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Abstract 

An orientation of a complete graph is a tournament, and an orientation of 
a complete n-partite graph is an n-partite tournament. For each n 2:: 4, 
there exist examples of strongly connected n-partite tournament without 
any strongly connected subtournaments of order p 2:: 4. If D is a digraph, 
then let d+ (x) be the out degree and d- (x) the indegree of the vertex x in 
D. The minimum (maximum) out degree and the minimum (maximum) 
in degree of D are denoted by J+ (~+) and J- (~-), respectively. Fur­
thermore, we define J = mini J+, J-} and ~ = maxi ~ + , ~ -}. A digraph 
D is almost regular, if ~ - 8 ::; 1. If Vi, Vz, ... , Vn are the partite sets 
of an n-partite tournament D, then we define "((D) = minl:s;i$n{IYiI}. In 
this paper we prove that every almost regular n-partite tournament with 
n 2:: 4 contains a strongly connected subtournament of order p for each 
p E {3, 4, ... ,;z, - I}. Examples show that this result is best possible for 
n = 4. If in addition, "((D) < 3n/2 - 6, for an almost regular n-partite 
tournament D with n 2:: 5, then D even contains a strong subtournament 
of order n. 

1. Terminology and Introduction 

An n-partite or multipartite tournament is an orientation of a complete n-partite 
graph, and a tournament is an n-partite tournament with exactly n vertices. The 
vertex set of a digraph D is denoted by V(D) and the arc set by A(D). The num­
ber IV (D) I is called the order of the digraph D. If there is an arc from x to y in 
a digraph D, then we say that x dominates y, denoted by x -+ y. Let X and Y 
be two disjoint subsets of V(D). We use X -+ Y to denote the fact that x -7 y 
for all vertices x E X and all y E Y. Furthermore, if x -+ y for all x E X and 
y E Y, which are in different partite sets of a multipartite tournament, then we 
write X ~ Y. By d(X, Y) we denote the number of arcs from the set X to the 
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set Y, i.e., d(X, Y) = I{xy E A(D) : x E X, Y E Y}I. The vertex x is a neighbor 
of the vertex y, if x -+ y or y -+ x. The outset N+(.1J, D) = N+(x) of a vertex 
x in D is the set of vertices dominated by x, and the inset N- (x, D) = N- (x) is 
the set of vertices dominating x. We denote by d+ D) d+ (x) = I N+ (x) I the 
out degree and by d-(x, D) = d-(x) = IN-(x)1 the indegree of the vertex x E V(D). 
The minimum (maximum) out degree and the minimum (maximum) indegree of D 
are denoted by 5+(D) (6.+(D)) and 5-(D) (6.-(D)), respectively. In addition, we 
define 5(D) = min{ 5+(D), 5-(D)} and 6.(D) = max{6. +(D), 6. -(D)}. A digraph D 
is regular, if 5 ( D) = 6. ( D) and almost regular, if 6. ( D) 5 ( D) :::; 1. For a vertex set 
X of D, we define D[X] as the sub digraph induced by X. a (path) we mean 
a directed cycle (directed path). A cycle (path) of a digraph D is Hamiltonian if it 
includes all the vertices of D. A digraph D is said to be strongly connected or just 
strong, if for every pair x, y of vertices in D, there is a path from x to y. A strong 
component of D is a maximal induced strong sub digraph of D. If D is an n-partite 
tournament with the partite sets VI, V2 , ..• , Vn such that IVII :::; IV2 1 :::; ... :::; I, 
then IVnl a(D) is the independence number of D, and we define by ,(D) = IViI. 

In 1976, Bondy [2] has proved that a strongly connected n-partite tournament con­
tains an m-cycle for all m between 3 and n. If one could find in such an n-partite 
tournament a strong subtournament of order n, then by the well-known theorem of 
Moon (see Theorem 2.1 below), Bondy's result would be a diryct consequence. But 
the next example will show that this way is not practicable in general. 

Example 1.1 Let Vi, V2 , ..• , Vn be the partite sets of an n-partite tournament with 
n ;:::: 4 and Vn UI U U2 U ... U Un- I such that Vi -+ Vi for 1 :::; i < j :::; n - 1, 
{Vi, 1/2, ... , vt-I, vt+d -+ Ut , and Ut -+ {vt, vt+2, vt+3,"" Vn-d for 1 :::; t :::; n l. 
Then it is a simple matter to verify that the resulting n-partite tournament D is 
strongly connected. But the largest strong sub tournament of D only consists of 
three vertices. 

