ON THE EXISTENCE OF VERTEX CRITICAL REGULAR GRAPHS OF

GIVEN DIAMETER

Louis Caccetta and Samy EL-Batanouny
School of Mathematics and Statistics
Curtin University of Technology
GPO Box U1987
Perth, 6845
WESTERN AUSTRALIA
email : caccetta@cs.curtin.edu.au

Abstract

Let G be connected simple graph with vertex set $V(G)$ and edge set $E(G)$. The diameter $d(G)$, of G is defined as the maximum distance in G. G is said to be vertex diameter critical graph if $\mathrm{d}(\mathrm{G}-\mathrm{v})>\mathrm{d}(\mathrm{G})$ for every $\mathrm{v} \in \mathrm{V}(\mathrm{G})$. Let $\mathscr{G}(\mathrm{n}, \mathrm{r}, \mathrm{D})$ denote the class of r-regular, vertex critical graphs of diameter D on n vertices. Plesnik [16] conjectured that $\mathscr{G}(n, r, D) \neq \phi$ for every $D \geq 2$ and $r \geq 2$. In this paper we establish this conjecture. We also consider the problem of determining, for given r and D , the minimum n for which $\mathscr{q}(\mathrm{n}, \mathrm{r}, \mathrm{D}) \neq \phi$.

1. Introduction:

For our purposes a graph G is connected, undirected, loopless and finite. The vertex set and edge set of G are respectively denoted by $\mathrm{V}(\mathrm{G})$ and $\mathrm{E}(\mathrm{G})$. The distance $\boldsymbol{d}_{G}(\boldsymbol{x}, \boldsymbol{y})$ between two vertices x and y in G is the length of any shortest (x, y)-path in G. The eccentricity $e(v)$ of a vertex v in G is the distance of the furthest vertex from v , that is

$$
\mathrm{e}(\mathrm{v})=\max \left\{\mathrm{d}_{\mathrm{G}}(\mathrm{v}, \mathrm{w}): \mathrm{w} \in \mathrm{~V}(\mathrm{G})\right\} .
$$

The diameter $d(G)$ of G is defined as the maximum eccentricity in G , that is

$$
\mathrm{d}(\mathrm{G})=\max \{\mathrm{e}(\mathrm{v}): \mathrm{v} \in \mathrm{~V}(\mathrm{G})\}=\max \left\{\mathrm{d}_{\mathrm{G}}(\mathrm{x}, \mathrm{y}): \mathrm{x}, \mathrm{y} \in \mathrm{~V}(\mathrm{G})\right\} .
$$

G is said to be vertex diameter critical graph or simply critical if $d(G-v)>d(G)$ for every vertex $\mathrm{v} \in \mathrm{V}(\mathrm{G})$. Let $\mathcal{G}(\mathrm{n}, \mathrm{r}, \mathrm{D})$ denote the class of r-regular, vertex critical graphs
of diameter D on n vertices. Observe that C_{5}, the cycle of length 5 and the Petersen graph are critical graphs of diameter 2 . Critical graphs have been extensively studied (see [2, 8-16]). Plesnik [16] made the following conjecture:

Conjecture 1: For any integers $D \geq 2$ and $r \geq 2$ there exists an r-regular critical graph of diameter D.

Plesnik [16] observed that the conjecture is easily established for the cases $r=2$ (the cycle $C_{2 D+1}$ on $2 D+1$ vertices) and $r=3$ (the cycle $C_{4 D}$ on $4 D$ vertices with the main diagonals). We establish the conjecture for all r and D in Section 2.

An interesting and important class of symmetric graphs is the so called circulants graphs defined as follows. The circulant graph $C_{n}\left(a_{1}, a_{2}, \ldots, a_{p}\right)$, where $a_{1}<a_{2}<\ldots<$ $a_{p}<\frac{1}{2}(n+1)$, has vertex set $\{0,1,2, \ldots, n-1\}$ and vertex $i, 0 \leq i \leq n-1$, is joined to the vertices $i \pm a_{1}, i \pm a_{2}, i \pm a_{3}, \ldots, i \pm a_{p}(\bmod n)$. The sequence $\left(a_{j}\right)$ is called the jump sequence and the a_{j} 's are called the jumps. Observe that for nr even, $\mathrm{r} \geq 2$, the circulant $C_{n}\left(1,2, \ldots,\left\lfloor\frac{1}{2} r\right\rfloor\right)$, is just the well known r-regular, r-connected graph on n vertices. For appropriate choices of the a_{j} 's the resulting circulant yields a critical regular graph of diameter D. We now describe such a graph.

For $r \geq 2$ and $D \geq 2$ we let $n=(r-1)(2 D-1)+2$. Let $G(n, r, D)=C_{n}(1,2 D, 4 D-1$, $\left.6 D-2, \ldots,\left\lfloor\frac{1}{2}(r-1)\right\rfloor(2 D-1)+1\right)$. Observe that $G(2 D+1,2, D)$ is just the cycle $C_{2 D+1}$ of length $2 \mathrm{D}+1$ and the graph $\mathrm{G}(4 \mathrm{D}, 3, \mathrm{D})$ is the cycle $\mathrm{C}_{4 \mathrm{D}}$ of length 4 D with the main diagonals added. Further, note that $G(2 D+1,2, D) \in \mathcal{G}(n, 2, D)$ and $G(4 D, 3, D) \in$ $\mathscr{G}(\mathrm{n}, 3, \mathrm{D})$. Figure 1.1 illustrates some other examples. That $G(n, r, D)$ is critical of diameter D will be establish in Section 2. In Section 3 we will describe another construction based on certain building blocks. In Section 4 we will consider the important problem of finding critical r-regular graphs of minimum order.

$\mathrm{G}(14,5,2)=\mathrm{C}_{14}(1,4,7)$

$\mathrm{G}(27,6,3)=\mathrm{C}_{27}(1,6,11)$

Figure 1.1

2. Main Result:

Let $G=G(n, r, D)$. Our objective in this section is to prove that $G \in \mathcal{G}(n, r, D)$. We achieve this through a sequence of lemmas establishing properties of G.

