l blocks. The Xj must occur at least once more in T I . If i is 
even this requires at least f i /3l further blocks, and if i is odd it requires at least 
f(i - 2)/3l further blocks. 0 

LEMMA 20: Let r be as in Theorem 18(4a). If i :2: 4, then r E Si(3, 2). 
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PROOF: Assume that T = TI - T2 is a simple (3,2) trade of index i and volume 
I, and note that T must conform to the structure discussed in Lemma 19. Put 
F = F(T), X {Xl, ... ,Xi} and Y = {Xl, ... ,Vi}. After placing each of 1 and 2 in 
i + fi/21 blocks in TI and in T2, and each element of X U Y in two blocks, there are 
zero, one or two positions in each of TI and T2 free, in the sense that these elements 
could be drawn from {1, 2} U X U Y or from some disjoint set Z. We consider the 
residue classes for i modulo 6, and obtain a contradiction in each case. 

(1) i = 6n, n ~ 1: There are no positions of TI or T2 free. So F = {1, 2} U X U Y, each 
element in Xu Y has multiplicity two, and is paired with each of 1 and 2 precisely 
once. Now, TI contains 2n blocks all of whose elements are drawn from X. Consider 
xaxpxi E T1 . The pairs xaxp, XaX"y and XPXi must occur in T2 , as the blocks with 1 
or 2. But this is impossible, since, e.g., using forces the block 2xax"y and now 
X{3Xi cannot be placed without repeating either 1xp or 2xi . 

(2) i = 6n + 1, n ~ 1: There is one position free in each of TI and T2; let U be the 
element used to fill this position. Since IU =I- 1, then U E {1, 2} U X u Y. If U E X, 
then Tl contains 2(3n) pairs of the form YaYp. To balance these, T2 must contain 
2n blocks all of whose elements are from Y. But now, TI contains two xaYp pairs, 
while T2 contains only one. Similarly if U E Y. So U {1,2}; suppose, without loss 
of generality, that U 1. Now count pairs of the form 1xa . Tl has i + 3 such pairs, 
while T2 has i. 

(3) i 6n + 2, n ~ 1: There is one position free in each of Tl and T2 ; let u be the 
element used to fill this position. Since IU =I- 1, then U E {1, 2} U XU Y. If u E X, 
then count pairs of the form xaxp; Tl contains 3(2n + 1) such pairs, while T2 contains 
2(3n + 1). Similarly if u E Y. So u E {1, 2}; suppose, without loss of generality, that 
u = 1. Now count pairs of the form 1xa . TI has i + 2 such pairs, while T2 has i. 

(4) i = 6n + 3, n ~ 1: There are two positions free in each of Tl and T2 ; let u and 
v be the elements used to fill these positions. Suppose that u = v E Z. If TI and 
T2 contain the pairs 1 u and 2u, then TI contains no UXi pairs, while T2 contains two 
such pairs. If TI and T2 contain the pair 1 U but not the pair 2u, then Tl contains 
two UXi pairs, while T2 contains only one; similarly if they contain 2u but not 1 u. If 
Tl and T2 do not contain either of the pairs 1 U or 2u, then contains four UXi pairs, 
while T2 contains none. Thus u, v E {1, 2} U XU Y, since Itll IV =I- 1. By symmetry, 
the only cases for (u, v) we need consider are: (1,1), (1,2), (1, xa); (xa, xa), (xo:, xp); 

