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Abstract 

In this note we investigate the minimum possible volumes for strong 
Steiner trades (SST). We prove that a (v, q + 1,2) SST must have at 
least q2 blocks if q is even and q2 + q blocks if q is odd. We construct a 
(v, q+ 1, 2) SST of volume q2 for every q a power of two, and a (v, q+ 1, 2) 
SST of volume q2 + q, for every q such that q + 1 is a power of two. A 
construction of (q2 + q + 1, q + 1,2) SSTs of volume q2 + q + 1 is also given 
for every prime power q. Combinations of these constructions are then 
used to construct further SSTs. We also show that when the bound for q 
even is achieved the elements of the trade are the duals of affine planes. 

1 Introduction 

A (v, k, 2) trade T = {TI' T2 } of volume m consists of two disjoint collections Tl and 
T2 , each containing m k-subsets (blocks) of some set V, such that all pairs from V 
occur in exactly the same number of blocks of Tl as of T2 • If all pairs from V occur 
in either zero or one block of T I , then the trade is called Steiner. (Note that there 
may exist elements of V which occur in no block of TI') The set of elements of V 
contained in TI is denoted by F(Td or F(T). We also note that the number of blocks 
of Tl containing the element x E F(T) is the same as the number of blocks of T2 
containing the x. We denote this number by rx . 

A (v, k, 2) Steiner trade T = {TI' T2 } is called strong if any block of TI intersects 
any block of T2 in at most two elements. We denote a (v, k, 2) strong Steiner trade 
by (v, k, 2) SST. The requirement that any two blocks have at most one pair in 
common is well-known as the orthogonality or super-simple property. The spectrum 
of (v,k,2) Steiner trades is the unique set of integers such that a (v,k,2) Steiner 
trade exists if and only if its volume is in the spectrum. In [6, 7, 9] the spectrum of 
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(k,2) Steiner trades is completely settled (in these papers the number of elements is 
not considered). When k = 3 any (v,3,2) Steiner trade is also strong by definition. 
So strong trades are of interest for k 2: 4. Adams, Bryant and Khodkar in [1] show 
that a (v,4,2) SST of volume v(v -1)/12 exists for all v == 1,4 (mod 12), V? 13. 
Using probabilistic arguments, Caro and Yuster in [3] have recently shown that for 
any two fixed integers k and f-l, there exists N = N (k, f.1) such that for every v > N, if 
a (v, k, 1) BIBD exists then there are f.1 distinct (v, k, 1) BIBDs such that any distinct 
pair of these BIBDs yields a (v, k, 2) SST. Moreover, they proved [4] explicitly that 
there exists a finite set of positive integers lvI( k, f-l) such that for every positive integer 
m rf- lvI(k, f-l) there exist f-l distinct (v, k, 1) BIBDs such that any distinct pair of these 
BIBDs yields a (v, k, 2) SST of volume m. 

In this note we investigate the smallest positive integer which is not in M(k,2). 
Indeed we prove: 

• A (v, q + 1,2) SST has at least q2 blocks if q is even and q2 + q blocks if q is 
odd . 

.. There exists a (q2 + q, q + 1,2) SST of volume q2 for every q a power of 2, and 
a (( q + 1)2, q + 1,2) SST of volume q2 + q, for every q such that q + 1 is a power 
of 2. 

• There exists a (q2 + q + 1, q + 1,2) SST of volume q2 + q + 1 for every prime 
power q. 

• If q is a power of 2 then there exists a (v, q + 1,2) SST of volume m for every 
m 2': q2(q2 + q + 1). 

• If q is a power of 2 and q - 1 is a prime power then there exists a (v, q, 2) SST 
of volume m for every m 2': (q2 - q)(q2 - q + 1). 

• If T = {TIl T2 } is a (v, q + 1,2) SST of volume q2 then TI and T2 are the duals 
of affine planes. 

2 Results 

We start this section with the following result which gives a lower bound on the 
volume of strong Steiner trades. 

Lemma 2.1 Let T = {TI ,T2 } be a (v,q+ 1,2) SST of volume m. Then rx 2': q for 
x E F(T) and m 2: q2. 

Proof: Let {aI, a2, a3, ... ,aq+d E TI . Since eq,ch pair {aI, aj}, 2 ::; j s q + 1, must 
occur in a block of T2 and no two of these pairs can occur in the same block (since 
the trade is strong) it follows that al occurs in at least q blocks of T2 • So rx 2: q for 
all x E F(T). Now since the trade is Steiner and rx 2: q it follows that there must 
be at least q2 blocks in T1. So m 2: q2. 0 

When q is odd the lower bound for the volume of (v, q + 1,2) SSTs increases to 
q2 + q. 
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Lemma 2.2 Let q be odd. Then the volume of a (v, q + 1,2) SST is at least q2 + q. 