Observe that $\mathrm{C}=0,1,2, \ldots, \mathrm{n}-1,0$ is a hamilton cycle in G . An edge (i, j) of G with $\mathrm{j} \neq \mathrm{i} \pm 1$ is called a chord of G. Very often we consider the two chords ($\mathrm{i}+1, \mathrm{j}+1$) and ($\mathrm{i}-1, \mathrm{j}-1$). For convenience we write these two chords as ($\mathrm{i} \pm 1, \mathrm{j} \pm 1$). Further, when writing paths we adopt the convention that the " + " and the " - " go together. We now make two simple observations and then establish a number of lemmas. We begin with the following two simple observations:

Observation 2.1: If (i, j) is a chord of G , then $(\mathrm{i} \pm 1, \mathrm{j} \pm 1)$ are two chords of G .
Observation 2.2: If P is a shortest (a, b)-path of length $\ell(\mathrm{P})$ containing the chord (i, j) and the edge $(j, j \pm 1)$, then $(i, i \pm 1) \notin P$.

Proof: If $(\mathrm{j}, \mathrm{j} \pm 1)$ and $(\mathrm{i}, \mathrm{i} \pm 1)$ are in P . Then

$$
P^{\prime}=P-(i \pm 1, i)-(i, j)-(j, j \pm 1)+(i \pm 1, j \pm 1)
$$

is an (a, b)-path of length $l(\mathrm{P})-2$, a contradiction.

An important property of G is given in the following lemma.
Lemma 2.1: Let (i, j) and (j, k) be two distinct chords of G . Then one of $(\mathrm{k}, \mathrm{i}+1)$ or ($k, i-1$) is a chord of G.

Proof: We have

$$
j=i \pm\left(1+\lambda_{1}(2 D-1)\right), 0<\lambda_{1} \leq\left\lfloor\frac{1}{2}(r-1)\right\rfloor
$$

and

$$
\mathrm{k}=\mathrm{j} \pm\left(1+\lambda_{2}(2 \mathrm{D}-1)\right), \quad 0<\lambda_{2} \leq\left\lfloor\frac{1}{2}(\mathrm{r}-1)\right\rfloor .
$$

Hence

$$
\mathrm{k} \equiv \mathrm{i} \pm\left(1+\lambda_{1}(2 \mathrm{D}-1)\right) \pm\left(1+\lambda_{2}(2 \mathrm{D}-1)\right)(\bmod n) .
$$

Observe that since $\mathrm{i} \neq \mathrm{k}, \lambda_{1}+\lambda_{2}<\mathrm{r}-1$.
We now consider two cases.
Case 1: $k \equiv \mathrm{i} \pm\left(2+\left(\lambda_{1}+\lambda_{2}\right)(2 \mathrm{D}-1)\right)(\bmod \mathrm{n})$.
If $\lambda=\lambda_{1}+\lambda_{2} \leq\left\lfloor\frac{1}{2}(r-1)\right\rfloor$, then $k=i \pm(2+\lambda(2 \mathrm{D}-1))$ and hence $(k, i-1)$ or $(\mathrm{k}, \mathrm{i}+1)$ is a chord of G . So we may suppose that $\lambda>\left\lfloor\frac{1}{2}(\mathrm{r}-1)\right\rfloor$. If $\mathrm{k}=\mathrm{i}+2+\lambda$ ($2 \mathrm{D}-1$), then we can write

$$
\begin{aligned}
k & =-n+k \\
& =i+1-(1+(r-1-\lambda)(2 D-1) \\
& =i+1-\left(1+\lambda^{\prime}(2 D-1), \quad 0<\lambda^{\prime}<\left\lfloor\frac{1}{2}(r-1)\right\rfloor,\right.
\end{aligned}
$$

and hence $(k, i+1)$ is a chord of G. If, on the other hand, $k=i-2-\lambda(2 D-1)$, then we can write

$$
\begin{aligned}
k & =n+k \\
& =i-1+(1+(r-1-\lambda)(2 D-1) \\
& =i-1+\left(1+\lambda^{\prime}(2 D-1), \quad 0<\lambda^{\prime}<\left\lfloor\frac{1}{2}(r-1)\right\rfloor,\right.
\end{aligned}
$$

and hence $(k, i-1)$ is a chord of G.
Case 2: $k \equiv i \pm\left(\left(\lambda_{1}-\lambda_{2}\right)(2 \mathrm{D}-1)\right)(\bmod n)$.
We have $k=i \pm \lambda(2 D-1), \quad 0<\lambda \leq\left\lfloor\frac{1}{2}(r-1)\right\rfloor$. If $k=i+\lambda(2 D-1),(k, i-1)$ is a chord of G, whilst if $k=i-\lambda(2 D-1)$, then $(k, i+1)$ is a chord of G.

This completes the proof of the lemma.

Lemma 2.2: Suppose P is a shortest (a, b)-path in $G=G(n, r, D)$ containing $t \geq 2$ chords. Then there exists a shortest (a, b)-path in G containing $\mathrm{t}-1$ chords.

Proof: If P has two consecutive chords (i, j) and (j, k), then, by Lemma 2.1, one of $(k, i-1)$ or $(k, i+1)$ is a chord of G. If $(k, i \pm 1)$ is a chord, then

$$
P_{1}=P-(i, j)-(j, k)+(i, i \pm 1)+(i \pm 1, k)
$$

is a shortest (a, b)-path with $\mathrm{t}-1$ chords. If, on the other hand, P does not have two consecutive chords, let (i, j) be the first chord of P encountered in moving from a to b. Then one of $(j, j \pm 1) \in P$. If $i=a$, then $(a \pm 1, j \pm 1) \in E(G)$ and

