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This paper seeks to review some ideas and results relating to Hamiltonian graphs. We list 
the well known results which are to be found in most undergraduate graph theory courses 
and then consider some old theorems which are fundamental to planar graphs. By 
restricting our attention to 3-connected cubic planar graphs (a class of graphs of interest to 
Four Colour Theorists), we are able to report on recent results regarding the smallest non
Hamiltonian graphs. We then consider regular graphs generally and what might be said 
about when the number of Hamiltonian cycles is greater than one. Another interesting class 
of graphs are the bipartite graphs. In general these are not Hamiltonian but there is a 
famous conjecture due to Barnette that suggests that 3-connected cubic bipartite planar 
graphs are Hamiltonian. In our final two sections we consider this along with another open 
conjecture due to Barnette. 

1 . Introduction 

Although Hamiltonian graphs were named after Hamilton, this is not because of 
precedence. Kirkman wrote a paper in 1856 [23] in which he considered "a circuit which 
passes through each vertex once and only once." This paper was actually presented to the 
Royal Society in 1855 (see Biggs, Lloyd and Wilson [5]), while Hamilton's first 
communication on the subject was his letter of 1856 on the icosian calculus. 

Whoever originated the idea, many people have now been worrying for well over a century 
about graphs which have a cycle which goes through every vertex once and only once. 
Such graphs we'll call Hamiltonian graphs and such cycles are Hamiltonian cycles. 

We consider two examples, see Figure 1. These are the dodecahedron and the Petersen 
graph, P. In Figure lea) we show a Hamiltonian cycle by labelling the vertices in order 
from 1 to 20. Vertex 20 is joined to vertex 1 to complete the cycle. 

We've used the dodecahedron here because it was on this graph that Hamilton played cycle 
games. In fact he even marketed that game, though, it seems, without a great deal of 
financial success. 

On the other hand, it is well known that the Petersen graph is not Hamiltonian. A proof of 
this can be found by realizing that an even number of the edges 16, 2t, 39, 48 and 57 must 
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be used in a Hamiltonian cycle. This together with the property exemplified in Figure 2 
quickly leads to a contradiction. 

2 

The dodecahedron 
(a) 

5 

Figure 1 

2 

The Petersen Graph 
(b) 

5 

Both of the graphs in Figure 1 are cubic graphs. The advantage of cubic graphs (every 
vertex of degree 3) when looking for a Hamiltonian cycle is that if two edges incident with 
a vertex are in a Hamiltonian cycle, then the other incident edge isn't. But what's more, the 
edge that isn't, forces two more edges to be in the Hamiltonian cycle. We show this in 
Figure 2, where if ul U, uu2 are in the Hamiltonian cycle, then uv isn't. Hence v I V, VV 2 

must be on that cycle. 

U
1 

u, U ~ in a Hamiltonian cycle force VI v, V v
2 

to be in that cycle. 

Figure 2 

Now given that Euler had invented Euler tours in 1736, it's perhaps a surprise that we had 
to wait until 1855 for Hamiltonian cycles. What's more, graphs with Euler tours have a 
simple characterisation - every vertex has even degree. So the other surprise is that 
Hamiltonian graphs do not have a simple characterisation. Somehow one would expect it 
to be possible to take a dual of a graph (by interchanging vertices and edges, say) and then 
apply the Eulerian tours characterisation to the dual hoping it would lead to a Hamiltonian 
characterisation in the original graph. This does not seem to be a workable idea. 
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The importance of Hamiltonian graphs seems to rely partly on the difficulty of 
characterising them. But it also relies on the fact that Hamiltonian graphs are related to the 
travelling salesperson problem. So there are potential practical applications. 

We know that the Hamiltonian problem is hard because it is an example of an NP-complete 
problem. If we could find a good algorithm for finding a Hamiltonian cycle in a graph, 
we'd be able to find good algorithms for other things which are also difficult to solve. 

In general we know very little about Hamiltonian graphs. One of the nicest simple results 
is the following by Bondy and Chvatal [6]. 

Theorem 1. Let G be a simple graph with n vertices and let u, v be non-adjacent 
vertices in G such that 

deg(u) + deg(v) 2: n. 

Let G + uv denote the graph obtainedfrom G by joining u, v by an edge. Then G is 
Hamiltonian if and only if G + uv is Hamiltonian. 