Proof: By Lemma 2.1, rx 2: q for all x E F(T). Suppose that ra = q for some 
a E F(T). Let the element a be contained in the blocks B l , B 2 ,"', Bq of Tl and in 
the blocks Gl , C2,"', Cq of T2. Define Xij = (BinCj ) \ {a} for all 1 S i,j S q. Then 
I:~=l IXij I = q for all 1 SiS q. On the other hand, since the set Bi \ {a} intersects 
the set Cj \ {a} in at most one element it follows that IXij I s 1. Therefore, IXij I = 1 

for all 1 S i,j S q. So we can assume Xij = {Xij} for 1 S i,j S q. There are q.(~) 
pairs of the form {XiTl Xis} which occur in tlte blocks B l , B 2,"', B q. So they must 
occur in the blocks of T2. A block of T2 can have at most l~J pairs of this form since 

the trade is Steiner. So T2 has at least q + (q.(~))/l~J blocks. But 

q + (q. m) / l~j = { :: +i: qife~enodd 
Now suppose that rx 2: q + 1 for all x E F(T). Then IF(T)I 2: q.(q + 1) + 1. Since 
the block-size is q + 1 we must have 

m 2: (q. (q + 1) + 1) (q + 1) / (q + 1) = q2 + q + 1. 

This completes the proof. o 
The following two theorems show that the lower bounds for the volumes of (v, k, 2) 

SSTs, given in Lemmas 2.1 and 2.2, are sharp. 

Theorem 2.3 Let q be a power of2. There exists a (q2 + q, q + 1,2) SST of volume 
q2. 

Proof: Let 0: be a'primitive element of GF[q] = {ao, aI, a2,"', aq-d, with ao = 0 
and ar = o:r-l for 1 S r S q - 1. Denne 

B(ai,aj) = {(ai, -I)} U {(arai + aj,r) lOs r S q - I}, 

Tl = {B(ai,Gj) lOs i,j S q-l} and V = {(x,r) I x E GF[q] and -1 S r S q-l}. 
Then Tl and V contain q2 and q2 + q elements, respectively. Moreover, for any 
X,Y E GF[q] and -1 S r < s S q - 1 the 2-subset {(x,r), (y,s)} occurs precisely 
once in the blocks of T I , namely in the block B(ai,aj)' where 

Now define 
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and T2 = {C(a;,aj) I 0:::; i,j::;; q -I}. For any x,y E GF[q] and -1 :::; r < s:::; q-1 
the 2-su bset {(x, r), (y, s)} occurs precisely once in the blocks of T2 , namely in the 
block C(a;,aj)' where 

otherwise. 

Therefore T = {TI' T2} is a trade of volume q2. Finally, we need to prove that any 
block of TI intersects any block of T2 in at most two elements. Let 0 :::; r < s < t :::; 
q - 1. Suppose that (arai + aj, r), (asai + aj, s) and (atai + aj, t) are three elements 
of B(ai,aj) and (ar(am+ar)+an,r), (as(am+as)+an,s) and (at(am+at)+an,t) are 
three elements of C(am,an) such that 

( ar ai + a j, r) 
(asai+aj,s) 
(atai + aj, t) 

(ar( am + ar) + an, r) 
(as(am + as) + an,s) 
(at(am + at) + an, t). 

From first and second equalities we obtain ai = am + ar + as and aj = an + araB' 
Substituting for ai and aj in the third equality leads to atar = a;' So at = 0 or 
ar = at, both of which are impossible. The following case also needs to be considered. 
Let 0 :::; s < t :::; q -1. Suppose that (ai,-l), (asai + aj,s) q,nd (atai + aj,t) are 
three elements of B(ai,aj) and (am,-l), (as(am+as)+an,s) and (at(am+at)+an,i) 
are three elements of C(am,an) such that 

(ai, -1) 
(asai + aj, s) 
(atai + aj, t) 

(am, -1) 
(as(am + as) + an, s) 
(at(am + at) + an, t). 

From first equality we have ai = am and from second and third equalities we obtain 
ai = am + as + at. So as = at which is impossible. Therefore, T = {TI, T2} is a 
(q2 + q, q2 + 1,1) strong trade of volume q2. 0 

In the Desarguesian plane PG(2, q) of order q, q even, there is an easy represen
tation of a strong trade. Consider the collection of q2 (non-degenerate) comes III 

PG(2, q) 
Fbc = {((x, y, z)) : x 2 + by2 + cz2 + yz = O} 

for b, c E GF( q). It is then easily verified that every line on the point ((1,0,0)) meets 
each of the Fbc in a unique point ( ((1,0,0)) is the nucleus of each of the conics, see 
[5, p.165] ). Let B be the set of lines of PG(2, q) not on ((1,0,0)). Then a little 
algebra verifies that the set {B, {Fbc : 'b, c E G F( q)}} is a (q2 + q, q + 1,2) strong 
trade of volume q2. 

Theorem 2.4 Let q be a power of two. There exists a (q2, q, 2) SST of volume q2 - q. 