$$
P^{\prime}=P-(a, j)-(j, j \pm 1)+(a, a \pm 1)+(a \pm 1, j \pm 1)
$$

is also shortest (a, b)-path in G. Consequently we can assume without loss of generality that $\mathrm{i} \neq \mathrm{a}$. Then one of $(\mathrm{j}, \mathrm{j} \pm 1) \in \mathrm{P}$. If $(\mathrm{j}, \mathrm{j}+1) \in \mathrm{P}$, then, by Observation $2.2,(\mathrm{i}, \mathrm{i}+1) \notin \mathrm{P}$. Hence $(i, i-1) \in P$ and, by Observation $2.1,(i+1, j+1) \in G$. Therefore,

$$
P^{\prime}=P-(i, j)-(j, j+1)+(i, i+1)+(i+1, j+1)
$$

is a shortest (a, b)-path in G . Similarly if $(\mathrm{j}, \mathrm{j}-1) \in \mathrm{P}$, then, by Observation $2.2,(\mathrm{i}, \mathrm{i}-1) \notin \mathrm{P}$. Hence $(i, i+1) \in P$ and, by Observation 2.1, $\quad(i+1, j+1) \in G$. Therefore,

$$
P^{\prime \prime}=P-(i, j)-(j, j-1)+(i, i-1)+(i-1, j-1)
$$

is a shortest (a, b)-path in G. Thus we can replace P by P^{\prime} or $P^{\prime \prime}$ and repeat the same argument until we will get a shortest (a, b)-path in G with two consecutive chords. This completes the proof of the lemma.

As a corollary we have:
Corollary 2.1: Let P be the set of shortest (a, b)-paths in $G=G(n, r, D)$ having chords. If $P \neq \phi$, then there exists a $P \in P$ having exactly one chord which is incident to b.

Lemma 2.3: Let $G=G(n, r, D)$ and let $C=0,1,2, \ldots, n-1,0$ be a hamilton cycle in G. If P is a shortest $(0, D)$-path, then P has no chords of G.

Proof: Since $0,1,2, \ldots, \mathrm{D}-1, \mathrm{D}$ is a $(0, \mathrm{D})$-path of length D , then $\ell(\mathrm{P}) \leq \mathrm{D}$. In view of Corollary 2.1 if P has chords, then we can assume that it has exactly one chord which is incident to D. But the only vertices along the segment $S=-D,-D+1, \ldots, n-1$, $0,1, \ldots, \mathrm{D}-1, \mathrm{D}$ of C that are joined to D are -D and $\mathrm{D}-1$, implying that $\ell(\mathrm{P})>\mathrm{D}$, a contradiction. Hence P has no chords of G.

As a corollary we have:
Corollary 2.2: The shortest ($0, \mathrm{D})$-path in G is the segment $0,1,2, \ldots, D-1$, D of length D. We are now ready to prove our main result.

Theorem 2.1: For $r \geq 2$ and $D \geq 2$ the graph $G(n, r, D) \in \mathscr{G}(n, r, D)$.
Proof: Let $G=G(n, r, D)$. Since G is circulant graph, it contains the hamilton cycle $\mathrm{C}=0,1,2, \ldots, \mathrm{n}-1,0$. Further it is vertex symmetric and transitive. Thus to show that G is an r-regular vertex critical graph of diameter D it suffices to consider one vertex, say vertex 0 . Observe that
$\mathrm{N}_{\mathrm{G}}(0)=\left\{ \pm 1, \pm(1+(2 \mathrm{D}-1)), \pm(1+2(2 \mathrm{D}-1)), \pm(1+3(2 \mathrm{D}-1)), \ldots, \pm\left(1+\left\lfloor\frac{1}{2}(\mathrm{r}-1)\right\rfloor(2 \mathrm{D}-1)\right)\right\}$ and thus $\mathrm{d}_{\mathrm{G}}(0)=\mathrm{r}$, as required.

For every vertex i there exists a $\lambda \geq 0$ such that $1+(\lambda-1)(2 D-1) \leq i \leq 1+\lambda(2 D-1)$. Hence the vertices i and 0 are contained in the cycle $0,1+(\lambda-1)(2 D-1), 2+(\lambda-1)$ $(2 \mathrm{D}-1), \ldots, 1+\lambda(2 \mathrm{D}-1), 0$ of length $2 \mathrm{D}+1$. Consequently $\mathrm{d}_{\mathrm{G}}(0, \mathrm{i}) \leq \mathrm{D}$ and hence G has diameter \leq D.

By Corollary 2.2, $\mathrm{d}_{\mathrm{G}}(0, \mathrm{D})=\mathrm{D}$. Thus G has diameter D as required.
Finally we show that vertex 0 is critical. By Corollary 2.2 , the shortest ($n-1$, $D-1$)-path is the segment $n-1,0,1, \ldots, D-2, D-1$. Hence $d_{G-0}(n-1, D-1)>D$. This completes the proof of the theorem.

We conclude this section by establishing two further properties of the graph $G(n, r, D)$. These further properties make the graph useful in the context of network applications.

Lemma 2.4: For $r \geq 2$ and $D \geq 2$ the graph $G(n, r, D)$ is r-connected.
Proof: Let $G=G(n, r, D)$. Since G is vertex symmetric and transitive, to show that G is r-connected it suffices to construct r disjoint paths joining vertex 0 and any other vertex $\mathrm{j} \in \mathrm{V}(\mathrm{G})$. Observe that $\mathrm{C}=0,1,2, \ldots, \mathrm{n}-1,0$ is a hamilton cycle in G and

$$
\begin{aligned}
N_{G}(0) & =\left\{ \pm 1, \pm(1+(2 \mathrm{D}-1)), \pm(1+2(2 \mathrm{D}-1)), \pm(1+3(2 \mathrm{D}-1)), \ldots, \pm\left(1+\left\lfloor\frac{1}{2}(\mathrm{r}-1)\right\rfloor(2 \mathrm{D}-1)\right)\right\} \\
& =\left\{\mathrm{n}_{1}, \mathrm{n}_{2}, \mathrm{n}_{3}, \ldots, \mathrm{n}_{\mathrm{r}}\right\}, \text { with } \mathrm{n}_{1}=1<\mathrm{n}_{2}<\mathrm{n}_{3}<\ldots<\mathrm{n}_{\mathrm{r}}=(\mathrm{r}-1)(2 \mathrm{D}-1)+1 .
\end{aligned}
$$

Also, note that if $j \notin\left[n_{i}, n_{i+1}-1\right]$ then it is adjacent to only one vertex along the segment $n_{i}, n_{i}+1, n_{i}+2, \ldots, n_{i+1}-1$ of C.