There is extensive literature on cycles and paths in multipartite tournaments, see 
e.g., Bang-Jensen and Gutin [1], Guo [3], Gutin [4], Volkmann [7], and Yeo [8]. In 
view of this, it is somewhat surprising that the closely-related question for strongly 
connected subtournaments in multipartite tournaments have, as yet, received no 
attention. In this paper we will develop the first contributions to this interesting 
problem. 

We prove that every almost regular n-partite tournament with n ;:::: 4 contains a 
strongly connected subtournament of Qrder p for each p E {3, 4, ... ,n - I}. An infi­
nite family of regular 4-partite tournaments without a strong subtournament of order 
4 shows that this result is best possible for n = 4. If in addition, ,(D) < 3n/2 - 6,' 
for an almost regular n-partite tournament D with n ;:::: 5, then we are able to show 
that D even contains a strong sub tournament of order n. In regular n-partite tour­
naments one can weaken the last condition slightly to ,( D) < 3n/2 - 2. But since 
we are quite sure that it is possible to extend the last two results, we omit the proofs. 
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2. Preliminary Results 

The following results play an important role in our investigations. 

Theorem 2.1 (Moon [5] 1966) Let T be a strongly connected tournament. Then 
every vertex of T is contained in a cycle of order m for all 3 :::; m :::; IV(T)I. 

Theorem 2.2 (Bondy [2] 1976) Each st~ongly connected n-partite tournament 
contains a cycle of order m for each m E {3, 4, ... , n}. 

The next two lemmas can be found in a very recent article of Tewes, Volkmann, 
and Yeo [6]. 

Lemma 2.3 If Vi, V2, ... , Vn are the partite sets of an an almost regular n-partite 
tournament D, then IIViI-IViII :::; 2 for 1 :::; i :::; j :::; n. 

Lemma 2.4 If D is an almost regular multipartite tournament, then for every vertex 
x of D we have 

IV(D)I - a(D) - 1 < d+(x) d-(x) < IV(D)I- '"'((D) + 1 
2 -, - 2 

Lemma 2.5 If X is a vertex set of an almost regular digraph D, then 

IXI ~ Id(X, V(D) - X) - d(V(D) - X, X)I. 

Proof. We consider 'the following sum 5 = LXEX(d+(x) - d-(x)). Every arc with 
both ends in X is added once and subtracted once. Furthermore, every arc going 
out of X is added once, and every arc going into X is subtracted once. Therefore, 
we obtain 5 = d(X, V(D) - X) - d(V(D) - X, X). Since D is almost regular, each 
term in the sum is between minus and plus one, and hence the desired estimation 
IXI 2: 151 = Id(X, V(D) - X) - d(V(D) - X, X)I follows. 0 

Lemma 2.6 Let T be a strongly connected tournament of order IV(T)I ~ 4. 
Then there exists a vertex u E V(T) of maximum out degree such that for all 
x E V(T) - {u}, the subtournament T - x has a Hamiltonian path with the initial 
vertex u. 

Proof. If Xl, X2, . .. , Xt are the vertices of maximum out degree in the tournament 
T, then we choose u E {Xl, X2, ... , xd as a vertex of maximum out degree in the 
subtournament T[{Xl' X2, .. . , Xt}]. Now let X be an arbitrary vertex of T - u. If 
T - x is strong, then by Theorem 2.1, T - x has a Hamiltonian cycle, and thus 
also a Hamiltonian path with the initial vertex u. If T - x is not strong, then let 
T l ,.T2 , ... , Tr be the strong components of T - x such that V(Ti) -+ V(Tj ) whenever 
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1 ~ i < j ~ T. If IV(T1 )1 = 1, then, by the definition of u, and because of IV(T)I :2: 4, 
it follows that V(Td = {u}. If IV(T1 )1 :2: 3, then for every W E V(Td and every 
v E V(T2) U V(T3) U ... U V(Tr)' we deduce that 

d+(v) ~ IV(T)I- IV(Tdl- 1 < IV(T)I- IV(T1)1 ~ d+(w). 

