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Abstract: 

Let K be a set of positive integers. A pairwise balanced 

design (PBD) of index unity B(K,l;v) is a pair (X/~) where X is a 

v-set (of points) and B is a collection of subsets of X (called 

blocks) with sizes from K such that every pair of distinct points 

of X is contained in exactly one block of~. A necessary condition 

for the existence of a PBD B({4,8},I;v) is v - 0 or l(mod 4). It 

is shown that this necessary condition is also sufficient for all 

v ~ 4 with 11 exceptions and 25 possible exceptions of which 177 is 

the largest. We briefly mention some applications to other types 

of combinatorial structures. 

1. Introduction 

Let K be a set of positive integers. A pairwise balanced 

design (PBD) of index unity B(K,l;v) is a pair (X,S) where X is a 

v-set (of pOints) and ~ is a collection of subsets of X (called 

blocks) with sizes from K such that every pair of distinct points 

of X is contained in exactly one block of S. The number IXI = v 

is called the order of the PBD. 

We shall denote by B(K) the set of all integers v for which 

there exists a PBD B(K,l;v). For convenience, we define 

B(k1,k2, ... ,kr) to be the set of all integers v such that there is 

a PBD B({k1,k:2, .. ·.,kr},1;v). A set K is said to be PBD-closed if 

B(K) := K. 
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Pairwise balanced designs are of fundamental importance in 

combinatorial theory and have been used extensively in the 

construction of other types of combinatorial designs. Quite often, 

one is generally interested in constructing PBDs B(K,l;v) for some 

specified set K. In this connection, R. M. Wilson's remarkable 

theory concerning the structure of PBD-closed sets (see [21-23) 

often provides us with some form of "asymptotic" results as 

follows: 

Theorem 1.1 (Wilson's Theorem) Let K be a set of positive 

integers and define the two parameters: 

n(K) 

~(K) 

g·c·d.{k-1: k E K}, and 

g.c·d·{k(k-1): k E K}. 

Then there exists a constant C (depending on K) such that, for all 

integers v>C, v E B(K) if and only if v-l = O(mod aCK) and v(v-1) 

= O(mod ~(K». 

We wish to remark that, for a given set K, Wilson's theory 

does not really provide any concrete upper bound on the constant C 

in Theorem 1.1. In this paper we investigate the spectrum of 

B(4,8). Wilson's Theorem tells us that there is a constant C such 

that, for all v > C, v E B(4,8) if and only if v = 0 or 1 (mod 4). 

We establish a concrete upper bound on C, namely, we are able to 

show that v E B(4,8) for all v ~ 4 with 11 exceptions and 25 

possible exceptions of which 177 is the largest. The spectrum of 

B(4,8) is not only of interest in its own right, but it also 

provides useful applications to the construction of other types of 

combinatorial structures such as a variety of short conjugate

orthogonal quasigroup identities, orthogonal arrays with 

interesting conjugacy properties, edge-coloured designs, and 

Mendelsohn designs. The reader is referred to [1,2,9,13,14,16J for 

more details. 
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2. Preliminaries 

In this section we shall define some terminology and adapt the 

notations of earlier papers (see, for example, [3]). For more 

details on PBDs and related designs, the reader is referred to 

[4,10,20]. 

Definition 2.1 Let K and M be sets of positive integers. A group 

divisible design (GDD) GD(K,l,M;v) is a triple (X,G,B) where 

(i) X is a v-set (of points), 

(ii) G is a collection of non-empty subsets of X (called 

groups) with sizes in M and which partition X, 

(iii) B is a collection of subsets of X (called blocks), each 

with size at east two in K, 

(iv) no block meets a group in more than one point, and 

(v) each pairset {x,y} of points not contained in a group is 

contained in exactly one block. 

The group-type (or ~) of a GDD (X, G,S) is the multiset 

{IGI} : G E G } and we usually use the "exponential" notation for 

its description: a group-type li233 k 
"0 denotes i occurrencies of 

groups of size l,j occurrences of groups of size 2, and so on. 