We construct the r disjoint paths as follows: Start with an edge $0 \mathrm{n}_{\mathrm{i}}, 1 \leq \mathrm{i} \leq \mathrm{r}$, and proceed as follows: if $n_{i}<j$ we move forward along C till the first vertex joining j; if $n_{i}=j$ we stop; if $n_{i}>j$ we move backward along C till the first vertex joining j. By repeating the previous procedure we get r disjoint paths joining the vertices 0 and j. Hence the result.

Lemma 2.5: For $r \geq 3$ and $D \geq 2$, let the graph $G=G(n, r, D)$. Then $d(G-v)=D+1$ for every $v \in V(G)$.
Proof: Since G is critical and vertex symmetric and transitive, it suffices to show that there are two disjoint paths of length $\leq D+1$ joining vertex 0 and any other vertex $i \in$ $V(G)$. We now consider a number of cases according to the value of r.

Case 1: $r=3$.
We have the two cycles $0,1,2, \ldots, 2 \mathrm{D}, 0$ and $0,2 \mathrm{D}, 2 \mathrm{D}+1, \ldots, 4 \mathrm{D}-1,0$ of length $2 \mathrm{D}+1$. If $\mathrm{i}=2 \mathrm{D}$, then we have the two $(0,2 \mathrm{D})$-paths $0,2 \mathrm{D}$ and $0,1,2 \mathrm{D}+1$, $2 D$ of length $\leq D+1$. If, on the other hand, $i \neq 2 D$, then i is contained in one of these cycles and is adjacent to one vertex only of the other. Consequently, there exist two disjoint $(0, i)$-paths length $\leq \mathrm{D}+1$.

Case 2: $\mathrm{r}=4$.
We have the two cycles $0,1,2, \ldots, 2 \mathrm{D}, 0$ and $0,4 \mathrm{D}-1,4 \mathrm{D}, \ldots, 6 \mathrm{D}-2,0$ of length $2 \mathrm{D}+1$. If $1 \leq \mathrm{i} \leq 2 \mathrm{D}$ or $4 \mathrm{D}-1 \leq \mathrm{i} \leq 6 \mathrm{D}-2$, then i is contained in one of these cycles and adjacent to one vertex only of the other. If, on the other hand, $2 \mathrm{D}<\mathrm{i}<4 \mathrm{D}-1$, then i is adjacent to one vertex only of each of the two cycles. In either case there exist two disjoint $(0, \mathrm{i})$-paths length $\leq \mathrm{D}+1$.

Case 3: $r \geq 4$.
For every vertex i there exists a $\lambda \geq 0$ such that $1+(\lambda-1)(2 D-1) \leq i \leq 1+\lambda(2 D-1)$. Hence the vertex i is contained in the cycle $0,1+(\lambda-1)(2 \mathrm{D}-1), 2+(\lambda-1)(2 \mathrm{D}-1), \ldots$, $1+\lambda(2 \mathrm{D}-1), 0$ of length $2 \mathrm{D}+1$. Furthermore, i is adjacent to one vertex only of the cycle $0,1+(\lambda+1)(2 \mathrm{D}-1), 2+(\lambda+1)(2 \mathrm{D}-1), \ldots, 1+(\lambda+2)(2 \mathrm{D}-1), 0$ of length $2 \mathrm{D}+1$. Therefore, there exist two disjoint $(0, i)$-paths length $\leq \mathrm{D}+1$.

This completes the proof of the lemma.

3. Another Construction:

We have observed that C_{5} and the Petersen graphs are critical graphs of diameter 2. The Petersen graph can be obtained by adding an appropriate matching between two C_{5} 's (see Figure 3.1). In this section we describe a construction, based on building blocks, that generates a member of $\mathcal{G}(\mathrm{n}, \mathrm{r}, \mathrm{D})$ for $\mathrm{r} \geq 3$. We begin with $\mathrm{D}=2$ where our building block is the 5 -cycle C_{5}.

Figure 3.1
For $r=2$ or 3 , we have already described members of $\mathscr{G}(n, r, 2)$. For $r \geq 4$, we construct a graph $G(n, r, 2) \in \mathcal{G}(n, r, 2)$ as follows. Let $G(n, r, 2)=G(V, E)$ have $r-1$ copies $B_{1}, B_{2}, \ldots, B_{r-1}$ of the 5 -cycle $B_{j}=v_{0 j} v_{1 j} v_{2 j} v_{3 j} v_{4 j} v_{0 j}$ and we define $E(G)$ as follows:

$$
E(G)=\bigcup_{1 \leq j \leq r-1} E\left(B_{j}\right) \bigcup_{1 \leq j<k \leq r-1}\left\{v_{0 k} v_{0 k}, v_{i j} v_{2 k}, v_{2 j} v_{4 k}, v_{3 j} v_{i k}, v_{4 j} v_{3 k}\right\} .
$$

We consider B_{j} to be in level j . Figure 3.2 displays $\mathrm{G}(5(\mathrm{r}-1), \mathrm{r}, 2)$.
Lemma 3.1: $\mathrm{G}(5(\mathrm{r}-1), \mathrm{r}, 2) \in \mathcal{G}(\mathrm{n}, \mathrm{r}, 2)$.
Proof: Observe that G is r-regular since each vertex $v_{i j}, 0 \leq i \leq 4,1 \leq j \leq r-1$ has two neighbours in B_{j} and one neighbour in $\mathrm{B}_{\mathrm{k}}, 1 \leq \mathrm{k} \leq \mathrm{r}-1, \mathrm{k} \neq \mathrm{j}$. Observe also that every vertex v_{ij} in B_{j} is adjacent to only one vertex $\mathrm{v}_{l \mathrm{k}}$ in B_{k} and the subgraph induced by the vertices in any two levels is the Petersen graph P. Therefore $d_{G}\left(v_{i j}, v_{l k}\right) \leq 2, d(G)=2$ and $\mathrm{d}_{\mathrm{G}-\mathrm{v}_{\mathrm{ij}}}\left(\mathrm{v}_{\mathrm{i}-\mathrm{l}, \mathrm{j}}, \mathrm{v}_{\mathrm{i}+\mathrm{l}, \mathrm{j}}\right)=3$, for every v_{ij}, where the subscripts are read modulo 5 . Hence $G(5(r-1), r, 2) \in \mathcal{G}(n, r, 2)$, as required.