The first part of this result generalizes a theorem of Ore [26], where, when the degree 
condition applies to all pairs of distinct non-adjacent vertices in a graph, the graph is 
Hamiltonian. Theorem 1 also implies a number of well known results. In particular it 
implies Dirac's Theorem [12] which follows. 

Theorem 2. If G is a simple graph with n vertices, n 2: 3, and deg(v) 2: .!..n for 
2 

all v E VG, then G is Hamiltonian. 

One of the concepts to arise out of Bondy and Chvatal's work is that of the closure of a 
graph. Suppose u, v E VG, uv ~ EG, and deg u + deg v ;;::: n. Then join u to v. 
Continue adding edges in this way until no such pair u, v exists. The graph obtained is 
the closure of G, c(G). (It should be noted that the closure of a given graph is unique.) 
The following result follows from Theorem 1. 

Theorem 3. G is Hamiltonian if and only if c(G) is Hamiltonian. 

Corollary. If c(G) = Kn, the complete graph on n vertices, then G is Hamiltonian. 

Clearly c(G) is often going to be Hamiltonian but not complete. It would seem to be of 
interest to try to determine which graphs have incomplete Hamiltonian closures and how 
such graphs are related. This, like most Hamiltonian questions appears to be difficult. 
Some work in a related area where the closure concept is different, but related to that of 
Bondy and Chvatal, can be found in Broersma, [9], and Broersma and Schiermeyer, 
[ 10]. 

A closure concept for claw-free graphs (graphs which contain no induced copy of K 1 3) 
has been introduced by Ryjacek [29]. Here edges are added to connected induced graphs 
on the neighbourhood of vertices of the graph G to give a graph cR (G). Ryjacek proves 
the following result. 

Theorem 4. Let G be a claw-free graph. Then 
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(1) c e (G) is unique; 

(2) there exists a triangle-free graph H such that c f! (G) is the line graph of H; 

(3) the size of the largest cycle in G is the same as that of the largest cycle in 
c e (G). 

As a result of this theorem G is Hamiltonian if and only if cf! (G) is Hamiltonian. 
Theorem 4 also has the following corollary. 

Corollary. Every 7-connected claw-free graph is Hamiltonian. 

2 . Planarity In General 

Why would you want to consider the Hamiltonicity of planar graphs? First of all, there is 
no doubt that planar graphs are an interesting class of graphs in their own right. That is in 
itself enough to justify an investigation into which of them are Hamiltonian. 

But the second good reason is that P. G. Tait [31] conjectured that all cubic planar graphs 
were Hamiltonian. If the conjecture had been true, it would have provided an elegant proof 
of the Four Colour Theorem. The argument runs this way. Every cubic graph has an even 
number of vertices. Hence a Hamiltonian cycle in a cubic graph has an even number of 
edges. Colour those edges alternately in red and white. Every other edge can be coloured 
blue to give a 3-edge colouring of the graph. Then there is a theorem that says that the 
Four Colour Theorem and the 3-edge colourability of cubic planar graphs are equivalent. 
Hence the 3-edge colouring in red, white and blue proves the Four Colour Theorem. 

Unfortunately Tait's Conjecture is false, as we shall see in the next section. Before we get 
to that though, we present two interesting results about Hamiltonian planar graphs. The 
first of these is Grinberg's Theorem (see [16]). This shows that there is a useful 
connection between the "inside" and "outside" faces of a Hamiltonian planar graph. 

Theorem 5. Let G be a graph drawn in the plane with no crossings. Suppose G has 

a Hamiltonian cycle H. Let ai' f3i be the number of faces bounded by i-cycles, 
respectively, inside and outside of H. Then 

where the summation is over all possible values of i. 

This theorem has been used to show that certain planar graphs are non-Hamiltonian. The 
approach here is to set up the equation of the theorem using the values of i known from 
the graph. Then number theoretic considerations show that the equation cannot hold. 

For instance, no planar graph with faces where i = 5, 8 and 9 are Hamiltonian, if there 
is only one 9-face. Assume that such a graph is Hamiltonian. 

114 



Then 

Hence 

But if there is only one 9-face, then ~9 - u9 = ± 1. 

Hence 

Since the left hand side is non-zero and divisible by 3, so is the right hand side. This is 
clearly a contradiction. Hence no such planar graph (and such graphs do exist) is 
Hamiltonian. 

