The Steiner Distance Dimension of Graphs

Michael Raines and Ping Zhang^{*}

Department of Mathematics and Statistics Western Michigan University Kalamazoo, MI 49008

Abstract

For a nonempty set S of vertices of a connected graph G, the Steiner distance d(S) of S is the minimum size among all connected subgraphs whose vertex set contains S. For an ordered set $W = \{w_1, w_2, \dots, w_k\}$ of vertices in a connected graph G and a vertex v of G, the Steiner representation s(v|W) of v with respect to W is the $(2^k - 1)$ -vector

 $s(v|W) = (d_1(v), d_2(v), \cdots, d_k(v), d_{1,2}(v), d_{1,3}(v), \cdots, d_{1,2,\cdots,k}(v))$

where $d_{i_1,i_2,\cdots,i_j}(v)$ is the Steiner distance $d(\{v, w_{i_1}, w_{i_2}, \cdots, w_{i_j}\})$. The set W is a Steiner resolving set for G if, for every pair u, v of distinct vertices of G, u and v have distinct representations. A Steiner resolving set containing a minimum number of vertices is called a Steiner basis for G. The cardinality of a Steiner basis is the Steiner (distance) dimension $\dim_S(G)$. In this paper, we study the Steiner dimension of graphs and determine the Steiner dimensions of several classes of graphs.

1 Introduction

A fundamental problem in chemistry is to represent a set of chemical compounds in such a way that distinct compounds have distinct representations. A graph-theoretic interpretation of this problem is to provide representations for the vertices of a graph in such a way that distinct vertices have distinct representations. For an ordered set $W = \{w_1, w_2, \dots, w_k\}$ of vertices in a connected graph G and a vertex v of G, the k-vector (ordered k-tuple)

$$r(v|W) = (d(v, w_1), d(v, w_2), \cdots, d(v, w_k))$$

is referred to as the (metric) representation of v with respect to W. The set W is called a resolving set for G if, for every pair u, v of distinct vertices of G, u and v have distinct representations. A resolving set containing a minimum number of vertices is called a minimum resolving set or a basis for G. The number of vertices in a basis

^{*} Research supported in part by the WMU Faculty Research and Creative Activities Grant

for G is its (metric) dimension $\dim(G)$. This is the subject of the papers [1], [2], [3], and [4].

In this paper, we approach this problem from another point of view, namely, we use Steiner distance as a means of providing a refinement to representing the vertices of a graph. For a nonempty set S of vertices of a connected graph G, the Steiner distance d(S) of S (or simply the distance of S) is the minimum size among all connected subgraphs whose vertex set contains S. If F is a connected subgraph of G such that $S \subseteq V(F)$ and |E(F)| = d(S), then necessarily F is a tree, called a Steiner tree of S in G. If $S = \{u, v\}$, then d(S) = d(u, v) and a Steiner tree of S is a u - v geodesic). If G has order n and |S| = n (so S = V(G)), then d(S) = n - 1 and every spanning tree of G is a Steiner tree for S. For example, let $S = \{u, v, x\}$ in the graph G of Figure 1. Here d(S) = 4. There are several trees of size 4 containing S, one of which is the tree T of Figure 1.

Figure 1: A graph G and a Steiner tree T

For an ordered set $W = \{w_1, w_2, \dots, w_k\}$ of vertices in a connected graph G, and for $v \in V(G)$, the *Steiner representation* s(v|W) of v with respect to W is the $(2^k - 1)$ -vector

$$s(v|W) = (d_1(v), d_2(v), \cdots, d_k(v), d_{1,2}(v), d_{1,3}(v), \cdots, d_{1,2,\dots,k}(v))$$

where $d_{i_1,i_2,\dots,i_j}(v)$ is the Steiner distance $d(\{v, w_{i_1}, w_{i_2}, \dots, w_{i_j}\})$. If, for every pair u, v of distinct vertices, u and v have distinct Steiner representations with respect to W, then W is a *Steiner resolving set* for G. A Steiner resolving set of minimum cardinality is called a *minimum Steiner resolving set* or a *Steiner basis* for G. The number of vertices in a Steiner basis is the *Steiner (distance) dimension* dim_S(G).

