A note on the blocking sets in the large Mathieu design $S(5,8,24)$

Xiaomin Bao
Department of Mathematics \& Astronomy University of Manitoba, Winnipeg, MB, Canada R3T 2N2
email: bao@cc.umanitoba.ca

Abstract

We simplify the classification of blocking sets in the Steiner system $S(5,8,24)$ obtained by Beradi and Eugeni. We show that every blocking set in $S(5,8,24)$ is contained in precisely two blocks.

1 Introduction

First of all, we introduce some definitions and terminologies.
Definition 1.1. A Steiner system $S(t, k, v)$ is a pair $(\mathcal{S}, \mathcal{B})$, where \mathcal{S} is a v-set of elements called points, \mathcal{B} is a family of k-sets called blocks, such that any fixed t-set is contained in exactly one element of \mathcal{B}.
Definition 1.2. A set of points of a Steiner system is called a blocking set if it contains no block, but intersects every block.
Definition 1.3. A blocking set C is said to be of index t if C is contained in t blocks. The index of C is denoted by $i(C)$.
Definition 1.4. A blocking set C is said to be irreducible if for any $x \in C$, the set $C-\{x\}$ is not a blocking set. Otherwise, C is said to be reducible .

Let B, B^{\prime} be two blocks in $S(5,8,24)$ with $\left|B \cap B^{\prime}\right|=2$. We define

$$
M:=B \triangle B^{\prime} ; M_{0}:=B \triangle B^{\prime}-\{a\} ; I:=B \cup B^{\prime}-\{u, v\} ; R:=B \cup B^{\prime}-\{z, a\}
$$

where $u \in B-B^{\prime}, v \in B^{\prime}-B, a \in B \triangle B^{\prime}, z \in B \cap B^{\prime}=\{x, y\}$.
In [2] L. Berardi and F. Eugeni have proved the following theorem which gives the complete classification of the blocking sets in $S(5,8,24)$.

Theorem 1.1. Let C be a blocking set in $S(5,8,24)$. Then $11 \leq|C| \leq 13$. Moreover,

1. $|C|=11$ implies that $C=M_{0}$ and $i\left(M_{0}\right)=2$.
2. $|C|=12$ and C irreducible imply that $C=I$ and $i(I)=2$.
3. $|C|=12$ and C reducible imply that $C=M_{0} \cup\{x\}, x \notin M_{0}$. Moreover, if $i(C)=2$, then either $C=M$ or $C=R$.
4. $|C|=13$ implies that C is reducible and C is the complement of M_{0}. Moreover, if $i(C)=2$, then $C=B \cup B^{\prime}-\{a\}$, where B, B^{\prime} are two blocks with $\left|B \cap B^{\prime}\right|=2$ and $a \in B \cap B^{\prime}$.

In this paper, we prove the following theorem, which improves the results in theorem 1.1.

Theorem 1.2. Let C be a blocking set in $S(5,8,24)$. Then $11 \leq|C| \leq 13$ and $i(C)=2$. Moreover,

1. If $|C|=11$, then $C=M_{0}$.
2. If $|C|=12$ and C is irreducible, then $C=I$
3. If $|C|=12$ and C is reducible, then $C=M$ or R
4. If $|C|=13$, then $C=\mathcal{S}-M_{0}=B \cup B^{\prime}-\{z\}$ is reducible, where B, B^{\prime} are two blocks with $\left|B \cap B^{\prime}\right|=2$ and $z \in B \cap B^{\prime}$.

2 Some results

Let $r_{s}(s=0,1, \cdots, t)$ be the number of blocks containing a fixed s-set, then

$$
r_{s}=\frac{\binom{v-s}{t-s}}{\binom{k-s}{t-s}}
$$

Let E be a c-set in $S(t, k, v)$. Denote by x_{i} the number of blocks i-secant to E. Let $T=\left\{m_{1}, m_{2}, \cdots, m_{h}\right\}$ be a set of integers with $0 \leq m_{1}<m_{2}<\cdots<m_{h}$.