The other interesting result of this section, that every 4-connected planar graph is 
Hamiltonian, is by Tutte [37]. Thomassen [33] has given a nice proof of this theorem. 
At the same time he extended Tutte's result to settle a conjecture by Plummer [28] which 
suggested that every edge might be in a Hamiltonian cycle. 

Theorem 6. Let G be a 4-connected planar graph. Then G is Hamiltonian. Further, 
there is a Hamiltonian cycle through every edge of G. 

(In fact, there is an error in [33]. The proof is completed successfully in Chiba and 
Nishezeki [11].) 

3 . 3-Connected Cubic Planar Graphs 

Tait's Conjecture that every cubic planar graph is Hamiltonian was clearly false. We show 
two counterexamples in Figure 3. 

a I-connected cubic planar non-Hamiltonian graph 
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a 2-connected cubic planar non-Hamiltonian graph 

Figure 3 

On the basis of the graphs in Figure 3, a Hamiltonian cubic planar graph would need to be 
3-connected. Despite that hiccup (and Tait's original conjecture is so strangely worded that 
he may have required 3-connectivity), it is perhaps a little surprising that a counterexample 
took so long to appear. It is hard to say exactly why this was. Possibly the emphasis was 
on the "map" side of the Four Colour Theorem rather than on its "cubic graph" side. 
Whatever the reason, it was not until 1946 that Tutte [36] produced his famous non
Hamiltonian 3-connected cubic planar graph (see Figure 4). 

Tutte's non-Hamiltonian 3-connected cubic planar graph 

Figure 4 

It must be said, of course, that Tutte's graph has a relatively large number of vertices (46) 
and so would not have been easy to find. Having established that there was a non
Hamiltonian cubic 3-connected planar graph, though, it then remained to find the smallest 
such graph. 
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Lederberg, Barnette and Bosak, [8], separately contributed a total of six non-Hamiltonian 
3-connected cubic planar graphs. They are shown in Figure 5. 

Figure 5 

The configuration at the bottom of Figure 5 is to be inserted in the pentagonal prisms at the 
positions marked with a triangle, so that the edges 1, 2 and 3 of the configuration 
correspond with the edges 1, 2 and 3 of the prisms. Now the configuration is such that 
there is no path from 1 to 3 which passes through all the vertices of the configuration. 
(There are, however, paths from 1 to 2 and from 2 to 3 which do pass through all the 
vertices of the configuration.) This is the key to showing that none of the graphs is 
Hamiltonian. 

Consider the example below (see Figure 6). If the configuration is placed at A and B in 
the first graph of Figure 5, then at A we have to use the sequence of edges 1, 2 or 2, 3, 
because the sequence 1, 3 will not pick up all of the vertices of A. If the edges 1, 2 are 
used at A, then 3 is not used. Hence edges c and d have to be used. But d is a 3 
edge at B. To use all the vertices of B we have to exit on the 2 edge. This then forces 
edges e and f to be in the assumed Hamiltonian cycle (otherwise we have the cycle 
c,d,2,j,c inside the Hamiltonian cycle). Since the 1 edge at B is not in this Hamiltonian 
cycle, the edges g and h are. But then the cycle has closed up and the vertex x has not 
been included. 
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A B 

h 

Figure 6 

A similar argument can be used if we assume that the sequence of edges 2, 3 is used at A 
instead of 1, 2. Further, analogous arguments apply to the other graphs in Figure 5. 

The interesting fact about the configuration at the bottom of Figure 5 is that it is precisely 
the configuration that Tutte exploited, and in the same way, in his 1946 counterexample to 
Tait's conjecture. 

In [20], Holton and McKay were able to prove that the six graphs of Figure 5 were the 
only non-Hamiltonian cubic 3-connected planar graphs on 38 vertices with cyclic 
connectivity 3. What's more the six graphs had the fewest vertices of all non-Hamiltonian 
cubic 3-connected graphs. There was the possibility though, that there were other non
Hamiltonian graphs on 38 vertices. 

Theorem 7. Let G be a 3-connected cubic planar graph on 36 or fewer vertices. 
Then G is Hamiltonian. 