(xa,YP)· 

(i) If (u, v) = (1,1) (resp. (1,2), (1, xa )), then Tl has i + 5 (resp. i + 3, i + 3) pairs of 
the form 1xa, while T2 has only i (resp. i, i or i+1) such pairs. (ii) If (u,v) = (xa,xa) 
or (xa,xp), then TI has i + 1 pairs of.each of the forms 1xa and 2Xb. To balance 
these in T2 , all the Xi must be in blocks with 1 or 2. But now TI has two pairs of 
the form XaYb, while T2 has none. (iii) If (u,v) = (xo:,YP) and yp is not paired with 
1 or 2, then Tl contains 3(2n) + 1 pairs of the form XaXb, while T2 contains at least 
2(3n + 1) such pairs. So suppose, without loss of generality, that Tl and T2 contain 
the pair 1yp. Note that I YfJ = 3, and count pairs of the form YPYi. Tl contains either 
two or three such pairs, while T2 contains four. 
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(5) i = 6n + 4, n 2:: 0: There are two positions free in each of Tl and T 2 ; let u and 
v be the elements used to fill these positions. Suppose that u = v E Z; then Tl 
contains 2(3n + 2) pairs of the form YaY{3, while T2 contains 3(2n) + 2 such pairs. 
Thus U,v E {1,2} U Xu Y, since ru,rv #- 1. By symmetry, the only cases for (u,v) 
we need consider are: (1,1), (1,2), (1, xa); (xa, xa), (xa, x,L3); (xa, Y,L3). 

(i) If(u,v) (1,1) (resp. (1,2), (l,x a )), then Tl has i+4 (resp. i+2, i+2) pairs of 
the form 1xa, while T2 has only i (resp. i, i or i+ 1) such pairs. (ii) If (u, v) = (xa, xa) 
or (xa,X{3), then T1 contains 3(2n+2) pairs of the form XaXb, while T2 contains either 
2(3n + 2) or 2(3n + 2) + 1 such pairs. (iii) If (u,v) (xa ,Y,L3), then both Tl and T2 
contain precisely one block containing elements from both X and Y This block is 
of the form xaxby{3 in Tl and XaYaYb in T2 • Balancing pairs forces Xa = Xb = Xa and 
Ya = Yb = Y,L3, which is not possible. 

(6) i = 6n + 5, n 2:: 0: There are no positions free in Tl or T2 • Now count pairs of 
the form xax{3. T1 contains 3(2n + 1) such pairs, while T2 contains 2(3n + 2). 0 

We are now in a position to prove Theorem 18. We work through the proof in some 
detail, to illustrate our methods. Similar techniques apply in Sections 5 and 6, but 
there we suppress much of the detail. 

PROOF OF THEOREM 18(1): That 6 E 8 2 (3,2) and m E S2(3, 2) for m 2:: 8 follows 
from Lemma 13 and Theorem 14, 8 1 (3,2) and Theorem 16. That 7 E 8 2 (3,2) follows 
from considering the trade 

T = +123 + 145 + 247 + 257 + 268 + 356 + 378 

-124 - 135 - 237 - 256 - 278 368 - 457. 

That 4 E 5 2(3,2) follows from Lemma 12. 0 

PROOF OF THEORE,M 18(2): That 8,9 E 83 (3,2) follows from considering the trades 

Ta +248 + 259 + 349 +367 + 389 + 458 + 469 + 479 

-249 - 258 - 348 - 369 - 379 - 459 - 467 - 489, 

n = +128 + 139 + 147 + 158 + 168 + 249 + 256 + 278 + 348 

-129 - 138 -148 - 156 -178 247 258 - 268 - 349. 

That m E 53 (3,2) for m 2:: 10 follows from 8 2 (3,2) and 4 E Sl (3,2) on applying 
Theorem 16(2). That {4, 6, 7} ~ 53 (3,2) follows from Lemmas 12 and 19. 0 

PROOF OF THEOREM 18(3): That 11 E 84 (3,2) follows from considering the trade 

T +146 + 157 + 235 + 267 + 367 + 457 + 478 + 49a + 568 + 579 + 57a 

-145 167 - 236 - 257 - 357 - 468 - 479 47a - 567 - 578 - 59a. 

That m E 54 (3,2) for m 2:: 12 follows from 8 3 (3,2) and 4 E Sl (3,2) on applying 
Theorem 16(2). That {4, 6, ... , 10} ~ 5 4 (3,2) follows from Lemmas 12 and 19. 0 

PROOF OF THEOREM 18(4): Part (4a) follows immediately from Lemmas 19 and 
20. For part (4b), note that 8 E 53 (3,2). Repeated addition of a simple (3,2) 
trade of index three and volume eight to the values in Si(3,2), 2 :::; i :::; 4, using 
Theorem 16(2), now yields the result. 0 
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5 Results for k = 4 

We completely solve the spectrum problem for k = 4, proving the following result. 