Hence, also in this case, we see that u E V(Tl)' Since, in view of Theorem 2.1, each 
strong component of T - x has a Hamiltonian cycle or consists of a single vertex, it 
follows from V(Ti) -+ V(Tj ) for 1 ~ i < j ~ T that T x has a Hamiltonian path 
with the initial vertex u. 0 

3. Main Results 

Theorem 3.1 Let D be an almost regular n-partite tournament with n :2: 4. Then D 
contains a strongly connected sub tournament of order p for every p E {3, 4, ... ,n--1}. 

PTOOf. Let \Il, 112, ... , Vn be the partite sets of D and let k i(D). Since, in view 
of Lemma 2.3, IIViI-IViII ~ 2 for 1 ~ i,j ~ n, we deduce that 1 ~ k ~ IViI ~ k + 2 
for i E {1,2, ... ,n}. Thus, IV(D)I = nk + T with 0 ~ T ~ 2(n -1). We proceed 
the proof by induction on the order p of the strongly connected subtournaments. By 
the hypothesis, it is a simple matter to show that D is strongly connected. Hence, 
according to Theorem 2.2, there exists a 3-cycle in D, which is' a strong subtourna­
ment of order 3. 
Now let n 2:: 5 and let Tp be a strong subtournament of order p with 3 ~ p ~ n - 2. 
We assume wi thou t loss of generality that Tp = D [ { VI , V2, ... , vp } 1 such that Vi E Vi 
for i = 1, 2, ... ,p. If there is a vertex z E Vp+ 1 U Vp+2 U ... U Vn such that z has 
a positive neighbor as well as a negative neighbor in then is straightforward to 
verify that D [{ Z, VI, V2, ... , V p } 1 is a strong sub tournament of order p + 1. If such a 
vertex does not exist, then let Vi' ~ Vi and Vi" = Vi - Vi' such that V(Tp) -+ Vi' when 
Vi' =f. 0 and Vi" -+ V(Tp) when Vi" =f. 0 for i = p + 1, p + 2, ... ,n. In addition, we 
define V' V;+l U V;+2 U ... U V~ and V" = V;~1 U V;~2 U ... U V~'. According to 
Lemma 2.4, we obtain for every vertex x of D 

nk + r - a(D) - 1 d+() d-() nk + r k + 1 -----'----'--- < x x < ---"---2 - , - 2 (1) 

with k ~ a(D) ~ k + 2. Now we distinguish two cases. 
Case 1. Let V' =f. 0 and V" =I- 0. If there exists an arc J;Y with x E V' and 
y E V", then D[ {x, y, VI, V2, ... ,Vp} 1 is a strong subtournament of order p + 2. As 
a consequence of Theorem 2.1, we see immediately that there also exists a strong 
subtournament of order p + 1. Therefore, we assume in the following that V" ~ V'. 
Furthermore, let R = V(D) - (V' U V" U V(Tp)), IVi'I ti for p + 1 ~ i ~ n, and 
suppose without loss of generality that tp+l 2:: tp+2 2:: ... :2: tn. If a(D) = k + 2, 
then the hypothesis f),(D) - 8(D) ~ 1 implies that IV(D)I - k is even, and hence it 
follows from (1) 

(2) 
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Clearly, in view of (1), this inequality is also valid in the case that a(D) ::; k + 1 and 
therefore, in every case. 
Subcase 1.1 Let V~' =I 0. The estimation (2) yields for an arbitrary vertex v E V;+1 

+ { (n-l)k+r-2 } IN (v)nRI2:max 0, 2 -(tp+2+ tp+3+ ... + tn) , (3) 

and for an arbitrary vertex w E V~' 

IN-(w)nRI2: max{ 0, (n - 1)~ + r - 2 (k.-:...tp+l)-(k-tp+2)- ... -(k-tn-d- 81 }, 

(4) 
where ° ::; 81 ::; min{r, 2(n - p - I)} such that I(V' u V") - Vnl = (n - p - l)k + 81. 