If I VGI = 38, then G is Hamiltonian unless G is one of the graphs of Figure 5, or G is 
cyclically 4-connected. (A cyclically 4-connected graph requires the removal of at least four 
edges before it breaks into two components each of which contains a cycle.) 

The proof technique followed a method developed by Okamura [25]. A variety of 
decomposition techniques, as well as some computation, show that the graph G of the 
Theorem has no 3-cuts or essential 4-cuts. Then any remaining possibilities for a non
Hamiltonian G with IVGI :::; 36, could be reduced to a smaller non-Hamiltonian 3-
connected cubic planar graph by applying one of Okamura's 15 reductions. (A 4-cut is 
essential if each of the two components left on removal of the 4-cut contains more than 4 
vertices.) 
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A number of years were spent unsuccessfully trying to improve this result by hand. In the 
process a very long argument was developed which could probably have been tightened. 
The length of the argument and the lack of any ancillary benefits finally led to that approach 
being abandoned. It was eventually decided to bring the strength of the computer to bear 
again. As a result, the open case (of cyclically 4-connected graphs on 38 vertices) of 
Theorem 6 was settled and the theorem extended. The authors involved in the effort were 
Aldred, Sheng Bau, Holton and McKay [1]. 

Theorem 8. Let G be a cyclically 4-connected cubic planar graph. 

If I VGI :::; 40, then G is Hamiltonian. 

If IVGI 42, then G is one of the non-Hamiltonian graphs of Figure 7. 

The three non-Hamiltonian cyclically 4-connected cubic planar graphs on 42 vertices 

Figure 7 

In [15] Faulkner and Younger proved that the smallest cyclically 5-connected cubic planar 
graph which is non-Hamiltonian has 44 vertices. The work in [1] established that the 
graph of Figure 8, announced by Faulkner and Younger in [14], is unique. Aldred et al 
continued their search up to 52 vertices. 

Theorem 9. Let G be a cyclically 4-connected cubic planar graph. If IVGI :::; 52, 
then G is one of the graphs in Figure 8. 
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The Faulkner-Younger graph - the 44-vertex vertex graph 

The 46-vertex non-Hamiltonian graph 

The 50-vertex non-Hamiltonian graphs 
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The 52-vertex non-Hamiltonian graphs 

Smallest non-Hamiltonian cyclically 5-connected cubic planar graphs 

Figure 8 

As a consequence of the results of Aldred et al plus further computation, it has been 
possible to prove the following theorem (see [2]). This extends results in [19] and [20]. 

Theorem 10. Let G be a 3 -connected cubic planar graph. Let A c:;;;;; VG. Then Jor 
IAI S 23, there exists a cycle C in G such that VA c:;;;;; Vc. 

So any 23 vertices lie on a cycle in a 3-connected cubic planar graph. This result is best 
possible as there exist 24 vertices in the graphs of Figure 5, which do not lie in a cycle. 

The method of proof here is inductive and relies on reductions. These, however, are fairly 
straightforward (see [1] and [21]). One of the interesting things about this result (and 
others in this area), is that the most difficult part of the induction is the initial step. Once 
the property has been assumed for k vertices, it is relatively easy to show that it holds for 
k + 2 vertices. (Recall that cubic graphs must contain an even number of vertices.) The 
difficulty is showing that the result is true for the base cases. This is where the computer 
was vital in generating and checking the thousands of graphs involved. 

(It should be noted here that this base case work involved more than simply generating all 
the graphs and checking them for the desired property. A great deal of mathematical effort 
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was first required to reduce the number of graphs which had to be tested and so bring the 
computation down to a manageable size.) 

4. How Many Hamiltonian Cycles? 

In this section we shall assume that all our graphs are Hamiltonian (though not necessarily 
planar, 3-connected or cubic). 

The first question that comes to mind in this context is whether there exist graphs other than 
cycles, which have a unique Hamiltonian cycle. It's very readily seen that adding just a 
few edges to a cycle can produce graphs with only one Hamiltonian cycle. 

In [30], Sheehan looked at the maximum edge set that a graph on n vertices can have and 
still be uniquely Hamiltonian. 

Theorem 11. Let G be a graph on n vertices with a single Hamiltonian cycle. Then 

IEGI ~ [n;] + 1 . 