THEOREM 21: 
(1) 5 2 (4,2) P; 
(2)53 (4,2) P\{4}; 
(3)54 (4,2) P\{4}; 
(4) 5 5 (4,2) = P \ {4,6, 7}; 
(5) 5 6 (4,2) = P \ {4,6, 7}; 
(6) For i 2 7, define.5 = f7i/6l. Then 5 i ( 4,2) = P \ {4, 6, ... ,.5 - I}, except that 
mE Si(4,2) for the following (m,i) pairs: (9,7); (11,9); (12,10); (13,11); (14,12); 
(19,16); (20,17); (21,18); (27,23). 

LEMMA 22: Suppose that m E 5i (4, 2). Then m 2 f7i/6l 

PROOF: Let T = TI - T2 be a simple (4,2) trade of volume m and index i, and 
suppose that 12 is a pair which occurs in i blocks of and T2 . Now consider the 
i pairs which occur with 12 in blocks of TI . Since Tl n T2 0, none of these pairs 
can occur as a block with 12 in T2 • To balance pairs, these i pairs must occur in 
blocks of T2 which do not contain 12. Each such block can contain at most 6 pairs, 
so 6( m i) 2 i. 0 

Theorem 21(2) follow from our results so far by repeated application of Theorem 16. 
For Theorem 21(1), it remains only demonstrate that 7 E 5 2 (4,2). Consider 

T = +3459 + 3468 + 3567 + 3789 + 4578 + 4679 + 5689 

-3469 - 3478 - 3568 - 3579 4567 - 4589 - 6789. 

To complete our proof of Theorem 21 we will use some structural properties of simple 
(4,2) trades which enable the problem to be reduced to the question of the existence 
of certain (4, 1) trades. To motivate what follows, consider the following example, 
which completes the proof of Theorem 21(3). 

EXAMPLE 23: That 7 E 54(4,2) follows from considering the trade 

T = +xy27 + xy37 + xy46 + xy56 + 1236 + 1345 + 1467 

-xy26 - xy35 - xy47 - xy67 - 1237 - 1346 - 1456. 

Note how the sets not containing xy form a (4,1) trade of volume three. Of the 
eighteen pairs in each half of this (4, 1) trade, fourteen appear in the other half, and 
the remaining four pairs are those occurring with xy in the other half ofT. Further, 
the four pairs occurring with xy in each half form a simple (2,1) trade of volume 
four. 

DEFINITION 24: Let T = TI - T2 be a simple (4,1) trade of volume m. Suppose 
that, of the 6m pairs in the blocks ofT1 , preciselye of them appear in the blocks of 
T2 • Then e is called the excess of T. The 6m e pairs in (resp. T2 ) that do not 
appear in T2 (resp. TI ) are called non-balanced pairs. 
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We can think of the excess as measuring how close to being 2-balanced T is, since 
e = 6m if T is also a (4,2) trade. The (4, 1) trade of volume three in Example 23 
has an excess of fourteen, and the sets of non-balanced pairs are 26,35,47,67 and 
27,37,46,56. Note that, in an arbitrary simple (4,1) trade, the set of excess pairs and 
the set of non-balanced pairs can contain repeated pairs, and need not be disjoint. 

LEMMA 25: Suppose that 5 = 51-S2 is a simple (4, 1) trade ofvo1umen and excess 
e. Put i 6n e and m = i + n. If i 2: n and the i non-balanced pairs in S1 and in 
52 are distinct, then there is a simple (4,2) trade of volume m and index i. 

PROOF: Let R~ (resp. R;) be the set of i pairs which are in 52 but not in 51 (resp. 
in 51 but not in 52)' Then R~ - R; is a simple (2,1) trade of volume i. To see 
this, simply note that: each element of F(S) is in the same number of pairs in 51 
and in 52; pairs common to 51 and 52 are not in Ri or R;; the non-balanced pairs 
are distinct. By construction, 51 U Ri and 52 U R; are 2-balanced. Now choose 
distinct x and y not in F (5), and let R1 = xy Ri and R2 xy R;. Since Ri - R; is 
i-balanced, then T Rl + 51 - R2 - 52 is a simple (4,2) trade of volume m, with 
'rx = 'ry = 'rxy i. Since i 2: n, any pair in 51 (which must be in either 52 or R;) 
has multiplicity at most i. Similarly for pairs in 52. So T has index i. 0 