A set E is said to be of type ($m_{1}, m_{2}, \cdots, m_{h}$), if $x_{i} \neq 0$ if and only if $i \in T$. We have the following identities:

$$
\begin{equation*}
\sum_{i=s}^{k}\binom{i}{s} x_{i}=r_{s}\binom{c}{s}, s=0,1, \cdots, t \tag{2.1}
\end{equation*}
$$

In the case of $S(5,8,24)$, if E is a blocking set, then (2.1) implies:

$$
\begin{align*}
x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}+x_{7} & =759 \\
x_{2}+2 x_{3}+3 x_{4}+4 x_{5}+5 x_{6}+6 x_{7} & =g_{1} \\
x_{3}+3 x_{4}+6 x_{5}+10 x_{6}+15 x_{7} & =g_{2} \tag{2.2}\\
x_{4}+4 x_{5}+10 x_{6}+20 x_{7} & =g_{3} \\
x_{5}+5 x_{6}+15 x_{7} & =g_{4} \\
x_{6}+6 x_{7} & =g_{5}
\end{align*}
$$

where

$$
\begin{align*}
g_{1} & =253 c-759 \\
2 g_{2} & =77 c(c-1)-2 g_{1} \\
6 g_{3} & =21 c(c-1)(c-2)-6 g_{2} \tag{2.3}\\
24 g_{4} & =5 c(c-1)(c-2)(c-3)-24 g_{3} \\
120 g_{5} & =c(c-1)(c-2)(c-3)(c-4)-120 g_{4}
\end{align*}
$$

The following lemmas are quoted from [1, 2].
Lemma 2.1. [2] Let B, B^{\prime} be two blocks in $S(5,8,24)$. Then

1. The type of B is $(0,2,4,8)$ with

$$
x_{0}=30, x_{2}=448, x_{4}=280, x_{8}=1
$$

2. If $\left|B \cap B^{\prime}\right|=4$, then $B \triangle B^{\prime}$ is a block.
3. If $\left|B \cap B^{\prime}\right|=2$, then $M=B \triangle B^{\prime}$ is a set of type $(2,4,6)$ with

$$
x_{2}=x_{6}=132, x_{4}=495
$$

4. If $\left|B \cap B^{\prime}\right|=0$, then $B \triangle B^{\prime}=B \cup B^{\prime}$ is a set of type $(0,4,6,8)$ with

$$
x_{0}=1, x_{4}=280, x_{6}=448, x_{8}=30
$$

5. Let E be a set. Then $S-E$ is a block if and only if $E=B \cup B^{\prime}, B \cap B^{\prime}=\emptyset$.
6. Let F be a 4-set, $F \cap B=\emptyset$, then there exists a block B^{\prime} such that $F \subseteq B^{\prime}$ and $B \cap B^{\prime}=\emptyset$.

By 1, 3 and 4 of lemma 2.1 we get the following corollaries respectively.
Corollary 2.1. No blocking set can be contained in one block.
Corollary 2.2. The sets M, M_{0} are blocking sets in $S(5,8,24)$.
Corollary 2.3. Let C be a blocking set. If $C \subseteq B \cup B^{\prime}$, then $\left|B \cap B^{\prime}\right| \neq 0$.
Fix a point x in $S(t, k, v)$ and set

$$
\mathcal{B}_{x}=\{B-\{x\} \mid x \in B, B \in \mathcal{B}\}
$$

The pair $\left(\mathcal{S}-\{x\}, \mathcal{B}_{x}\right)$ is a Steiner system $S(t-1, k-1, v-1)$, which is said to be the contraction of $S(t, k, v)$ at x. For $S(4,7,23)$ we have

Lemma 2.2. [1] Let B, B^{\prime} be two blocks in $S(4,7,23)$ with $B \cap B^{\prime}=\{x\}$, then for any $u \in B-B^{\prime}$ and $v \in B^{\prime}-B$, there exists a block $B^{\prime \prime}$ in $S(4,7,23)$ such that $B^{\prime \prime} \cap\left(B \cup B^{\prime}\right)=\{u, v\}$.
Corollary 2.4. Let B, B^{\prime} be two blocks in $S(5,8,24)$ with $B \cap B^{\prime}=\{x, y\}$ and let $u \in B-B^{\prime}, v \in B^{\prime}-B$. Then $\left(B \cup B^{\prime}\right)-\{y, u, v\}$ is not a blocking set.