Figure 3.2: $\mathrm{G}(5(\mathrm{r}-1), \mathrm{r}, 2)$

Now for $\mathrm{D} \geq 3$, our building block (level j) is the graph $H_{j}\left(\mathrm{~V}_{\mathrm{H}_{j}}, \mathrm{E}_{\mathrm{H}_{j}}\right)$, where

$$
\begin{gathered}
V_{H_{j}}=\left\{a_{i j}: 1 \leq i \leq 2 D-2\right\} \bigcup\left\{b_{1 j}, b_{2 j}\right\} \bigcup\left\{c_{i j}: 1 \leq i \leq 2 D-2\right\}, \\
E_{H_{j}}=E\left(C_{j}\right) \bigcup\left\{b_{1 j} b_{2 j}, a_{2 D-2, j} c_{1, j}\right\} \bigcup\left\{a_{i j} c_{i+1, j}: 1 \leq i \leq 2 D-3\right\} \text { and } \\
C_{j}=b_{1 j} a_{1 j} a_{2 j} \ldots a_{2 D-3, j} a_{2 D-2, j} b_{2 j} c_{2 D-2, j} c_{2 D-3, j} \ldots c_{2 j} c_{1 j} b_{1 j}
\end{gathered}
$$

Figure 3.3 displays H_{j}.

Figure 3.3: H_{j}

Lemma 3.2: $\mathrm{H}_{\mathrm{j}} \in \mathcal{G}(4 \mathrm{D}-2,3, \mathrm{D})$.
Proof: It is clear from the definition of H_{j} that H_{j} is 3 -regular and $\left|\mathrm{V}\left(\mathrm{H}_{\mathrm{j}}\right)\right|=4 \mathrm{D}-2$. Observe that $\mathrm{d}\left(\mathrm{a}_{1 \mathrm{j}}, \mathrm{a}_{\mathrm{D}+1 . \mathrm{j}}\right)=\mathrm{D}$ and every pair of vertices $\mathrm{v}_{\mathrm{ij}}, \mathrm{v}_{\mathrm{v}_{\mathrm{j}}} \in \mathrm{V}\left(\mathrm{H}_{\mathrm{j}}\right)$ are contained in a cycle of length $\leq 2 D$. Hence $d\left(H_{j}\right)=D$. Further, observe that

$$
\begin{aligned}
& d_{H_{j}-a_{1 j}}\left(b_{1 j}, a_{D-1}\right)=D+1 \\
& d_{H_{j}-a_{i j}}\left(a_{i-1}, a_{i j}, a_{i+2-2, j}\right)=D+1 \text { for } 1<i \leq D \\
& d_{H_{j}-a_{i j}}\left(a_{i-1, j, j}, c_{i-D_{j}, j}\right)=D+1 \text { for } D+1 \leq i \leq 2 D-2 .
\end{aligned}
$$

Hence $d\left(H_{j}-a_{i j}\right)>$ D. Similarly, $d\left(H_{j}-c_{i j}\right)>D$. Finally for $D>3, d_{H_{j}-b_{i j}}\left(a_{1 j}, c_{D+2 j}\right)=$ $\mathrm{D}+1$ and for $\mathrm{D}=3, \mathrm{~d}_{\mathrm{H}_{\mathrm{j}}-\mathrm{b}_{1 j}}\left(\mathrm{a}_{\mathrm{ij}}, \mathrm{b}_{2 \mathrm{j}}\right)=\mathrm{D}+1$ and $\mathrm{d}_{\mathrm{H}_{\mathrm{j}}-\mathrm{b}_{2 j}}\left(\mathrm{~b}_{\mathrm{lj}}, \mathrm{c}_{\mathrm{D}+1 \mathrm{j}}\right)=\mathrm{D}+1$. Therefore $d\left(H_{j}-v_{i j}\right)>D$ for every $v_{i j} \in V\left(H_{j}\right)$. Hence $H_{j} \in \mathcal{G}(4 D-2,3, D)$, as required.

Now we will construct a $H(n, r, D) \in \mathscr{G}(n, r, D)$ for $D \geq 3$ and $r \geq 3$ which contains $\mathrm{r}-2$ levels, each level j has the block H_{j} as an induced subgraph. More specifically, let $H(n, r, D)=H(V, E)$, where

$$
\begin{aligned}
V(H) & =\bigcup_{1 \leq j \leq r-2} V\left(H_{j}\right) \quad n=|V(H)|=(4 D-2)(r-2) \\
E(H) & \left.=\bigcup_{1 \leq j \leq r-2} E\left(H_{j}\right) \underset{1 \leq j<k \leq r-2}{ } \bigcup_{1 j} b_{2 k}, b_{2 j} b_{i k}\right\} \\
& \bigcup_{1 \leq j<k \leq r-2}\left\{a_{2 i-1, j} a_{2 i-1, k}, c_{2 i-1, j} c_{2 i-1, k, k}, a_{2 i, j} c_{2 i, k}, c_{2 i, j} a_{2 i, k}: 1 \leq i \leq D-1\right\} .
\end{aligned}
$$