LEMMA 26: Let T = T1 - T2 be a simple (4,2) trade of volume m and index i, and 
let n = m - i and e = 6n i. Suppose that xy ~ F(T) has 'rxy = i, and let 51 and 
52 be the sets of n blocks, from T1 and T2 respectively, which do not contain the pair 
xy. Then S 51 - 52 is a simple (4,1) trade of volume n and excess e, with distinct 
non-balanced pairs, if either of the following holds: 
(1) m = i7i/6l; (2) n :::; 2. 

PROOF: Let R1 (resp. R 2) be the set of i blocks in T1 (resp. T2) which contain the 
pair xy, and let Ri (resp. R;) be the set of pairs formed by removing the pair xy 
from each of the blocks of Rl (resp. R2)' Note that 51 52 is a (4,1) trade if and 
only if R1 R2 is a (4,1) trade, and if and only if Ri R; is a (2,1) trade. Given 
this, the excess of 51 - 52 follows from the 2-balancing of T, since the only pairs not 
balanced in R1 R2 are those in R~ and R;, and these must come from 52 and 51 
respectively. Ri and R; are the non-balanced pairs in 5, and are obviously distinct. 
So it remains to prove that one of 51 - 52, R1 - R2 or Ri R; is I-balanced. 

(1) If at most one of x and y is in F(S1), then at least one of x and y (say x) occurs 
only in the blocks of R1 and R 2. Balancing pairs of the form xo:, 0: tf. {x, y}, now 
forces Ri R; to be I-balanced. So, if Ri-R; is not I-balanced, then {x,y} ~ F(5t}. 
Since x and y cannot occur together in a set from 51, there must be at least six pairs 
in the blocks of 51 which are not in R;. This contradicts m = i7i/6l, which allows 
at most five such pairs (recall Lemma 22). 

(2) As in (1), if Ri - R; is not I-balanced, then {x,y} ~ F(5d and x and y cannot 
occur together in a set from 51. So n 2: 2. If n = 2, then 'rx = 'ry = m - 1, which 
contradicts Lemma 9(2). 0 

Now, let m f7i /6l, and consider simple (4,2) trades with volume m and index i. 
Suppose that i 63 + 6, 1 :::; 6 :::; 6. For fixed 3, as 6 runs through 1, ... ,6, then the 
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TABLE 1: Simple (4,1) trades of volume three and excess 3--13,15 

3 +abl2 + cd34 + ef56 - ab35 cd16 ef24 
4 + 1234 + 5678 + 9abc - 1259 - 346a - 78bc 
5 +123x + 145y + 67uv - 124u - 135v - 67xy 
6 +1234 + 5678 + 9abc - 1256 349a - 78bc 
7 +1234 + 5678 + 9abc 1235 - 4679 - 8abe 
8 +1234 + 1235 + 6789 - 1236 - 1247 - 3589 
9 + 1234 + 5678 + 9abc - 1238 - 567 c 49ab 

10 + 1234 + 1567 + 589a - 1235 149a - 5678 
11 +1234 + 1235 + 6789 - 1236 - 1245 - 3789 
12 +1234 + 1235 + 4678 - 1236 - 1245 - 3478 
13 +1468 + 2568 + 3578 - 1568 2458 - 3678 
15 + 1256 + 1278 - 1236 - 1247 - 1258 

excess of the trade, e, runs through 5, ... ,0, while the value of n = m - i is fixed. To 
complete our proof of Theorem 21, for 'large' values of i we will prove the existence of 
simple (4,1) trades of excess e, 0 ~ e ~ 5, and with distinct non-balanced pairs, for 
all 'large enough' n. The spectra 5i ( 4,2) now follow from Lemma 25 and repeated 
application of Theorem 16. For the smaller values of i, we need to prove the existence 
or non-existence of the appropriate (4,1) trades for various 'small' values of n. For 
convenience, we use 5e to denote the spectrum of simple (4,1), trades with excess e 
and with distinct non-balanced pairs. 