Definition 2.2 A transversal design (TO) T(k,l;m) is a GDD with km 

points, k groups of size m and m2 blocks of size K, where each 

block meets every group in precisely one pOint, that is, each block 

is a transversal of the collection of groups. 

Definition 2.3 Let (X,B) be a PBD B(K,l;v). A parallel class in 

(X,~) is a collection of disjoint blocks of S, the union of which 

equals X. (X,S) is called resolvable if the blocKs of S can be 

partitioned into parallel classes. A GDD GD(K,l,M;v) is resolvable 

if its associated PBD B(K U M,l;v) is resolvable with M as a 

parallel class of the resolution. 

It is fairly well-known that the existence of a resolvable TD 
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T(k,l;m) (briefly RT(k,l;m» is equivalent to the existence of a TD 

T(k+l,l;m) or equivalently k-l mutually orthogonal Latin squares 

(MOLS) of order m. In particular, the following two results can be 

found in [15]. 

Theorem 2.4 For every prime power q, there exists a T(q+l,l;q). 

Theorem 2.5 be the factorization of m 

into powers of distinct primes P1, then a T(k,l;m) exists where 

k ~ I + min {p~1 }. 

The following result will be quite useful (see [7]). 

Theorem 2.6 A T(8,I;m) exists for all integers m > 76. 

We need to establish some more notations. We shall simply 

write B(k,l;v) for B({k},l;v) and similarly GD(k,l,m;v) for 

GD({k},l,{m};v). We observe that a PBD B(k,l;v) is essentially a 

balanced incomplete block design (BlBD) with parameters v, k and 

A = 1. If k ~ K, then B(K U {k-},l;v) denotes a PBD 

B(K U {k·},l;v) which contains a unique block of size k and if 

k E K, then a B(K U {k~},l;v) is a PBD B(K,l;v) containing at least 

one block of size k. We shall sometimes refer to a GDD (X,G,~) as 

a K-GDD if IBI E K for every block B E B. 

For some of our recursive constructions of PBDs and GDDs, we 

shall make use of Wilson's "Fundamental Construction" (see [20]). 

We define a weighting of a GDD (X,G,~) to be any mapping 

w: X~ z· u {OJ. We present a brief description of Wilson's 

construction relating to GDDs below. 

Construction 2.7 (Fundamental Construction) Suppose that (X,G,~) 

is a "master" GDD and let w: X ~ z· U {OJ be a weighting of the 

GDD. For every x E X, let Sx be w(x) "copies" of x. Suppose that 

for each block B E~, a GDD (Ux E B SX I {Sx: x E B}, As) is given. 

Let X~ = Ux E X Sx, G* = {Ux E G Sx:G E G}, and S· = UB E B~. 
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3. Useful Known Results 

In most of what follows, we shall make use of some well-known 

results which we state below. The interested reader may wish to 

consult the references cited for more details. 

Theorem 3.1 (see [10]). A B(4,I;v) exists if and only if v-I or 

4 (mod 12). 

Theorem 3.2 (see [11]). A resolvable B(4,1;v) exists if and only 

if v = 4(mod 12) 

Theorem 3.3 (see [6]), A B({4,7~}/l;v) exists if and only if 

v = 7 or 10(mod 12), v ¥ 10, 19. 

Theorem 3.4 (see [8]). If v = 2(mod 6) and v ~ 14, then there 

exists a {4}-GDD of group-type 2v/2. 

Theorem 3.5 (see [5]). Suppose q is a prime power and 0 < t < q2 

- q + 1. Then t(q2 + q + 1) E B(t, q + t). 

Theorem 3.6 (see [18]). For any positive integer n, there is a 

resolvable BIBD with parameters (22n-1_2n-1, 22n -1, 2n+1, 2n-1,1). 

4. Basic Lemmas 

The following lemma (see [3, Lemma 2.14]) employs the 

technique of adding a set of fixed ("infinite") points to a GDD 

(see also [17] for other generalizations). This lemma will be used 

in conjunction with Construction 2.7 in some of our constructions. 