For each $v \in V(G)$, the first k coordinates in the Steiner representation s(v|W) of v is the ordinary representation r(v|W) of v with respect to W. Thus every resolving set for G is a Steiner resolving set for G, and so

$$\dim_S(G) \le \dim(G) \tag{1}$$

To see that inequality (1) can be strict, we consider the graph G of Figure 2. We first show that $\dim_S(G) = 2$. Let $W = \{v_1, v_3\}$. The Steiner representations of the vertices of G with respect to W are

$s(u_1 \mid W) = (1, 3, 4)$	$s(u_2 \mid W) = (2, 2, 4)$	$s(u_3 \mid W) = (3, 1, 4)$
$s(u_4 \mid W) = (4, 2, 5)$	$s(u_5 \mid W) = (3, 3, 6)$	$s(u_6 \mid W) = (2, 4, 5)$
$s(v_1 \mid W) = (0, 4, 4)$	$s(v_2 \mid W) = (3, 3, 5)$	$s(v_3 \mid W) = (4, 0, 4)$
$s(v_4 \mid W) = (5, 3, 6)$	$s(v_5 \mid W) = (4, 4, 7)$	$s(v_6 \mid W) = (3, 5, 6)$

Figure 2: A graph G for which $\dim_S(G) < \dim(G)$

Since the representations are distinct, W is a Steiner resolving set for G. Certainly, no single vertex of G is a Steiner resolving set for G, and so $\dim_S(G) = 2$. It is straightforward to show that no 2-element set of vertices is a resolving set for G. Since the set $\{u_3, u_6, v_4\}$ is a resolving set, $\dim(G) = 3$.

It was shown in [1] that the dimension of a graph of order n and diameter d is at most n - d. So we have the following result.

Theorem 1.1 If G is a connected graph of order $n \ge 2$ and diameter d, then

 $\dim_S(G) \le n - d$

The upper bound in Theorem 1.1 is sharp. For example, the graph G of Figure 3 has order n = 8 and diameter d = 4, while $S = \{v_1, v_5, v_6, v_7\}$ is a Steiner basis for G and so dim_S(G) = 4.

2 The Steiner Dimension of Certain Graphs

If G is a nontrivial connected graph, then certainly $1 \leq \dim_S(G) \leq n-1$. For each $n \geq 2$, there is only one graph of order n having Steiner dimension 1.

Theorem 2.1 A connected graph of order n has Steiner dimension 1 if and only if $G = P_n$.

Figure 3: The graph G

Proof. We have already noted that if $G = P_n$, then $\dim_S(G) = 1$, as either endvertex of G forms a Steiner resolving set for G. For the converse, assume that G is a connected graph of order n with $\dim_S(G) = 1$ and basis $W = \{w\}$. For each vertex v of G, s(v|W) = d(v, w) is a nonnegative integer less then n. Since the representations of the vertices of G with respect to W are distinct, there exists a vertex u of G such that d(u, w) = n - 1. Consequently, the diameter of G is n - 1, which implies that $G = P_n$.

Theorem 2.2 A connected graph G of order n has Steiner dimension n-1 if and only if $G = K_n$.

Proof. First assume that G is a connected graph of order n such that $\dim_S(G) = n - 1$. Then $\dim(G) = n - 1$, which implies that $G = K_n$ [1]. Now we verify the converse. Assume, to the contrary, that there exists a Steiner resolving set W for $G = K_n$ which contains less than n - 1 vertices. Let x and y be two vertices in V(G) - W. Now for every k-subset of vertices from W, the Steiner distance from x to W is the same as the Steiner distance from y to W, for this distance is k, the smallest sized tree which can possibly contain x (respectively y) and all other vertices in the k-subset. We know that it is possible to obtain this tree of size k, since G is a complete graph. Therefore, the Steiner representation of x with respect to W is the same as the Steiner representation of y with respect to W. Therefore, $\dim_S(K_n) \ge n - 1$.