Sheehan also claimed there that there is a unique extremal graph (we show such a graph on 
12 vertices in Figure 9). However, it is possible to find other extremal graphs by 
rearranging the adjacencies slightly. For instance, let V3 be adjacent to vI' v2' v4 ' vS' v6 ' 

v8' v9 ' VIO' VII and let Vs be adjacent to v3' v4 ' v6 ' v7' v8' v9 ' VIO' VII' 

Figure 9 
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All of these graphs have vertices of degree 2 though, so it seemed reasonable to conjecture 
that all Hamiltonian graphs with a single cycle have vertices of degree 2. That such a 
conjecture is false can be seen by an example of Entringer and Swart [13]. They produced 
the graph of Figure 10 which has minimum degree 3. In a sense it is almost regular as all 
but two of its vertices have degree 3. 

A graph with a unique Hamiltonian cycle, all of whose vertices except 
two (of degree 4) are of degree 3 

Figure 10 

It is worth noting that the graphs of Sheehan, and of Entringer and Swart are 2-connected 
but not 3-connected. This raises the question as to how connected a graph with a unique 
Hamiltonian cycle can be. Aldred and Thomassen [3] were able to produce a 3-connected 
graph which has only one Hamiltonian cycle (see Figure 11). Their construction relies on 
the fact that the graph on which that of Figure 10 is based (see E of Figure II(a)) has a 
unique Hamiltonian cycle through the edges a,c and a unique Hamiltonian cycle through 
the edges b,c but no Hamiltonian cycle through abo They therefore take two copies of E 
and label the edges a,b,c on one graph and label the corresponding edges a',b',c', on the 
other graph. Let v and v' be the vertices incident with a,b,c and a',b',c', respectively. 
Remove v and v' and join the "hanging" edges a,b,c to c',a',b', respectively. To 
cover all the vertices in the first copy of E we have to use the edges a,c or b,c. Since the 
latter edges are joined to a' ,b' in the second copy of E, the vertices of the second copy 
cannot be completely covered. However, the route through a,c in one copy of E to b I ,c' 
in the second copy provides the unique Hamiltonian cycle. 
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a x= a' 
b b' 
c c' 

(b) 

(a) 

Figure 11 

This, of course, raises the question as to whether or not there is a 4-connected uniquely 
Hamiltonian graph. 

So if G contains a Hamiltonian cycle, under what circumstances does it contain another? 
How many Hamiltonian cycles can it contain? 

A classical result of Cedric Smith (announced in [36]) shows that every Hamiltonian cubic 
graph contains at least three Hamiltonian cycles. 

Theorem 12. 
cycles. 

Every edge in a cubic graph lies on an even number of Hamiltonian 

From doodling on a diagram similar to Figure 12, it is easy to prove the Corollary below. 
The "worst" case of the two cycles through e still allows another cycle through f. 

e 

Figure 12 

Corollary. Every Hamiltonian cubic graph contains at least three Hamiltonian cycles. 
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In 1975, Sheehan [30] conjectured that every Hamiltonian 4-regular graph has at least one 
more Hamiltonian cycle. This conjecture was followed three years later by the follOWing 
result of Thomason [32] which generalised that of Smith [37]. 

Theorem 13. Let G be a graph, all of whose vertices have odd degree. Then every 
edge is contained in an even number of Hamiltonian cycles. 

Thomason's proof is rather elegant. We illustrate the method first on cubic graphs. 
Suppose that G is a Hamiltonian cubic graph. Let H (xl' x2' ... , xn) be a 
Hamiltonian cycle in G. We now form a new graph tJ whose vertices are Hamiltonian 
paths starting with the edge x I X2. Before describing adjacencies in tf, consider the 
Hamiltonian path HI = xl' x2' ... , Xu shown in Figure 13(a). 

&-------'-----.. -- ........... -------- .... ---+.--0.--. .. 
X s' 

Figure 13 

Now in G we know that xn is adjacent to Xl' Since G is cubic, Xu is adjacent to 
another vertex, xr' say. Consider H 2, the Hamiltonian path xl' x 2 ' .•• , xr' x n' xn_l' ... , 
Xr+I' We show this in Figure 13(b). 

Now in G we know that xr+1 is adjacent to xr and Xr+2' Since G is cubic, xr+1 is also 
adjacent to another vertex xS' Consider H3, the Hamiltonian path xI' x2' ... , xS' xr+I' 
xr+2' ... , xs" where we do not define s' precisely. We show H3 in Figure 13(c). 