Lemma 4.1 Let K be a set of positive integers and s ~ O. Suppose 

there exists a K-GDD of group-type T = (m1,m2, ... ,ron). 

(a) If a PBD B(K U {s*}/l;m~+s) exists for l~i~n, then, for 

each i, v + s E B(K U {(m~+s)~}) where v = E1s~sn m~. 

(b) If a PBD B(K u {s·},l;m~+s) exists for 1 ~ i ~ n-l, then 

v+s E B(K U {(ffin+s)*}) where v = L1s1sn m1. 

In order to establish our main lemmas we shall need some 

"small" input designs. 
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Lemma 4.2 There exist {4}-GDDs of the following group-types: 

(a) 38 , (b) 38 6 1 , (c) 39 , d) 39 6 1 , (e) 44, (f) 47, 

(g) 4 6 1'-, (h) 7 4 • 

Proof: For group-types (a) and (c), we take a B(4,1;v) where 

v E {25, 28} and delete one point from a block For group-types 

(b) and (d), we take a B({4,7*},l;v) where v E {3l,34} and delete 

one point from the block of size 7. For group-types (e) and (f) we 

take a parallel class of blocks as groups in a resolvable B(4, ;v) 

where v E {16, 28}. For group-type (g), we make use of the 

existence of a l'2solvable {4}-GDD of type 38 (see, for example, 

[12]) and adjoin one infinite point to the groups. We then take a 

parallel class of blocks and the infinite point as groups of the 

resulting design. For group-type (h), we have a T(4,1;7) from 

Theorem 2.5. This completes the proof. 

Lemma 4.3 There exist {4,8}-GDDs of the following group-types: 

(a 3 7 71, (b) 3 8 7 1 , (c) 4 8 , (d) 4 7 1'-. 

Proof: For group-type (a), we start with a T(4,1;7) and adjoin an 

infinite point, say =, to the groups. We then delete from the 

resulting design a point x ¢ m to form a {4,8}-GDD of type 3 7 7 1
• 

For group-type (b), we delete one point from a T(4,1;8). For 

group-type (c), we take a parallel class of blocks as groups in an 

RT(4,1;8). For group-type (d), we adjoin an infinite point to the 

groups of an RT(4,1;7) and then use a parallel class of blocks and 

the infinite point as groups in the resulting design. This 

completes the proof. 

We are now able to establ ish t.he following important lemmas, 

using input designs from Lemmas 4.2 and 4.3. 

Lemma 4.4 If v = 2 (mod 6) and v ~ 14, then there exists a {4}-GDD 

of group-type 8 v / 2 and 4v E B(4,8). 

Proof: If v = 2(mod 6) and v ~ 14, then Theorem 3.4 guarantees the 
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existence of a {4}-GDD of group-type 2~/2. We give each point of 

this GDD weight 4. The result follows directly. 

Lemma 4.5 Suppose there is a T(8,1;m) and 0 x $ m. Then there 

exsits a {4,8}-GDD of group-type (4m)7 (4X)1. Moreover, the 

following hold: 

(a) If {4m,4x} £ B(4,8), then 28m + 4x E B(4,8). 

(b) If {4m + 1, 4x + I} E B(4,8), then 28m + 4x + 1 E B(4,8). 

Proof: In all groups but one of a T(8,1;m), we give the points 

weight 4. In the last group, we give x points weight 4 and the 

remaining points weight O. We require {4,8}-GDDs of types 47 and 

4 8 , which come from Lemmas 4.2 and 4.3, and thus obtain a {4,8}-GDD 

of type (4m)7(4x)1. The result (a) follows directly, and (b) 

follows by adjoining an infinite point to the groups of our 

resulting GDD. 

Lemma 4.6 Suppose there is a T(8,1;m) and 0 ~ x,y,z $ mt where x + 

y = m. Then there is a {4,8}-GDD of group-type (4m)6(4x+y)1(4z)1. 