Figure 3.4 displays $\mathrm{H}(4(2 \mathrm{D}-1), 4, \mathrm{D})$.
Lemma 3.3: $\mathrm{H}(\mathrm{n}, \mathrm{r}, \mathrm{D}) \in \mathcal{G}(\mathrm{n}, \mathrm{r}, \mathrm{D})$.
Proof: Clearly, H is r-regular since each vertex in H is adjacent to three vertices in its level j and to one vertex in the other $\mathrm{r}-3$ levels. Observe that $\mathrm{d}\left(\mathrm{a}_{\mathrm{ij}}, \mathrm{a}_{\mathrm{D}+1, \mathrm{j}}\right)=\mathrm{D}$ and every pair of vertices $v_{i j}, v_{t k} \in V(H)$ are contained in a cycle of length $\leq 2 D$. Hence $d(H)$ $=$ D. Further, observe that

$$
\begin{aligned}
& d_{H-a_{1 j}}\left(b_{1 j}, a_{D-1, j}\right)=D+1 \\
& d_{H-a_{i j}}\left(a_{i-1, j,}, a_{i+1-2, j}\right)=D+1 \text { for } 1<i \leq D
\end{aligned}
$$

$$
d_{H-a_{i j}}\left(a_{i-1, j}, c_{i-D, j}\right)=D+1 \text { for } D+1 \leq i \leq 2 D-2 .
$$

Hence $d\left(H-a_{i j}\right)>$ D. Similarly, $d\left(H-c_{i j}\right)>D$. Finally observe that $d_{H-b_{i j}}\left(a_{1 j}, c_{D+1, k}\right)$ $=D+1$ and $d_{H-b_{2 j}}\left(b_{1 j}, c_{D+1, k}\right)=D+1$. Therefore $d\left(H-v_{i j}\right)>D$ for every $v_{i j} \in V(H)$.

Hence $H(n, r, D) \in \mathscr{G}(n, r, D)$, as required.

Figure 3.4: $\mathrm{H}(4(2 \mathrm{D}-1), 4, \mathrm{D})$.

4. Minimum Order Critical Graphs.

For $r \geq 2$ and $D \geq 2$, let

$$
\mathrm{f}(\mathrm{r}, \mathrm{D})=\min \{\mathrm{n}: \mathscr{g}(\mathrm{n}, \mathrm{r}, \mathrm{D}) \neq \phi\}
$$

Observe that $f(2,2)=5$ and $f(2, D)=2 D$ for $D \geq 3$.
Caccetta [6] posed the problem of determining $f(r, D)$. In this section we consider this problem.

The circulant graphs constructed in the introduction established that $f(r, D) \leq$ $(r-1)(2 \mathrm{D}-1)+2$. This upper bound is far from best possible. Our consideration of many constructions suggests that the following is true:

Conjecture 4.1:

$$
f(r, D)=\left\{\begin{array}{cl}
4 D-2, & \text { for } r=3 \text { and } D \geq 3 \\
r D+1, & \text { for even } r>3 \\
(r+1) D, & \text { otherwise }
\end{array}\right.
$$

We will start by establishing the conjecture for $D=2$. After that we will consider some special cases for r and D. Then we conclude this section by presenting some constructions to show that this bound is achievable.

In studying the diameter of a graph it is convenient to consider the level structure of the graph. More specifically, let $G(n, r, D)=G(V, E)$ be a graph of diameter D. Then for a vertex $v \in V(G), V(G)$ can be partitioned into non empty subsets $L_{0}(v)=\{v\}, L_{1}(v)$, $L_{2}(v), \ldots, L_{1}(v), t=e(v)$, such that $L_{i}(v), 1 \leq i \leq t$, consists of those vertices of $G-v$ that are at distance i from v.

Now for $D=2$ we begin with the following lemma which establishes a lower bound on $f(r, 2)$.

Lemma 4.1: For $\mathrm{r} \geq 2$

$$
f(r, 2) \geq \begin{cases}2 r+1, & \text { for even } r \\ 2 r+2, & \text { otherwise }\end{cases}
$$

Proof: Let $G(V, E) \in \mathscr{G}(n, r, 2)$ be a graph with vertex decomposition $\{v\} \cup L_{1}(v) \cup L_{2}(v)$. Boals et al. [2] show that if $G \in \mathscr{G}(n, r, 2)$ then $d(G-v)=3$ for every $v \in V(G)$. Then there exists a pair of vertices x and y such that $d_{G-v}(x, y)=3$. Hence $V(G) \backslash\{v\} c a n$ be partitioned into non empty subsets $L_{0}(x)=\{x\}, L_{1}(x), L_{2}(x)$ and $L_{3}(x)$. Furthermore, $\left|L_{0}(x)\right|=1,\left|L_{1}(x)\right|=r-1$ and $\left|L_{2}(x)\right|+\left|L_{3}(x)\right| \geq r$. Hence $|V(G-v)| \geq 2 r$ and thus $f(r, 2) \geq 2 r+1$. The result follows since $r f(r, 2)$ is even.

We now describe some constructions which show that the bounds in Lemma 4.1 are in fact sharp. We consider four cases according to the value of $r(\bmod 4)$. In all cases the vertex set is $\mathrm{V}\left(\mathrm{G}_{\mathrm{t}}\right)=\{0,1,2, \ldots, \mathrm{n}-1\}, 0 \leq \mathrm{t} \leq 3$.
(a) For $\mathrm{r} \equiv 0(\bmod 4)$, define the graph G_{0} as

$$
\mathrm{G}_{0}=\mathrm{C}_{\mathrm{n}}(1,4,5,8,9,12,13,16,17, \ldots, \mathrm{r}-8, \mathrm{r}-7, \mathrm{r}-4, \mathrm{r}-3, \mathrm{r}), \quad \mathrm{n}=2 \mathrm{r}+1
$$