In [1], it was shown that if G is a connected graph of order $n \ge 4$, then dim(G) = n-2 if and only if $G = K_{r,s}$, $G = K_s + \overline{K}_t$ where $t \ge 2$, or $G = K_s + (K_t \cup K_1)$, where $t \ge 2$. The next theorem states that it is precisely these graphs of order n for which the Steiner dimension equals n-2.

Theorem 2.3 Let G be a connected graph of order $n \ge 4$. Then $\dim_S(G) = n-2$ if and only if $G = K_{r,s}$ $(r, s \ge 1)$, or $K_s + \overline{K}_t$, $(s \ge 1, t \ge 2)$, or $K_s + (K_t \cup K_1)$, $(s, t \ge 1)$.

Proof. Since dim_S(G) \leq dim(G) for every connected graph G of order n, it follows that dim_S(G) $\leq n-2$ if $G = K_{r,s}$ $(r, s \geq 1)$, or $K_s + \overline{K}_t$, $(s \geq 1, t \geq 2)$, or

 $K_s + (K_t \cup K_1), (s, t \ge 1)$. Now we show that the Steiner dimension of each of these graphs is at least n - 2.

We first consider $K_{r,s}$ $(r, s \ge 1)$, with bipartition $(X = \{x_1, x_2, \ldots, x_r\}, Y = \{y_1, y_2, \ldots, y_s\})$. Suppose, to the contrary, that there exists a Steiner resolving set W which contains at most n-3 vertices. Then there exists a pair of vertices $u, v \notin W$ which are both contained either in X or in Y. Suppose, without loss of generality, that u and v are both contained in X. Let $W_k = \{w_1, w_2, \ldots, w_k\}$ be a k-subset of vertices in W. Also suppose, without loss of generality, that w_1, w_2, \ldots, w_i are contained in Y and that $w_{i+1}, w_{i+2}, \ldots, w_k$ are contained in X. Since G is a complete bipartite graph, we form two trees, one of which contains the edges $uw_1, uw_2, \ldots, uw_i, w_1w_{i+1}, w_1w_{i+2}, \ldots, w_1w_k$. Observe that each of these trees has size k. Furthermore, observe that there exists no other tree of smaller size which contains every vertex in $W_k \cup \{v\}$. Similarly, there is no other tree of smaller size which contains every vertex in $W_k \cup \{v\}$. This implies that the representation of u with respect to W is the same as the representation of v with respect to W, so W is not a Steiner resolving set for $K_{r,s}$. Therefore, $\dim_S(K_{r,s}) \ge n-2$.

Next we consider $G = K_s + \overline{K}_t$, $(s \ge 1, t \ge 2)$. Let $X = V(K_s) = \{x_1, x_2, \ldots, x_s\}$ and let $Y = V(\overline{K}_t) = \{y_1, y_2, \ldots, y_t\}$. Suppose, to the contrary, that there is a Steiner resolving set W which contains at most n-3 vertices. Then there exists two vertices u and v not in W which are either both contained in X or both contained in Y. Again, let $W_k = \{w_1, w_2, \ldots, w_k\}$ be a k-subset of vertices in W. Suppose, without loss of generality, that w_1, w_2, \ldots, w_i are contained in Y and that $w_{i+1}, w_{i+2}, \ldots, w_k$ are contained in X.

Case 1.1: u and v are both contained in X. We form two trees, one of which contains the edges uw_1, uw_2, \ldots, uw_k , and the second of which contains the edges vw_1, vw_2, \ldots, vw_k . There exists no other tree of smaller size which contains every vertex in $W_k \cup \{u\}$, and there exists no other tree of smaller size which contains every vertex in $W_k \cup \{v\}$. Therefore, the representation of u with respect to W is the same as the representation of v with respect to W. So W is not a Steiner resolving set for G.