LEMMA 27: 
(1) 2 E 5 e if and only if e E {4, 6, 8, 10}; 
(2) For i 2: 2, i + 2 E 5 i ( 4,2) if and only if i E {2, 4, 6, 8}. 

PROOF: For (1), suppose that 5 = 51 52 is a simple (4,1) trade of volume two. 
The two blocks of 51 can intersect in 0, 1 or 2 points. These yield, respectively, 2, 1 
and 1 non-isomorphic forms for 52, with excesses of 4 and 6, 8 and 10. In all cases, 
the non-balanced pairs are distinct. Part (2) now follows from Lemmas 25 and 26. 

o 

LEMMA 28: 
(1) 3 rf- 5e ife E {O, 1,2}, and 3 E 5e ife E {3, ... , 15}; 
(2) For i 2: 1, i + 3 E 5 i (4, 2) if and only ifi E {3, ... , 15}. 

PROOF: Suppose that 5 = 51 - 52 is a simple (4,1) trade of volume three and 
excess e. Since k = 4, at least one pair from each block of 51 occurs in a block of 
52, so e 2: 3. For e = 14 use Example 23. To complete (1), consider the trades of 
Table 1. Part (2) now follows for i + 3 2: 6 from Lemmas 25 and 26, for i + 3 = 5 
from Theorem 21(1), and for i + 3 = 4 from Lemma 12. 0 

LEMMA 29: 
(1) 50 = {4, 5, 6, ... }; (2) 51 = {5,6, 7, ... }; (3) 52 = {4, 5, 6, ... }; 
(4) 53 = {3,4,5, ... }; (5) 54 = {2,3,4, ... }; (6) S5 = {3, 4, 5, ... }. 
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e n 
3 4 

5 
6 

4 4 
5 

5 4 
5 
6 

TABLE 2: Simple (4,1) trades of excess e and volume n 

+ab12 + cd34 + ef56 + 789x - ab67 - cd28 - ef49 - 135x 
+ab12 + cd34 + ef56 + 789x + yzuv - ab7y - cd8z - ef9u - 135x - 246v 
+12ab + 34cd + 56ef + ghij + klmn + opqr 
-12gm - 34hn - 56io - adjp - bekq - cflr 
+ab12 + cd34 + ef56 + gh78 - ab35 - cd17 - ef28 - gh46 
+ab12 + cd34 + ef56 + gh78 + 9xyz - ab89 - cd2x - ef4y - gh6z - 1357 
+abcd + ef12 + gh34 + ij56 - ab13 - ef45 - gh26 - ijed 
+ab12 + cd34 + ef56 + gh78 + ij9x '- ab35 - cd17 - ef29 - gh4x - ij68 
+ab12 + cd34 + ef56 + gh78 + ij9x + yzuv 
-ab3y - cd1z - ef7u - gh9v - ij58 - 246x 

PROOF: Let S = SI - S2 be a simple (4,1) trade of volume n and excess e, with 
distinct non-balanced pairs, Obviously, n -::J. 1. The n = 2 and 3 cases are covered 
by Lemmas 27 and 28. In the constructions which follow, note that each element of 
F(5) except x and y is used once only, so the non-balanced pairs will be distinct. 

For e = 0 and n ~ 4, form an n x 4 array of distinct points. Take the rows of this 
array as the blocks of SI. For block j of S2, 1 ::; j ::; n, take the points at positions 
(j, 1), (j + 1,2), (j + 2,3) and (j + 3,4), reducing the first subscript modulo n to lie 
in {I, ... , n}. Obviously, no pair in a block of Sl occurs in a block of S2. 

Suppose that e = 1 and n = 4, and let xy be the pair which occurs in both SI and 
52. Consider the three blocks in Sl which do not contain the pair xv. The four 
points in each of these must be in separate blocks in S2, else e > 1. However, the 
block in 52 which contains xy has positions for only two points, a contradiction. For 
e = 1 and n ~ 5, form an n x 4 array A = [aj,j] where a1,1 = x, al,2 = Y and the 
remaining positions flre filled in row-major order with 1, ... ,4n - 2. Take the rows 
of A as the blocks of Sl. For the blocks of S2, take the rows of an n x 4 array B 
where bl ,l = x, bl ,2 = y and the remaining positions are filled in column-major order 
with 1, ... ,4n - 2. It is easy to see that SI - S2 is a simple (4, 1) trade of volume n, 
and the only pair common to SI and S2 is xy. 