If IRI = pk p + 82, then we observe that ° ::; 82 S min{r,2p} and 81 + 82 ::; r. 
Clearly, the cases IN+(v) n RI > IRI or IN-(w) n RI > IRllead to a contradiction. 
Otherwise, because of tP+l 2: tn, 81 + 82 ::; rand p 2: 3, we deduce from (3) and (4) 

IN+(v) n RI + IN-(w) n RI 2: (n - l)k + r - 2 - 81 (n 

2: pk + r - 81 - 2 2: pk + S2 

2: pk + 82 - P + 1 = IRI + 1. 

Hence, there exists a vertex x E ((N+(v) n R) n (N-(w) n R)). If, without loss of 
generality, x E Vi, then, since V(Tp) -+ v and w -+ V(Tp), and since v and ware 
in different partite sets, D[{ v, x, W, V3, V4, . .. ,vp}] is a strongly connected subtour­
nament of order p + 1. 
Subcase 1.2 Let V~' = 0. This implies V~ = Vn and tp+l 2: tp+2 2: ... 2: tn = IVnl 2: k. 
If IV'I = (n - p)k + it and IV"I = h, then 1 ::; 11 + 12 ::; min{r, 2(n - p)}. According 
to (2), we obtain for, an arbitrary vertex v E V~ 

{ 
(n-l)k+r-2 } 

IN+(v) n RI 2: max 0, 2 - (n - p - l)k -ll , (5) 

and for an arbitrary vertex w E V" 

IN-(w)nRI2: max{o, (n-l)~+r-2 12+ 1}, (6) 

If IRI = pk p + 82, then ° ::; 82 ::; min{r,2p} and 82 + l1 + 12 ::; r. Analogously 
to Sub case 1.1, it follows from (5) and (6) that IN+(v) n RI + IN-(w) n RI > 
IRI. Hence, there exists again a vertex x E ((N+(v) n R) n (N-(w) n R)). If, 
without loss of generality, x E Vi, then, since v and ware in different partite sets, 
D[{ v, x, W, V3, V4, ... , vp }] is a desired strong subtournament. 
Case 2. Let V' 0 or V" = 0. Without loss of generality, we discuss the case V" = 0. 
Then Vi' = Vi for p + 1 ::; i ::; n, and we write V instead of V'. Let U contain all 
the vertices of V(D) - (V U V(Tp)) which are dominated by a vertex from V, and let 
W be the set of vertices from V(D) - (V U V(Tp)) which are not dominated by any 
vertex from V. Thus, W -+ V, and hence it follows that d(V, V(D) - V) s IVIIUI 

193 



and d(V(D) 
IVI 2:: d(V(D) 

v, V) 2:: IVIIV(D) - (U U V)I. Consequently, Lemma 2.5 implies 
V, V) - d(V, V(D) - V) 2:: IVI(IV(D) IVI 2101), and this yields 

lUI 2:: IV(D)I 2 IVI - 1 (7) 

We now consider the following two subcases. 
Subcase 2.1 Let p = 3. If there exists any vertex u E U such that u dominates two 
vertices of Tp , then u, a vertex from V which dominates u, and the two vertices from 
Tp , which are not in the same partite set as u, induce a strong sub tournament of 
order 4. If such a vertex does not exist, then, since every vertex of U has exactly 
two neighbors in Tp, we deduce that d(U, V(Tp)) :::; d(V(Tp), If w E IV, then w 
also has exactly two neighbors in Tp, and hence it follows that d(W, V(Tp)) :::; 2!WI. 
In view of Lemma 2.5, we now obtain 

3 IV(Tp)1 2:: d(V(Tp), V(D) - V(Tp)) d(V(D) V(Tp), V(Tp)) 
= d(V(Tp), V) + d(V(Tp), U) + d(V(Tp), W) - d(V, V(Tp)) 

- d(U, V(Tp)) - d(W, V(Tp)) 

2:: IV(Tp)IIVI + d(V(Tp), U) - d(U, V(Tp)) - d(W, V(Tp)) 

2:: 31VI- 21W! 
= 31VI- 2(IV(D)I- lVI-lUI -IV(Tp)l) 
= 51VI- 2IV(D)1 + 21UI + 6. 