(b) For $\mathrm{r} \equiv 1(\bmod 4)$, let $\mathrm{n}=2 \mathrm{r}+2$ and define the graph G_{1} in which the vertex i , $0 \leq \mathrm{i} \leq \mathrm{n}-1$, is joined to the vertices $\mathrm{i}+1, \mathrm{i}+4, \mathrm{i}+5, \mathrm{i}+8, \mathrm{i}+9, \mathrm{i}+12, \mathrm{i}+13$, $\ldots, i+2 r-6, i+2 r-5, i+2 r-2(\bmod n)$ for i even and $i+1, i+4, i+7, i+8$, $i+11, i+12, \ldots, i+2 r-6, i+2 r-3, i+2 r-2(\bmod n)$ for i odd.
(c) For $\mathrm{r} \equiv 2(\bmod 4)$, define the graph G_{2} as

$$
\mathrm{G}_{2}=\mathrm{C}_{\mathrm{n}}(1,4,5,8,9,12,13, \ldots, \mathrm{r}-6, \mathrm{r}-5, \mathrm{r}-2, \mathrm{r}-1), \mathrm{n}=2 \mathrm{r}+1 .
$$

(d) For $\mathrm{r} \equiv 3(\bmod 4)$, define the graph G_{3} as

$$
\mathrm{G}_{3}=\mathrm{C}_{\mathrm{n}}(1,4,5,8,9,12,13, \ldots, \mathrm{r}-7, \mathrm{r}-6, \mathrm{r}-3, \mathrm{r}-2, \mathrm{r}+1), \mathrm{n}=2 \mathrm{r}+2 .
$$

Figure 4.1 shows some examples of these constructions.
Lemma 4.2: The graphs in (a) - (d) $\mathrm{G}_{\mathrm{t}} \in \mathscr{G}(\mathrm{n}, \mathrm{r}, 2), 0 \leq \mathrm{t} \leq 3$.
Proof: For any pair of vertices $i, j \in V\left(G_{t}\right), 0 \leq t \leq 3$, if $(i, j) \notin E\left(G_{t}\right)$ then from the definition of G_{t} the vertex i is joined to one of the vertices $j-1$ or $j+1(\bmod n)$. If vertex i is joined to $\mathrm{j}-1$ then we have the cycle $\mathrm{i}, \mathrm{j}-1, \mathrm{j}, \mathrm{j}+1, \mathrm{j}+2$, i . On the other hand, if vertex i is joined to $\mathrm{j}+1$ then we have the cycle $\mathrm{i}, \mathrm{j}-2, \mathrm{j}-1, \mathrm{j}, \mathrm{j}+1, \mathrm{i}$. Hence $\mathrm{d}_{\mathrm{G}_{\mathrm{t}}}(\mathrm{i}, \mathrm{j}) \leq 2$ for any $i, j \in V\left(G_{t}\right)$. It is easy to see from the definition that the graph G_{t} is r-regular and $N\{i\} \cap N\{i+2\}=\{i+1\}$ for every vertex $i \in V\left(G_{t}\right)$. Therefore $d_{G_{i}}(i, i+2)=2$ and $d_{G_{-}-(i+1)}(i, i+2)=3$. Hence the result.

Figure 4.1
Lemmas 4.1 and 4.2 together yield:
Theorem 4.1: For $\mathrm{r} \geq 2$

$$
f(r, 2)=\left\{\begin{array}{lc}
2 r+1, & \text { for even } r \\
2 r+2, & \text { otherwise }
\end{array}\right.
$$

A useful property for $\mathrm{D} \geq 3$ is given in the following lemma.
Lemma 4.3: Let $G(n, r, D)=G(V, E) \in \mathcal{G}(n, r, D), D \geq 3$, such that for a vertex $v \in V$ $d_{G-v}(x, y)>D$ and $x, y \in L_{1}(v)$. Then $\left|L_{2}(v)\right| \geq r+1$.

Proof: Let $X_{i}=N_{G}(x) \cap L_{i}(v), Y_{i}=N_{G}(y) \cap L_{i}(v), A=L_{1}(v) \backslash\left(\{x, y\} \cup X_{1} \cup Y_{1}\right)$, $\left|X_{i}\right|=m_{i},\left|Y_{i}\right|=n_{i}$ and $|A|=a$. Then $m_{1}+m_{2}=r-1, n_{1}+n_{2}=r-1$ and $m_{1}+n_{1}+a=r-2$.

Now we have $m_{2}+n_{2}=2(r-1)-\left(m_{1}+n_{1}\right)=2 r-2-r+2+a=r+a$. Thus $L_{2}(v) \mid \geq r+a$. Therefore, we need only to consider the case $a=0$. Observe that there is no edge joining a vertex of X_{i} to Y_{i}. If $w \in X_{1}$, then $\left.N_{G}(w) \subseteq\{x, y\} \cup\left(X_{1} \backslash w\right\}\right) \cup X_{2}=S$ and $|S|-2+m_{1}-1+m_{2}=r$, and so $N_{G}(w)=S$ for $d_{G}(w)=r$. But then x and w have the same closed neighbour set, a contradiction. Hence the result.

Theorem 4.2: $f(3,3)=10$.
Proof: Let $G(n, 3,3)=G(V, E) \in \mathscr{G}(n, 3,3)$. Then there exist vertices v, x and $y \in V$ such that $e(v)=3$ and $d_{G-v}(x, y)>3$. Let $x \in L_{i}(v)$ and $y \in L_{j}(v)$. Clearly $i+j \leq 3$. Therefore we can assume without loss of generality that $x \in L_{1}(v)$. Suppose that $y \in L_{1}(v)$. Then by Lemma $4.2\left|L_{2}(v)\right| \geq 4$. Hence $|\mathrm{V}|=\left|\mathrm{L}_{0}(\mathrm{v})\right|+\left|\mathrm{L}_{1}(\mathrm{v})\right|+\left|\mathrm{L}_{2}(\mathrm{v})\right|+\left|\mathrm{L}_{3}(\mathrm{v})\right| \geq$ $1+3+4+1=9$.