Moreover, the following hold: 

(a) If {4m, 4x + y, 4z} £ B(4,8), then 24m + 4x + y + 4z E 

B(4,8). 

(b) If {4m +1, 4x + y +1, 4z + I} £ B(4,8), then 24m + 4x + y 

+ 4z +1 E B(4,8). 

Proof: In all groups but two of a T(8,1;m), give the points weight 

4. In the second last group, give x paints weight 4 and y points 

weight I such that x+y = m. In the last group, give z points 

weight 4 and give the remaining points weight O. The resulting 

design is a {4,8}-GDD of group-type (4m)6(4x+y)1(4z)1, using {4,8}

GDDs of types 4611,47,4711,48 which come from Lemmas 4.2 and 4.3. 

The'result (a) follows directly and (b) is obtained by adjoining an 

infinite point to the groups of our resulting GDD. 

Lemma 4.7 Suppose there is a T(9,I;m) and 0 $ x,y,z $ m, where 

x + y + Z $ m. Then there is a {4,8}-GDD of group-type 
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Moreover the following hold: 

(a) If {3m, 3x + 6y + 7z} ~ B(4,8), then 24m + 3x + 6y + 7z E 

B(4,8). 

(b) If {3m + 1,3x + 6y + 7z +l} ~ B(4,8), then 24m + 3x + 6y 

+ 7z + 1 E B(4,8). 

Proof: In all groups but one of a T(9,1;m), give the points weight 

3. In the last group, give x paints weight 3, y points weight 6, 

and z points weight 7, and give the remaining points weight O. The 

resulting design is a {4,8}-GDD of type (3m)B(3x + 6y + 7Z)1. We 

require {4,8}-GDDs of types 38 , 3 9 , 38 61 , 38 71 , which come from 

Lemmas 4.2 and 4.3 The results Ca) and (b) follow easily. 

Lemma 4.8 Suppose there is a T(9,l;m) and 0 s x, y, z S m, where 

x + y m. Then there is a {4,8}-GDD of group-type 

(3m)7(3x + 7y)1(3z)1. 

(a) If {3m,3x + 7y,3z} ~ B(4,8), then 21m + 3x + 7y + 3z E 

B(4,8). 

(b) If {3m+l, 3x+7y+l, 3z+1} ~ B(4,8), then 21m+3x+7y+3z+1 E 

B(4,8). 

Proof: In all groups but two of a T(9,l;m), give the points weight 

3. In the second last group, give x paints weight 3 and y points 

weight 7 such that x + y = m. In the last group, give z points 

weight 3 and give the remaining pOints weight O. We require {4,8}

GDDs of types 3 771, 38 , 3 8 7 1 , 3 9 , which come from Lemmas 4.2 and 

4.3, and thus obtain the {4,8}-GDD of type (3m)7(3x+7y)1(3z)1. The 

results (a) and (b) follow easily. 

Lemma 4.9 Suppose there is a T(lO,l;m) and 0 s x S m. Then there 

exists a {4}-GDD of group-type (3m)9(6x)1. ~oreover, the following 

hold: 

(a) If {3m, 6x} ~ B(4,8), then 27m + 6x E B(4,8). 

(b) If {3m + I, 6x + I} ~ B(4,8), then 27m + 6x + 1 E B(4,8). 

Proof: In all groups but one of a T(lO,l;m), give the pOints 
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weight 3. In the last group, give x paints weight 6 and give the 

remaining points weight O. We need {4}-GDDs of types 39 , 39 6 1 , 

which come from Lemma 4.2, and thus we obtain a {4}-GDD of type 

(3m)9(6x)1. The results Ca) and (b) readily follow. 

Lemma 4.10 For all integers n 0, the following hold: 

(a) 24n + 8 E B(4,8), 

(b) 84n + 8 E B(4,8), 

(c) 84n + 29 E B(4,8), 

(d) 96n + 29 E B( 4,8). 