3 Proof of the theorem 1.2

From now on, C will be used to denote a blocking set in $S(5,8,24)$.
Lemma 3.1, proposition 3.1, proposition 3.2 and proposition 3.3 are proved in [2]; we quote them here for our convenience.

Lemma 3.1. $11 \leq|C| \leq 13$.
Proposition 3.1. If $|C|=11$, then $C=M_{0}$ has no 7 -secant block.
Proposition 3.2. I is an irreducible blocking set.
Proposition 3.3. R is a reducible blocking set.
By (2.2), if $|C|=12$, then

$$
\begin{equation*}
x_{1}=x_{7}, x_{2}=x_{6}=132-6 x_{7}, x_{3}=x_{5}=15 x_{7}, x_{4}=495-20 x_{7} . \tag{3.1}
\end{equation*}
$$

The following proposition plays a crucial role in our proof.
Proposition 3.4. Let $|C|=12$.

1. If C has a 7 -secant block, then $C=R$ or I.
2. If C has no 7 -secant block, then $C=M$.

Proof. Let B be a block 7 -secant to C, B^{\prime} be a block containing the five points in $C-B$, then $\left|B \cap B^{\prime}\right|=2$. Let $B \cap B^{\prime}=\{x, y\}$. Since $|B \cap C|=7,\{x, y\} \cap C \neq \emptyset$. If $x \in C, y \notin C$, then $C=R$. If $x, y \in C$, then $C=I$.

If C has no 7 -secant block, then by $3.1 C$ is of type $(2,4,6)$. Let B be a block 6 -secant to C, let five of the six points in $C-B$ be contained in block B^{\prime}, then B^{\prime} contains another point in C. We claim that this point must be the remaining point in $C-B$. Suppose this point is in B, then by lemma 2.1. $1\left|B \cap B^{\prime}\right|=2$. Let $B \cap B^{\prime}=\{x, y\}, x \in C, y \notin C, u \in B-B^{\prime}, v \in B^{\prime}-B, w \in C-\left(B \cup B^{\prime}\right)$. Since C is of type $(2,4,6)$, the set $C-\{w\}=\left(B \cup B^{\prime}\right)-\{y, u, v\}$ is a blocking set, contradiction. So B, B^{\prime} are blocks 6 -secant to $C, C=B \triangle B^{\prime}=M$.

Proposition 3.5 and proposition 3.7 had been proved in [2], but using proposition 3.4 , we can simplify the proof.

Proposition 3.5. If $|C|=12, C$ is irreducible, then $C=I$.
Proof. Since C is irreducible, $x_{7}=x_{1} \geq 12$. By proposition $3.4 C=I$.
Proposition 3.6. If $|C|=12$ and C is reducible, then $C=M$ or R.
Proof. If C has a 7 -secant block, then $C=R$; if C has no 7 -secant block, then $C=M$.

Proposition 3.7. Let A be one of the 12 -sets I, M and R. Then $\mathcal{S}-A$ is isomorphic to A.

Proof. Let $A=M$. Since M is of type $(2,4,6)$, so is $\mathcal{S}-M$. By proposition 3.4 $\mathcal{S}-M=M$.

Let $A=R=B \cup B^{\prime}-\{z, a\}$, where $\left|B \cap B^{\prime}\right|=2, a \in B \triangle B^{\prime}, z \in B \cap B^{\prime}$. Since R has a 7 -secant block and $R \cup\{a\}$ is a blocking set, $\mathcal{S}-R$ is reducible and also has a 7 -secant block. By proposition 3.6 and proposition 3.4, $\mathcal{S}-R=R$.