Proof: We use oval derivation to construct a strong trade as a subset of lines and 
conics in PG(2, q). See [2] for details of oval derivation. 
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Choose a line I of PG(2, q), and choose two distinct point P and.N on l. Let C 
be the set of conics of PG(2, q) with nucleus N and containing the point P. There 
are q2 - q such conics. Let LpN be the sets of 2q lines that contain either P or N, 
but not both. Then it is well known that the incidence structure with points given 
by points of PG(2,q) - {I}, and lines CUL pN is a (q2,q,1) BIBD, i.e. is an affine 
plane of order q. This follows from the fact that a conic is determined uniquely by 
its nucleus and three further points such that the nucleus and the three points form 
a quadrangle. 

Let L 18 the set of q2 - q lines of PG(2,q) - ({I} U LPN)' We claim that {L,C} 
is a (q2,q,2) SST of volume q2 - q on the point-set of PG(2,q) - {l}. 

Since the point-set is PG(2, q) - {I} every block of L or C has q points. Now 
C U LpN is a (q2, q, 1) BIBD so the only pairs of points that are not contained in 
some block of C are those contained in some line of LPN. It follows immediately that 
a pair of points is contained in some block of L if and only if they are contained in 
some block of C. Hence {L, C} is a trade. The fact that it is strong follows since in 
a projective plane a line meets a conic in at most two points. 0 

The following theorem constructs SSTs with more blocks than the lower bounds 
of Lemmas 2.2 and 2.1, in the case of q odd the number of blocks is only one greater 
than the bound of Lemma 2.2. 

Theorem 2.5 There exists a (q2 + q + 1, q + 1, 2) SST of volume q2 + q + 1 for every 
prime power q. 

Proof: We use the results of Jungnickel and Vedder in [8]. Let D be an abelian 
difference set of size q + 1 in a group G for a finite projective plane 7r, i.e. 7r has 
points given by the elements of G, and lines the cosets of D. Then it is easy to show 
that for any y E G the set - D + y is a set of q + 1 points, no three collinear in 7r, 

i.e. is an oval. 
, 

Further, - D is also a difference set in G and so the set of ovals { - D + y : y E G} 
in 7r are the lines of a projective plane 7rt (with point set G). It follows that every 
pair of elements of G is contained in a unique line of 7r and a unique line of 7rt. Also, 
each line of 7rt meets any line of 7r in at most two points. Hence the lines of 7r and 
the lines of 7rt are a strong Steiner trade of volume q2 + q + l. 

A belian difference sets of size q + 1 are known for all prime powers q and can be 
easily constructed using a Singer cycle in the Desarguesian projective plane of order 
q [5, Theorem 4.2.2]. 0 

Corollary 2.6 Let q be a power of2. Then there exists a (v,q+1,2) SST of volume 
rq2 + s( q2 + q+ 1) for r, s 2: O. In particular} there exists a (v, q + 1,2) SST of volume 
m for every m 2: q2(q2 + q + 1). 

Proof: First note that, using the method of Lemma 2.3 of [6], if there exists a 
(Vi, k, 2) SST of volume mi, i = 1,2, then there exists a (VI + v2, k, 2) SST of volume 
ml + m2. Now the result follows by Theorems 2.3 and 2.5. 0 

Similarly by Theorems 2.4 and 2.5 we have: 
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Corollary 2.7 Let q be a power of 2 such that q - 1 is also a prime power. Then 
there exists a (v, q, 2) SST of volume r(q2-q)+s(q2-q+1) for r, s ~ O. In particular, 
there exists a (v, q, 2) SST of volume m for every m ~ (q2 - q) (q2 q + 1). 

We conclude by giving a structural result about SSTs of minimal size. 

Lemma 2.8 Let T = {TI, T2} be a (q2 + q, q + 1,2) SST of volume q2. Then 
{F(T), T I } is the dual of an affine plane of order q, i. e. is the dual of a (q2, q, 1) 
BIBD. 

Proof: We need to show: 0) each block of TI has q 1 points; (ii) rx = q for all 
x E F(T); and (iii) every pair of blocks of Tl intersects in a unique element. 
(i) Follows immediately from the definition of a trade. 
(ii) By Lemma 2.1 we have IX ~ q. Now if there exists an element a E F(T) with 
la ~ q + 1 then IF(T)I ~ 1 + (q + l)q > q2 + q. This is a contradiction. 
(iii) The total number of pairs of intersecting blocks in Tl must equal 

W ·IF(T)I = (q(q - 1)/2)(q' + q) = q'(q' - 1 )/2 = (~'). 

Therefore any two blocks of Tl intersect in a unique element. 0 

This lemma shows that when the lower bound of Lemma 2.1 is achieved for q even, 
then the blocks of either of the elements of the trade must form the dual of an affine 
plane. In particular, if there do not exist non-prime power order projective 
then the bound of Lemma 2.1 is only achievable for q a power of two. It would be 
interesting to have a similar structural result for q odd. 
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