Case 1.2: u and v are both contained in Y. Again we form two trees, one of which contains the edges $uw_{i+1}, uw_{i+2}, \ldots, uw_k, w_1w_{i+1}, w_2w_{i+1}, \ldots, w_iw_{i+1}$ and the second of which contains the edges $vw_{i+1}, vw_{i+2}, \ldots, vw_k, w_1w_{i+1}, w_2w_{i+1}, \ldots, w_iw_{i+1}$. Once again there exists no other tree of smaller size which contains every vertex in $W_k \cup \{u\}$, and there exists no other tree of smaller size which contains every vertex in $W_k \cup \{v\}$. So the representation of u with respect to W is the same as the representation of v with respect to W. Therefore, W is not a Steiner resolving set for G.

Finally, we consider $G = K_s + (K_t \cup K_1)$, $(s, t \ge 1)$. Let $X = V(K_s) = \{x_1, x_2, \ldots, x_s\}$, let $Y = V(K_t) = \{y_1, y_2, \ldots, y_t\}$, and let $V(K_1) = \{z\}$. Suppose, to the contrary, that there is a Steiner resolving set W which contains at most n - 3 vertices. We consider two cases.

Case 2.1: $z \in W$. If $z \in W$, then there exist two vertices u and v not in W which are either both contained in X or both contained in Y. Again, let $W_k = \{w_1, w_2, \ldots, w_k\}$ be a k-subset of vertices in W. Suppose, without loss of generality,

that w_1, w_2, \ldots, w_i are contained in Y, that $w_{i+1}, w_{i+2}, \ldots, w_{k-1}$ are contained in X, and that $z = w_k$. First suppose that u and v are both contained in X. Then we form two trees, one of which contains the edges uw_1, uw_2, \ldots, uw_k , and the second of which contains the edges vw_1, vw_2, \ldots, vw_k . So the representation of u with respect to W is the same as the representation of v with respect to W. Next suppose that u and v are both contained in Y. We again form two trees, one of which contains the edges $uw_1, uw_2, \ldots, uw_{k-1}, w_{i+1}w_k$, and the second of which contains the edges $vw_1, vw_2, \ldots, vw_{k-1}, w_{i+1}w_k$. So the representation of u with respect to W is the same as the representation of v with respect to W.

Case 2.2: $z \notin W$. Let $u, v \notin W$, where $u, v \neq z$. We consider two subcases.

Subcase 2.2.1. $u, v \in X$ or $u, v \in Y$. Then a similar argument to the one in Case 1 will show that s(u|W) = s(v|W).

Subcase 2.2.2. One of u, v is in X, and one is in Y, say $u \in X$ and $v \in Y$. We show that s(u|W) = s(v|W). We let $W_k = \{w_1, w_2, \ldots, w_k\}$ be a k-subset of vertices in W. We assume, without loss of generality that w_1, w_2, \ldots, w_i are contained in Y and that $w_{i+1}, w_{i+2}, \ldots, w_k$ are contained in X. Then we form two trees, one of which contains the edges uw_1, uw_2, \ldots, uw_k , and the second of which contains the edges vw_1, vw_2, \ldots, vw_k . Certainly, the representation of u with respect to W is the same as the representation of v with respect to W.

Theorem 2.4 The cycle of order $n \ge 3$ has Steiner dimension 2.

Proof. Let $C_n : v_1, v_2, \dots, v_n, v_1$. By Theorem 2.1, $\dim_S(C_n) \ge 2$. Since $W = \{v_1, v_2\}$ is a Steiner resolving set of C_n , it follows that $\dim_S(C_n) = 2$.

3 The Steiner Dimension of $L(K_n)$

We begin by presenting some preliminary concepts which will enable us to determine the Steiner dimension of the line graph of the complete graph of order n, $L(K_n)$.

The distance between an edge e_1 and an edge e_2 , denoted $d_e(e_1, e_2)$, is the number of internal vertices on a shortest path which contains both e_1 and e_2 .