Proof: Fi rst of all, the existence of a T(4,1;8) implies 32 E 

B(4,8) Consequently, {8,32} ~ B(4,8) and the result (a) follows 

from Lemma 4.4. Next, 29 E B(4,8) from adjoining an infinite point 

to the groups of a T(4,l;7). For the proofs of (b), (c) and (d), 

we therefore consider n ~ 1. For the proof of (b), we take a {4}

GDD of group-type of type 112n+1, which exists from Theorem 3.1, 

and give all points weight 7 to obtain a {4}-GDD of type 7 120
+

1 • 

We need a {4}-GDD of type 7 4 , which exists from Lemma .2. By 

adjoining an infinite point to the groups of our resulting GDD, we 

obtain the result (b). The result (c) follows in a similar manner 

by starting with a {4}-GDD of type 1 2~+4 and giving all points 

weight 7. For the proof of (d), we take a T(4, 1; 24n + 7) and 

adjoin an infinite point to the groups to obtain 96n ~ 29 E 

B(4,24n + 8) ~ B(4,8), since 24n + 8 E B(4,8) from (a). This 

completes the proof of the lemma. 

We shall make use of the following lemma, which is a 

consequence of Theorem 2.6. 

Lemma 4.11 There exists a sequence M = {m1:i = 1,2,3, ... } = {7, 

13, 16, 19, 25, 31, 37, 43, 49, 61, 64, 67, 70, 73, 79, 82, 85, 

88, ... } such that m1 == 1 (mod 3), m1+J.. - m1 $ 12, and a T(8,1;md 

exists for all i 1,2, .... 

Proof: First of all, it is known (see, for example, [7]) that a 
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T(8,l;m) exists for all integers m > 76 and also for m < 76 listed 

in M. It is very easy check that the conditions rni 

mi+1 - mi S 12 hold. 

l(mod 3) and 

The combination of Lemmas 4.6 and 4.11 will be used extensively to 

investigate the spectrum of B(4,8). In view of Theorem 3.1, we 

need only focus our attention on members v E B(4,8) for which v = 

0, 5, 8, 9 (mod 12). It will be convenient to consider these cases 

separately. 

5. Members of 8(4,8) congruent to 8 modulo 12. 

Lemma 5.1 Let M be as defined in Lemma 4.11. If rn E M and mo is 

the integer in {m, m + 3, m + 6, m + 9} such that rno 5 4(mod 12), 

then E B(4,8) for all v - 8(mod 12) in the interval 

24m + mo + 4 S v s 32m. 

Proof. We shall apply Lemma 4.6 with m E M so we have 4m E B(4). 

Since m 5 l(mod 3), we can choose 4x + y 5 4(mod 12) where 0 s x, 

y s m, x + y m, and mo s 4x + y s 4m. We choose 4z = 4(mod ;2), 

where 4 s 4z s 4m. Note that {4x + y,4z} £ B(4). Let v = 24m + 4x 

+ y + 4z. Then it readily follows that v E B(4,8), and 

consequently, we can obtain v E B(4,8) for all values of v - 8 

(mod 12) in the interval 24m + mo + 4 s v s 32m. 

Lemma 5.2 If v = 8(mod 12), then v E B(4,8) holds for all v ~ 188, 

where ~ {236, 248, 260, 272, 284, 296, 308, 320, 620}. 

Proof: We shall apply Lemma 5 1. If m = 7, 13, 16, 19, 25, then 

we obtain v E 8(4,8) for all values of v = 8(mod 12) in the 

interval 188 s v s 800, apart from the exceptions listed in the 

statement of the lemma. For m ~ 25, if we apply Lemma 5.1 

repeatedly, then we find that the intervals for v overlap and we 

obtain v E B(4,8) holds for all v = 8(mod 12) where v 2 632. This 

completes the proof of the lemma. 

Lemma 5.3 If v E {8, 32, 56, 80, 92, 104, 128, 152, 176, 248, 260, 

272, 296, 320}, then v E B(4,8). 
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Proof: We apply Lemma 4.10 for the result. 