Combining this estimation with (7), we find 

IV(D)I - IVI - 1 :::; 21UI :::; 2IV(D)1 - 51VI - 3, (8) 

and this implies4IVI+2:::; IV(D)I. As IV(D)I = IVI+IViI+IY2I+I"V31 :::; IVI+3(k+2), 
we deduce that 31VI + 2 :::; 3(k + 2). Because of IVI 2:: 2k, this can only be valid for 
k = 1, IVI = 2, and a(D) = k + 2 = 3. However, in this case let V = {Vn-l,Vn } 

and assume without loss of generality that Vn-l -+ V n . Because of IVI = 2 and 
a(D) = k+2 3, we note that d+(vn ) = (IV(D)I-1)/2, and consequently, we obtain 
the inequality lUI 2:: d+(vn ) = (IV(D)I- 1)/2 = (IV(D)I IVI + 1)/2. Analogously 
to (8), this leads to IV(D)I - IVI + 1 ::; 21UI :::; 2IV(D)1 51VI - 3. It follows that 
12 ::; IV(D)I, a contradiction. 
Subcase 2.2 Let p 2:: 4. According to Lemma 2.6, there exists a vertex v E V(Tp) 
such that for all y E V(Tp) - {v}, the subtournament Tp y has a Hamiltonian path 
with the initial vertex v. If there is a vertex u E U with u -+ v, then let w E V such 
that w -+ u. If u E Vt, then the vertices w, u, and Vj with 1 :; j :::; p and j 1- t induce 
a strongly connected subtournament of order p + 1. If otherwise, there is no such 
vertex u, then clearly, v ~ U. By Lemma 2.6, the vertex v has maximum out degree ' 
in Tp, and thus, d+(v, Tp) 2:: 2. If v E Vi, then, because of IVI 2:: 2k > k 2:: 11~1- 2, it 
follows from (7) 
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~ I\ll + IV(D)I ; IVI - 1 _ (IViI- 1) + 2 

IV(D)I- IViI + 3 IVI- I~'il + 2 
2 + 2 

> IV(D)! - IVil + 3 
2 

nk + r - k - 2 + 3 nk + r - k + 1 > =------
- 2 2' 

a contradIctIOn to (1), and the proof is comp.lete. 0 

Corollary 3.2 If D is a regular n-partite tournament with n ~ 4, then D con­
tains a strongly connected subtournament of order p for every p E {3, 4, ... ,n - I}. 

The next example will show that Theorem 3.1 as well as Corollary 3.2 are best 
possible for n = 4. 

Example 3.3 Let Vi = Vi'UVi" with IVi'I = IVi"1 = t for i = 1,2,3,4 be the partite sets 
of a 4-partite tournament such that V{ -+ V; -+ V; -+ V{, V{' -+ V;' -+ V;' -+ V{" 

(11' U V' U V') -+ V' -+ (V," U V" U V") -+ V" -+ (V/ U V' U V') VI 2 3 4 I 2 3 4 I 2 3' 

v; -+ V;' -+ V; -+ V{' -+ V; -+ V{' -+ V;. 

Now it is a simple matter to check that the resulting 4-partite tournament is 3t­
regular without a strongly connected subtournament of order 4. 

4. Concluding ,Remarks and Open Problems 

With similar methods we are able to prove the following results. 

Theorem 4.1 Let D be an almost regular n-partite tournament such that n ~ 5. If 
,(D) < 3n/2 - 6, then D contains a strongly connected subtournament of order n. 

Theorem 4.2 Let D be a regular n-partite tournament with n ~ 5. If ,(D) < 
3n /2 - 2, then D contains a strongly connected sub tournament of order n. 

Example 3.3, Theorem 4.1, and Theorem 4.2 leads us to the following conjectures, 
where, clearly, the second one is stronger than the first one. 

Conjecture 4.3 Let D be a regular n-partite tournament with n ~ 5. Then D 
contains a strongly connected subtournament of order n. 

Conjecture 4.4 Let D be an almost regular n-partite tournament with n > 5. 
Then D contains a strongly connected sub tournament of order n. 
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In connection with our results and these conjectures one may ask the following ques­
tion. 

Problem 4.5 How close to regular must an n-partite tournament be, to se~ure 
a strongly connected subtournament of order n? 

Problem 4.6 Does there exist a polynomial algorithm for finding the largest strongly 
connected subtournament in a multipartite tournament? 

Problem 4.7 Determine other sufficient conditions for (strongly connected) n­
partite tournaments to contain strong subtournaments of order p for some 4 ::; p ::; n. 
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