Let G be a graph of order n and let E(G) denote the set of edges of G. Let $X = \{e_1, e_2, \ldots, e_k\}$ be a set of edges in G. For each edge $e \in E(G)$, the distance representation of e with respect to X is the ordered k-tuple $r_{\epsilon}(e \mid X) = (d_{\epsilon}(e, e_1), d_{\epsilon}(e, e_2), \ldots, d_{\epsilon}(e, e_k))$. If, for every pair of edges f and g in G, $r_{\epsilon}(f \mid X) \neq r_{\epsilon}(g \mid X)$, then X is said to be an *edge resolving set* for G. An edge resolving set of minimum cardinality is called an *edge basis* for G. The cardinality of an edge basis for G is called the *edge dimension* of G and is denoted $\dim_{\epsilon}(G)$.

A vertex u in the line graph of K_n is distance 1 (respectively distance 2) from a vertex v if and only if the edge in K_n corresponding to u is distance 1 (respectively distance 2) from the edge in K_n corresponding to v. Therefore, if a set of edges in K_n forms an edge resolving set for K_n , then the set of vertices in $L(K_n)$ corresponding to these edges will form a resolving set for $L(K_n)$. Hence, it follows that the edge dimension of K_n is precisely the distance dimension of $L(K_n)$. Furthermore, since the Steiner dimension of any graph G, dim_S(G), is at most the dimension of G, it follows that $\dim_S(L(K_n)) \leq \dim_{\epsilon}(K_n)$, for all positive integers $n \geq 2$. In fact, we will show that if $n \geq 2$, $\dim_S(L(K_n)) = \dim_{\epsilon}(K_n)$.

We begin by determining the edge dimension of K_n .

Theorem 3.1 For every integer $n \geq 3$,

$$\dim_{\epsilon}(K_n) = \begin{cases} 2n/3 & \text{if } n \equiv 0 \pmod{3}, \\ (2n+1)/3 & \text{if } n \equiv 1 \pmod{3}, \\ (2n+2)/3 & \text{if } n \equiv 2 \pmod{3}, n \neq 5 \\ 3 & \text{if } n = 5 \end{cases}$$

Proof. Let $V(K_n) = \{v_0, v_1, \ldots, v_{n-1}\}$. For $n \ge 3$, we begin by constructing an edge resolving set for K_n which contains (2n + i)/3 edges if $n \equiv i \pmod{3}$ and $n \ne 5$, and for K_5 we construct an edge resolving set containing 3 edges. If $n \equiv 0$ $(\mod 3)$, then for $0 \le i \le n/3 - 1$, let the edge resolving set X consist of the 2paths $v_{3i}, v_{3i+1}, v_{3i+2}$; if $n \equiv 1 \pmod{3}$, let X consist of the 2-paths $v_{3i}, v_{3i+1}, v_{3i+2}$ for $0 \le i \le (n-4)/3$ and the edge $v_{n-3}v_{n-1}$; if $n \equiv 2 \pmod{3}$ and $n \ne 5$, then for $0 \le i \le (n-5)/3$ let X consist of the 2-paths $v_{3i}, v_{3i+1}, v_{3i+2}$ and the 2-path $v_{n-3}, v_{n-2}, v_{n-1}$; and if n = 5, let X consist of the 3-star containing the edges v_0v_1 , v_1v_2 , and v_1v_3 . So X can be described as follows:

- a collection of 2-paths if $n \equiv 0 \pmod{3}$;
- a collection of 2-paths and a 3-star if $n \equiv 1 \pmod{3}$;
- a collection of 2-paths and a 4-path if $n \equiv 2 \pmod{3}$ and $n \neq 5$; or
- a 3-star if n = 5.