The process described above will continue until we have no new edges of the form xnxr' 
Xr+lxs to add to the Hamiltonian paths. To define adjacency in tJ, we say that HiHj is an 
edge of tJ if we can go from one path Hi to the other Hj by removing one edge (such as 
xr xr+1' xsxt ) and adding another (such as xnxr' xr+lxs). 

The important thing to notice now is that deg HI = 1 and deg Hi = 2, unless Hi is at 
the end of the chain started in Figure 13, when deg Hi = 1. Since tJ is a graph it must 
have an even number of vertices of degree 1. Suppose two of these are HI and Hm' 
What stops Hm from having a neighbour in tJ other than Hm_l? It must be that there is an 
edge from the end vertex (not XI) to Xl' Hence Hm plus this edge is a Hamiltonian cycle. 
So, every component of tf is either a cycle, corresponding to no Hamiltonian cycles in G, 
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or a path, corresponding to two Hamiltonian cycles through x I' x2 in G. Smith's result 
therefore follows for cubic graphs. 

If G is now regular of degree r where r is odd, then deg H, = r - 2. This is because 
xn is adjacent to x" xn_, and r - 2 other vertices. It then follows that the vertices of tJ all 
have degree r - 2 or r - 1. But there have to be an even number of vertices of degree r-
2. All of these correspond to Hamiltonian cycles through x,x2 and the general result 
follows. 

Note that the odd parity of r is essential for Thomassen's argument to succeed. There is 
some feeling though that the result should be true for even r too. Thomassen [33] has 
been able to prove that a second Hamiltonian graph exists if the degree of regularity is 
sufficiently large. This is, of course, not as strong as Thomason's result which tells us that 
two Hamiltonian cycles exist through every edge. 

Thomassen's [34] result follows. 

Theorem 14. Let G be a regular Hamiltonian graph of degree r. If r :? 300, then 
G contains a second Hamiltonian cycle. 

It is almost certain that 300 can be reduced considerably (at least to 100) using arguments 
similar to those used in Thomassen's proof. 

If Sheehan's conjecture (that every Hamiltonian 4-regular graph has at least one more 
Hamiltonian cycle) is true, then every Hamiltonian regular graph (except the cycle) has at 
least two Hamiltonian cycles. This follows by noting that we only have to prove the result 
for graphs of even degree because Theorem 12 gives us the odd degree case. So suppose 
that G is regular of even degree at least six. Then the graph obtained from G by 
removing the edges of a Hamiltonian cycle H is regular of even degree. A longstanding 
result of Petersen [27], says that even regular graphs have a spanning graph, S, which is 
the union of cycles. Now S together with H form a 4-regular (connected) graph. By 
Sheehan's conjecture this graph has at least two Hamiltonian cycles. Hence so does G. 

The above discussion suggests that it is is not possible to find regular graphs which have 
only one Hamiltonian cycle. Certainly if they exist they will have even degrees less than 
300. 

This then raises the question as to how many Hamiltonian cycles a Hamiltonian regular 
graph can have. Are there cubic graphs which have precisely three Hamiltonian cycles, for 
instance? This question was asked by Cantoni (see Tutte [40]). 

The graph in Figure 14 has precisely three Hamiltonian cycles. Of course, this graph is 
only small. However, adding triangles at each vertex doesn't increase the number of 
Hamiltonian cycles. Hence there exist cubic graphs with an arbitrary number of vertices 
which have only three Hamiltonian cycles. But do such graphs exist which are triangle 
free? 
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A cubic graph with precisely three Hamiltonian cycles 

Figure 14 

Another approach to uniquely Hamiltonian graphs might be to consider the size of the 
vertex of minimum degree in the graph. A recent result of Bondy and Jackson [7] shows 
that if the minimum degree of a Hamiltonian graph is sufficiently large, then it cannot be 
uniquely Hamiltonian. 

Theorem 15. Let G be a Hamiltonian graph of order n with minimum degree at least 
c log2 n, where c> (2-log2 3/1

• Then G has at least two Hamiltonian cycles. 

(Note that (2-log2 3rl
::::. 2.41.) 