Let $A=I$. Suppose $\mathcal{S}-I$ is reducible, then $\mathcal{S}-I=R$, but $\mathcal{S}-(\mathcal{S}-I)=I$, so $I=\mathcal{S}-R=R$, contradiction. Therefore $\mathcal{S}-I$ is irreducible and $\mathcal{S}-I=I$.

Proposition 3.8. If $|C|=13$, then $C=\mathcal{S}-M_{0}=B \cup B^{\prime}-\{z\}$ is reducible, where B, B^{\prime} are blocks with $\left|B \cap B^{\prime}\right|=2$ and $z \in B \cap B^{\prime}$.

Proof. Since $|\mathcal{S}-C|=11$, we have $\mathcal{S}-C=M_{0}$. But M_{0} has no 7 -secant block, so C has no 1 -secant block. This means that C is reducible.

The fact that M_{0} has a 1-secant block means that C has 7 -secant blocks. Let B be a 7 -secant block to C and let five of the six points in $C-B$ be contained in block B^{\prime}.

We claim that the remaining one point $w \in C-B$ is still in B^{\prime}.
Suppose $w \notin B^{\prime}$, we may assume that $B \cap B^{\prime} \neq \emptyset$. (If $B \cap B^{\prime}=\emptyset$, then B^{\prime} contains three points in $\mathcal{S}-(C \cup B)$. Since there are six blocks that contain five points in $C-B$, any two of these only intersect at four points in $C-B$, and there are only ten points in $\mathcal{S}-(C \cup B)$, so at least one of these blocks will intersect B. We can label this block as B^{\prime}.). Then $\left|B \cap B^{\prime}\right|=2$. Let $B \cap B^{\prime}=\{x, y\}$, since B is 7 -secant to $C,\{x, y\} \cap C \neq \emptyset$.

If $x, y \in C$, then $C-\{w\}=I$. But on the other hand, $M_{0} \cup\{w\}$ is reducible, so $\mathcal{S}-I=M_{0} \cup\{w\}=R$, contradiction.

If $x \in C, y \notin C$, let $v \in B^{\prime}-(C \cup B), B=\left\{x, y, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}\right\}$. By lemma 2.2 we know that there is a block B_{i} that contains a_{i}, v, y such that $B_{i} \cap\left(C-\left\{w, a_{i}\right\}\right)=\emptyset, i=1,2,3,4,5,6$. Since C has no 1 -secant block, $w \in B_{i}$, $i=1,2,3,4,5,6$. Let $D_{i}=B_{i}-\left\{v, y, w, a_{i}\right\}$, then $\left|D_{i}\right|=4, D_{i} \subseteq \mathcal{S}-(C \cup\{x, y\})$, $\left|D_{i} \cap D_{j}\right|=1, i \neq j$. Since $|\mathcal{S}-(C \cup\{v, y\})|=9$, we have $D_{1} \cap D_{i} \neq D_{1} \cap D_{j}$, if $i \neq j$. Hence $\left|D_{1}\right|=5$, contradiction.

Now we have proved that $w \in B^{\prime}$. From $C \subseteq\left(B \cup B^{\prime}\right)$ we know that $\left|B \cap B^{\prime}\right|=2$. Let $B \cap B^{\prime}=\{x, y\}$, since $|B \cap C|=7$, this means that $\left|\left(B \cap B^{\prime}\right) \cap C\right|=1$, so $C=B \cup B^{\prime}-\{z\}, z \in B \cap B^{\prime}$.

4 Acknowledgment

I would like to take this opportunity to thank my advisor Professor L. M. Batten who provided me with the copies of [1] and [2], and has helped me to improve this paper.

References

[1] L.Berardi, Blocking sets in the large Mathieu designs, II: the case S(4,7,23), J.of Inf. \& Opti. Sci. 2 (1988), 263-278.
[2] L.Berardi and F.Eugeni, Blocking sets in the large Mathieu designs, III: the case S(5,8,24), Ars.comb. 29 (1990), 33-41.
(Received 23/1/98)