We now show that X is an edge resolving set for K_n . It is easily verified that X is an edge resolving set for K_n , for $3 \le n \le 8$, and that a 4-path forms an edge resolving set for K_5 . We now consider the case where $n \ge 9$. Let G[X] denote the subgraph of K_n induced by the edges of X. Consider the edges $e, f \notin G[X]$. Suppose that all edges in G[X] that are distance 1 from e lie in the component C_1 (or in the components C_1 and C_2) of G[X]. Then e and f could have the same representations with respect to X only if all edges in G[X] that are distance 1 from f lie in the component C_1 (or in the component C_1 (or in the component C_1 (or in the components C_1 and C_2) of G[X]. But the subgraph of K_n induced by the vertices in C_1 is K_3 , K_4 , or K_5 . Furthermore, the edges in C_1 which belong to X form an edge resolving set for C_1 , so e and f have distinct representations. Similarly, the subgraph of K_n induced by the vertices in $C_1 \cup C_2$ which belong to X form an edge resolving set for $C_1 \cup C_2$, so e and f have distinct representations with respect to X.

Suppose Y is an edge resolving set for K_n , where $|Y| \leq (2n + i)/3$ if $n \equiv i \pmod{3}$, and let G[Y] denote the subgraph of K_n induced by the edges in Y. First, G[Y] cannot contain a component having only one edge y_1y_2 . To show this we first consider $z \notin \{y_1, y_2\}$ which is a vertex of K_n . If G[Y] contains a component having only the edge y_1y_2 , then $r_{\epsilon}(zy_1 \mid Y) = r_{\epsilon}(zy_2 \mid Y)$. Furthermore, at least n-2

vertices of K_n must be incident with at least one edge in Y, for if two vertices, say z_1 and z_2 , are not incident with an edge in Y, then the edges z_1y and z_2y will have the same representations with respect to Y, for each $y \in V(K_n) - \{z_1, z_2\}$. In addition, if there exists some vertex in K_n which is not incident with at least one edge of Y, then no component of G[Y] can contain less than 3 edges. It has already been established that G[Y] cannot contain any component of size one, so suppose that G[Y] contains some component C having exactly two edges, say wx and xy, and that there exists some vertex z which is not incident with any edge of Y. Then zxand wy have the same edge representations with respect to Y. So if exactly n-1vertices are incident with at least one edge of Y, then each of these vertices must be contained in a component which has at least 3 edges.

Having established some characteristics of edge resolving sets for K_n , we now show that the edge resolving set X constructed previously is indeed an edge basis for K_n .

First suppose that n = 3x (so X contains 2x edges), and let Y be an edge resolving set containing 2x - j edges, for some positive integer j < 2x. Again, we denote by G[Y] the subgraph of K_n induced by the edges of Y. We assume, without loss of generality, that each component of G[Y] has minimum possible size with respect to the order (that is, each component is a tree). Suppose that G[Y] has k nontrivial components of sizes c_1, c_2, \ldots, c_k . Then $c_1 + c_2 + \cdots + c_k = 2x - j$. Since each component of G[Y] is a tree, it follows that the number of vertices in G[Y] is $c_1 + c_2 + \ldots + c_k + k = 2x - j + k$. Therefore, if G[Y] contains all vertices of K_n , then 2x - j + k = 3x, so k = x + j. It was established earlier that each of these x + j components must have size at least 2, so this means that G[Y] contains at least 2x + 2j edges, which is a contradiction. If G[Y] contains 3x - 1 vertices, then 2x - j + k = 3x - 1, so $k = x + j - 1 \ge x$. It was established earlier that if G[Y]contains an isolated vertex, then each nontrivial component must contain at least 3 edges, so it follows that G[Y] contains at least 3x edges, which is a contradiction.

Next suppose that n = 3x + 1 (so X contains 2x + 1 edges), and let Y be an edge resolving set containing 2x + 1 - j edges, for some positive integer j < 2x + 1. Assume once again that G[Y] consists of k nontrivial components of sizes c_1, c_2, \ldots, c_k . Then $c_1 + c_2 + \cdots + c_k = 2x + 1 - j$. Now G[Y] contains $c_1 + c_2 + \cdots + c_k + k = 2x + k - j + 1$ vertices. If G[Y] contains every vertex of K_n , then 2x + k - j + 1 = 3x + 1, so k = x + j. Since each component contains at least 2 edges, G[Y] must contain at least 2x + 2jedges, which is a contradiction. Now we suppose that G[Y] contains 3x vertices. Therefore, 2x + k - j + 1 = 3x, so k = x + j - 1. Since G[Y] does not contain all 3x + 1 vertices, each component of G[Y] must contain at least 3 edges, so it follows that G[Y] contains at least 3(x + j - 1) edges, which is a contradiction.