For e = 2 and n ~ 4, proceed as for e = 1, except that a1,1 = a2,1 = b1,1 = b2,1 = x, 
a1,2 = a2,2 = b1,2 = b2,2 = y and using the points 1, ... ,4n - 4 for the remaining 
positions. 

To demonstrate existence for the e ~ 3 cases, we make use of the fact that, if a E Su 
and b E 5 v , then a + b E Su+v' So we need only exhibit an appropriate S for a small 
number of cases. The required trades as given in Table 2. 0 

Repeated application of Theorem 16 now proves existence for all required (m, i) pairs 
except (21,17), (22,18) and (29,24). These are easily dealt with using Lemma 25 
and the following result. 

LEMMA 30: 
(1) 4 E 57; (2) 4 E S6; (3) 5 E S6. 
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PROOF: Consider the (4,1) trades: 
(1) +1234 + 1567 + 39ab + cdef - 123c 159d - 34ae 67bf; 
(2) +1234 + 5678 + 9abc + defg - 123b - 564f - 9a7g de8c; 
(3) +1234 + 5678 + 9abc + defg + hijk - 123h - 56gi - 9a8j - deck - 47bf. 0 

6 Results for k > 5 

Our result for k ~ 5 is the following. 

THEOREM 31: Suppose that k ~ 5. Then: 
(1) S2(k,2) ;2 P \ {m: 7 ~ m ~ 2k -1, m odd}; 
(2) S3(k, 2) = P \ {4}; 
(3) S4(k, 2) = P; 
(4) S5(k,2) = P \ {4,6}; 
(5) Sdk, 2) = P \ {4, 7}; 
(6) Hi ~ 7, then Si(k,2) = P \ {4,6, ... ,i -l,i + I}. 

Parts (1), (2), (5) and (6) of Theorem 31 follow immediately from Theorem 4 and 
the results of Section 3. To complete parts (3) and (4), we need only the following 
result. 

LEMMA 32: For all k ~ 5: 
(1) 7 E S4(k, 2); (2) 8 E S5(k, 2). 

PROOF: Let A and B be disjoints sets of cardinality k - 3, each disjoint from 
{I, ... , 9}, and consider the trades 

Ta = +A146 + A236 + A139 + A789 + B245 + B158 + B357 

-A136 - A246 - A189 - A379 - B145 - B235 B578, 

n = +A136 + A157 + A189 + A234 + A256 + B245 + B238 + B279 

-A156 - A138 - A179 - A236 - A245 - B234 - B257 - B289. 

These are simple (k,2) trades of the required volumes. Since IAI ~ 2, pairs from A 
have multiplicity 4 or 5. To see that no pair has higher multiplicity, simply note that 
no element occurs more than four times in Ta, or more than five times in n. 0 

7 Concluding remarks 

For k = 3, the arguments of Lemma 20 could perhaps be extended to prove non­
existence in further cases. Whether or not this would be sufficient to close the gap 
of Theorem 18(4) is not clear. For k ~ 5 we are unable to determine whether 
m E S2(k, 2) or m E S2(k, 2) for m E {n : 7 ~ n ::; 2k - 1, n odd}. Our inability to 
construct trades of these volumes using Theorem 16 is due to the non-existence of 
Steiner trades with volumes less than 2k - 2. 

Our results demonstrate that, in general, Si(k, 2) C P. Any (k,2) trades with index 
i and volumes in Si(k,2) must be non-simple. It would be interesting to know 
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when such trades can be constructed, and how many repeated blocks are necessary. 
Finally, recall the near-Steiner (k, 1) trades of Section 3. Given that the index i > 1, 
these are as 'Steiner' as possible, in the sense that only one element has multiplicity 
greater than 1. It would be interesting to extend the definition of near-Steiner to 
(k,2) trades and to investigate their spectra. 
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