5. Bipartite Graphs 

Bipartite graphs are of considerable interest in their own right. Hence it is worth 
considering them in the context of Hamiltonicity. Clearly, the complete bipartite graphs 
Km,n with m =1= n are not Hamiltonian. This also means that considering bipartite graphs 
with high connectivity is not going to produce anything in the Hamiltonian area. In order 
to achieve HamiItonicity, the parts of the bipartite graph have to be equal, so this suggests 
that we first consider regular graphs. 

Tutte conjectured in [39], that every 3-connected cubic bipartite graph is Hamiltonian. The 
first counterexample was found by Horton. It contained 96 vertices. The smallest 
currently known counterexamples appear to be on 50 vertices. Kel'mans appears to have 
been the first to produce such graphs, at least one of which is a member of an infinite 
series. 

It would seem that all 3-connected cubic bipartite graphs are, however, Hamiltonian. This 
result is again due to Kel'mans. 

A more detai led history of this problem can be found in Gropp [17]. 

A conjecture which has stood the test of time and which appears to be very difficult to 
prove was proposed by Barnette (problem 5 in [4]). Barnette suggested that every 3-
connected cubic bipartite planar graph was Hamiltonian. Very little progress has been 
made on this problem. One of the few results towards the conjecture can be found in 
Holton, Manvel and McKay [22]. 
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Theorem 16. Let G be a 3-connected cubic bipartite planar graph. If IVGI ~ 64, 
then G is Hamiltonian. 

The proof of this result followed the lines of Theorem 8. Once again certain reductions 
were employed and then computer calculations completed the argument. 

Taking up the theme of the last section regarding the number of Hamiltonian cycles in a 
Hamiltonian graph, Thomassen [33] has provided a condition for a bipartite Hamiltonian 
graph to have a second Hamiltonian cycle. 

Theorem 17. Let G be a Hamiltonian graph with bipartition A, B and let H be a 
Hamiltonian cycle in G. If every vertex of B has degree at least 3, then G has a 
Hamiltonian cycle other than H. 

This raises the question of whether a bipartite graph can be uniquely Hamiltonian. If there 
is such a graph, the last theorem implies that it has at least two vertices of degree 2. 

6. The Future 

In this final section we discuss work in progress and some open questions. 

Another conjecture of Barnette [24], also appears to be quite important. It is also proving 
very difficult to settle one way or the other. Let G be a 3-connected cubic planar graph 
with maximum face size at most 6. The conjecture suggests that G is Hamiltonian. A 
particularly interesting subset of the class of graphs to which G belongs is the fullerenes. 
These graphs are of particular interest to chemists as they provide the potential molecular 
structure of carbon isomorphs. A fullerene is a 3-connected cubic graph with 12 faces of 
size 5 and all the remaining faces of size 6. These graphs were named after Buckminster 
Fuller, the architect whose geodesic domes look like 3-dimensional representations of these 
graphs. 

It is of particular interest to chemists to be able to construct fullerenes and to prove that they 
are Hamiltonian. Aldred et al [2] have shown that fullerenes on up to 176 vertices are 
Hamiltonian. Their result is actually stronger than this. 

Theorem 18. Let G be a 3-connected cubic planar graph with maximum face size at 
most 6. If I VGI :5 176, then G is Hamiltonian. 

Hence if Barnette's conjecture is false a counterexample may be hard to find by a blind 
search. 

The graphs of Figures 5, 7 and 8, show that as soon as there are two or more faces larger 
than 6, it is possible to have no Hamiltonian cycle. What if we allow one large face (larger 
than 6)? 

For a start we need 3-connectivity. Figure 17 shows a 2-connected cubic graph with one 
large face which is not Hamiltonian. 
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Figure 17 

Progress to date on this question is restricted to special classes of graphs. For instance 
Franzblau [15], has considered what she calls layered cubic planar graphs. These are 
graphs which can be pictured as a sequence of concentric cycles with each consecutive pair 
of cycles being joined by a matching. The number of edges in the matchings increases 
along the sequence of cycles. These graphs do not give rise to a counterexample to 
Barnette's conjecture. 

Theorem 19. Every layered cubic planar graph is Hamiltonian. 

In [15], Franzblau also considers the non-uniform layered cubic planar graph situation, 
where the number of edges in the matching between consecutive cycles is unrestricted. 
This proves difficult and only partial results are obtained. 

The two conjectures of Barnette appear to be quite difficult and should provide us with an 
interesting challenge well into the new century. 
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