Finally suppose that n = 3x + 2 (so X contains 2x + 2 edges), and let Y be an edge resolving set containing 2x + 2 - j edges, for some positive integer j < 2x + 2. We assume that G[Y] consists of k nontrivial components of sizes c_1, c_2, \ldots, c_k . Then $c_1 + c_2 + \cdots + c_k = 2x + 2 - j$. Now G[Y] contains $c_1 + c_2 + \cdots + c_k + k = 2x + k - j + 2$ vertices. If G[Y] contains every vertex of K_n , then 2x + k - j + 2 = 3x + 2, so k = x + j. Each component of G[Y] has size at least 2, so the number of edges in G[Y] is at least 2x + 2j, which is a contradiction. Now suppose that G[Y] contains 3x + 1 vertices. Then 2x + k - j + 2 = 3x + 1, so k = x + j - 1. Therefore, if each component must contain at least 3 edges, it follows that G[Y] contains at least 3x + 3j - 3 edges, which is a contradiction as long as x > 1 or j > 1. However, if x = 1 and j = 1, it follows that n = 5, and there exists an edge basis containing 2x + 2 - j = 3 edges.

Therefore, the edges of X form an edge basis for K_n .

Corollary 3.2 Let $n \ge 3$ be a positive integer. Then

$$\dim(L(K_n)) = \begin{cases} 2n/3 & \text{if } n \equiv 0 \pmod{3}, \\ (2n+1)/3 & \text{if } n \equiv 1 \pmod{3}, \\ (2n+2)/3 & \text{if } n \equiv 2 \pmod{3}, n \neq 5 \\ 3 & \text{if } n = 5 \end{cases}$$

Certainly, for any connected graph G, $\dim_S(G) \leq \dim(G)$. In what follows, we show that we have equality if $G = L(K_n)$.

Theorem 3.3 Let $n \ge 2$ be a positive integer. Then $\dim_S(L(K_n)) = \dim(L(K_n))$.

Proof. Certainly, if n = 2, then $\dim_S(L(K_n)) = \dim(L(K_n))$, so we assume $n \ge 3$.

Let $G = L(K_n)$. We first assume that $\dim_S(G) < \dim(G)$ and work toward a contradiction. Let S be a Steiner basis for G. Since $\dim_S(G) < \dim(G)$, it follows that there exist two vertices $x, y \in V(G)$ such that $r(x \mid S) = r(y \mid S)$, but $s(x \mid S) \neq s(y \mid S)$. We define $S_i, i \in \{1, 2\}$, to be the set of vertices in S which are distance i from x and y. There are two cases to consider.

Case 1: x and y are nonadjacent.

If x and y are nonadjacent vertices, then we consider a partition of $V(G) - \{x, y\}$. Let X_i (respectively Y_i), $i \in \{1, 2\}$, denote the set of vertices in $V(G) - \{x, y\}$ which are distance *i* from vertex x (respectively, vertex y). Consider the edges x' = ab and y' = cd in K_n which correspond to vertices x and y, respectively, in G. The only edges in K_n which are distance 1 from both x' and y' are ac, ad, bc, and bd, so it follows that $|X_1 \cap Y_1| = 4$. Furthermore, the edge x' is incident with 2(n-4) edges besides ac, ad, bc, and bd, and the edge y' is also incident with 2(n-4) edges besides these four. So $|X_1 - (X_1 \cap Y_1)| = |Y_1 - (X_1 \cap Y_1)| = 2(n-4)$ (and the sets $X_1 - (X_1 \cap Y_1)$) and $Y_1 - (X_1 \cap Y_1)$ have empty intersection). Also, the only edges in K_n which are distance 2 from both x' and y' are those in the clique induced by $V(K_n) - \{a, b, c, d\}$, so $|X_2 \cap Y_2| = (n-4)(n-5)/2$. We observe that $X_2 - (X_2 \cap Y_2) = Y_1 - (X_1 \cap Y_1)$ and $Y_2 - (X_2 \cap Y_2) = X_1 - (X_1 \cap Y_1)$ (see Figure 4).