Now we consider the case $y \in L_{2}(v)$. Here $V(G) \backslash\{v\}$ can be partitioned into non empty subsets $L_{0}(x)=\{x\}, L_{1}(x), L_{2}(x), \ldots, L_{t}(x)$, where $t>3$ and $y \in L_{t}(x)$ such that $\mathrm{L}_{\mathrm{i}}(\mathrm{x}), 1 \leq \mathrm{i} \leq \mathrm{t}$, consists of those vertices of $\mathrm{G}-\mathrm{v}$ that are at distance i from x . Furthermore, $\left|L_{0}(x)\right|=1,\left|L_{1}(x)\right|=2,\left|L_{2}(x)\right| \geq 1$ and $\left|L_{t-1}(x)\right|+\left|L_{t}(x)\right| \geq 4$. Hence $|\mathrm{V}(\mathrm{G}-\mathrm{v})| \geq 8$ and thus $|\mathrm{V}| \geq 9$. Now since $\mathrm{r}=3, \mathrm{f}(3,3) \geq 10$. The graph $\mathrm{G}(10,3,3)=$ $\mathrm{C}_{10}(1,5)$ depicted in Figure 4.2 shows that $f(3,3)=10$, as required.

Figure 4.2

Remark: Using a lengthy case analysis we have established that $f(3,4)=14$ and $f(4,3)=13$.
Lemma 4.4: For $r \geq 3, r \neq 1(\bmod 4), D \geq 3$

$$
f(r, D) \leq\left\{\begin{array}{cl}
4 D-2, & \text { for } r=3 \text { and } D \geq 3 \\
r D+1, & \text { for even } r>3 \\
(r+1) D, & \text { otherwise. }
\end{array}\right.
$$

Proof: We establish our upper bounds by construction. For $r=3$ and $D \geq 3$ the graph H_{j} depicted in Figure 3.3 has the required property. For $r \geq 4$ we consider three cases according to the value of $r(\bmod 4)$. In all cases the vertex set is $V\left(G_{t}\right)=\{0,1,2, \ldots, n-1\}$, $t=0,2,3$ and the constructed graph $G_{t} \in \mathscr{G}(n, r, D)$.
(a) For $r \equiv 0(\bmod 4)$, define the graph G_{0} as

$$
\mathrm{G}_{0}=\mathrm{C}_{\mathrm{n}}\left(1,2 \mathrm{D}, 2 \mathrm{D}+4 \mathrm{D}, 4 \mathrm{D}+1, \ldots,\left(\frac{1}{2} \mathrm{r}-2\right) \mathrm{D},\left(\frac{1}{2} \mathrm{r}-2\right) \mathrm{D}+1, \frac{1}{2} \mathrm{rD}\right), \quad \mathrm{n}=\mathrm{rD}+1
$$

(b) For $\mathrm{r} \equiv 2(\bmod 4)$, define the graph G_{2} as

$$
G_{2}=C_{n}\left(1,2 D, 2 D+1,4 D, 4 D+1, \ldots,\left(\frac{1}{2} r-1\right) D,\left(\frac{1}{2} r-1\right) D+1\right), \quad n=r D+1
$$

(c) For $r \equiv 3(\bmod 4)$, define the graph G_{3} as

$$
\begin{aligned}
& G_{3}=C_{n}\left(1,2 D, 2 D+1,4 D, 4 D+1, \ldots,\left(\frac{1}{2}(r+1)-2\right) D,\left(\frac{1}{2}(r+1)-2\right) D+1, \frac{1}{2}(r+1) D\right) \\
& n=(r+1) D
\end{aligned}
$$

This completes the proof of the lemma.
Remark: For $r \equiv 1(\bmod 4)$ we believe the upper bound for $f(r, D)$ is $(r+1)$ D. However, we have not been able to construct graphs having this bound except for some special cases $(r=5, D=3$ and 4$)$.

Acknowledgement :

This project was supported, in part, by the Australian Research Council Grant No. A49532661

References:

[1] Bhattacharya, D., The Minimum Order of n-Connected n-Regular Graphs with Specified Diameters, IEEE Transactions on Circuits and Systems, CAS32, 4 (1985), 407-409.
[2] Boals, A., Sherwani N. A. and Ali, H., Vertex Diameter Critical Graphs, Congressus Numerantium, 72 (1990), 193-198.
[3] Boesch, F. and Tindell, R., Circulants and Their Connectivities, J. Graph Theory, 8 (1984), 487-499.
[4] Boesch, F. and Wang , J. F., Reliable Circulant Networks with Minimum Transmission Delay, IEEE Transactions on Circuits and Systems, CAS-32, 12 (1985), 407-409.
[5] Bondy, J.A. and Murty, U.S.R., Graph Theory with Applications, The MacMillan Press, London, (1977).
[6] Caccetta, L., Extremal Graph Theory, Technical report 2/93, School of Mathematics and Statistics, Curtin University of Technology, Perth, Australia.
[7] Caccetta, L., Graph Theory in Network Design and Analysis, in : Recent Studies in Graph Theory, V.R. Kulli ed., Vishwa International Publications, India, (1989), 29-63.
[8] Caccetta, L., Extremal graphs with Diameter and Connectivity, Ann. N.Y. Acad. Sci., 328 (1979), 76-94.
[9] Fan, G., On Diameter 2-Critical Graphs, Discrete Math, 67 (1987), 235-240.
[10] Gliviak, F., Vertex Critical Graphs of Given Diameters, Acta mathematica Academical Scientiarum Hungaricae, 27 (1976), 255-262.
[11] Gliviak, F., Kys, P. and Plesnik, J., On the Extension of Graphs with Given Diameter Without Superfluous Edges, Matematicky Casposis, (1969), 92-101.
[12] Glivjak, F. and Plesnik, J., On the Existence of Certain graphs with Diameter Two, Matematicky Casopis, (1969), 276-282.
[13] Gliviak, F. and Plesnik, J., On the Impossibility to Construct Certain Classes of Graphs by Extensions, Acta mathematica Academic Scientiarum Hungaricae, 22 (1971), 5-10.
[15] Plesnik, J., Diameter k-Critical Graphs, Acta F.R.N. Univ. Comen. Math., 38 (1981), 63-85.
[16] Plesnik, J., Critical Graphs of Given Diameter, Acta F.R.N. Univ. Comen. Math., 30 (1975), 71-93.