Since r(x | S) = r(y | S), it follows that $S \subseteq (X_1 \cap Y_1) \cup (X_2 \cap Y_2)$. Let T be a Steiner tree which contains $\{x\} \cup S$. Then T must contain some minimum nonempty subset $\Gamma = \{v_1, v_2, \ldots, v_k\}$ of vertices in $X_1 - (X_1 \cap Y_1)$. Otherwise, if V(T) is entirely contained in $(X_1 \cap Y_1) \cup (X_2 \cap Y_2)$, then certainly T can be modified to produce a tree T^* with size |E(T)| which contains $\{y\} \cup S$; T^* can be formed from T by replacing all edges of the form $xv_i, v_1 \in X_1 \cap Y_1$, with yv_i , where $1 \leq i \leq k$.

Each vertex in Γ is adjacent to some set of vertices in $X_2 \cap Y_2$ which are also in the Steiner basis S; in particular, for each $v_i \in \Gamma$, there is a subset A =

Figure 4: A partition of $V(L(K_n))$ when x and y are not adjacent.

 $\{\alpha_{i_1}, \alpha_{i_2}, \ldots, \alpha_{i_r}\} \subseteq S$, each of whose vertices is adjacent to v_i in T. However, for each $v_i \in \Gamma$, there exists some vertex $w_i \in Y_1 - (X_1 \cap Y_1)$ which is adjacent to each vertex in A. This can be seen more clearly by considering the edges in K_n which correspond to vertices in A and in Γ . The vertex $v_i \in \Gamma$ corresponds to some edge, say $v'_i = ae$, in K_n (recall that x' = ab, so we assume without loss of generality that vertex a is incident with both x' and v'_i). Now each edge in K_n which corresponds to a vertex in A must be incident with vertex $e \in V(K_n)$, for if any such edge is incident with vertex a, then this would imply that some vertex in A is contained in X_1 . Furthermore, there exists some edge of the form $w'_i = ce$ which is distance 1 from y' and which is distance 1 from the edges corresponding to the vertices in A. Since such an edge exists, there exists a corresponding vertex $w_i \in Y_1 - (X_1 \cap Y_1)$ which is distance 1 from the vertices in A. So for each $v_i \in \Gamma$ there is a vertex w_i which is adjacent to the same vertices in $(X_2 \cap Y_2)$ to which v_i is adjacent. This implies that we can build a tree T^* which has size |E(T)| and which contains $\{y\} \cup S$. Therefore, $s(x \mid S) = s(y \mid S)$, which is a contradiction.

Case 2: x and y are adjacent.

The proof is similar to the proof of Case 1. The differences lie in the fact that $|X_1 \cap Y_1| = n - 2$, $|X_1 - (X_1 \cap Y_1)| = |Y_1 - (X_1 \cap Y_1)| = n - 3$, and $|X_2 \cap Y_2| = (n-3)(n-4)/2$. Otherwise, the proof is essentially identical.

Therefore, $\dim_S(G) = \dim(G)$.

4 Acknowledgments

The authors wish to thank the referee for a careful and helpful review of the paper.

References

[1] G. Chartrand, L. Eroh, M. Johnson, and O.R. Oellermann, Resolvability in graphs and the metric dimension of a graph. Preprint.

- F. Harary and R. A. Melter, On the metric dimension of a graph. Ars Combin. 2 (1976) 191-195.
- [3] P. J. Slater, Leaves of trees. Congress. Numer. 14 (1975) 549-559.
- [4] P. J. Slater, Dominating and reference sets in graphs. J. Math. Phys. Sci. 22 (1988) 445-455.

(Received 28/9/98)