Lemma 5.4 116 E B(4,8). 

Proof: The result follows from the existence of a T(4,1;29) and 

29 E B(4,8). 

Lemma 5.5 140 E B(4,8). 

Proof: There exists a {5}-GDD of group-type 8 6 (see, for example, 

[19]). Starting with this GDD, we delete 4 points from one block 

to form a GD({4,5},1,{7,8};44). In this GDD we give each point 

weight 3 to obtain a GD({4},l,{21,24};132), using {4}-GDDs of types 

3 4 and 3 5 • We then apply Lemma 4.1 to adjoin 8 infinite points to 

the resulting GDD, using the fact that {29,32} £ B(4,8), and we 

thus obtain 140 E B(4,8). 

Lemma 5.6 236 E B(4,8). 

Proof: We apply Lemma 4.8(b) with m = 9, x 

using the fact that {28,32,16} £ B(4,8). 

Lemma 5.7 284 E B(4,8}. 

8, Y 1 and z 5, 

Proof: We first adjoin 8 infinite points to an RT(7,l;9) so as to 

form a {7,8,lO}-GDD of group-type 79 8 1 , where one of the infinite 

pOints is adjoined to the groups and the remaining seven are 

adjoined one each to seven parallel classes of blocks. In our 

resulting GDD, we give each point weight 4 to obtain a {4,8}-GDD of 

type (28)9(32)1, using {4,8}-GDDs of types 4 7 , 4 B and 410. Then 

284 E B(4,8) follows from the fact that {28,32} £ B(4,8). 

Lemma 5.8 308 E B(4,8). 

Proof: Take a T(4,1;76) and adjoin 4 infinite points to the groups 

by applying Lemma 4.1 with the fact that 80 E B(4,8). 

Consequently, 308 E B(4,8). 

Lemma 5.9 620 E B(4,8). 

Proof: Take a T(7,1;11) and give each pOint weight 8 to obtain a 

{4,8}-GDD of type (88)7, using a {4}-GDD of type 8 7 from Lemma 4.4 

We then apply Lemma 4.1 to adjoin 4 infinite pOints to the 
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resulting GDD, using 92 E B(4,8), and thus obtain 620 E B(4,8). 

Combining the results of Lemmas 5.2 - 5.9, we have proved the 

following theorem: 

Theorem 5.10 If v - 8(mod 12), then v E B(4,8) holds for all 

v ~ 8, where v ~ 20, 44, 68, 164. 

6. Members of B(4,8) congruent to 5 modulo 12. 

Lemma 6.1 Let M be as defined in Lemma 4 11. If m E M and mo is 

the integer in {m. m + 3, m + 6, m + 9} such that mo - l(mod 12), 

then v E B(4,8) holds for all v 

24m + mo + 4 s v s 32m - 3. 

9(mod 12) in the interval 

Proof: The proof is similar to that of Lemma 5.1. Here we also 

apply Lemma 4.6 with m E M so that 4m E B(4). We can choose 

4x + y = l(mod 12) such that the conditions Osx, ysm, x+y = m, 

mo S 4x + y s 4m - 3 all hold. We choose 4z - 4(mod 12), where 

4 s 4z s 4m. Then {4x + y, 4z} ~ B( 4). Let v = 24m + 4x + y + 

Then v E B(4,8) holds for all v = 5(mod 12) in the interval 

24m + mo + 4 s v S 32m - 3. 

4z. 

Lemma 6.2 If v - 5(mod 12 ), then v E B(4,8) holds for all v ;:: 185 

where v ~ {233, 245, 257, 269, 281, 293, 305, 317, 617}. 

Proof: We apply Lemma 6.1 repeatedly. If m = 7, 13, 16, 19, 25, 

then we obtain v E B(4,8} for all v = 5(mod 12) in the interval 

185 ~ v s 797, apart from the exceptions listed in the lemma. For 

m ~ 25, the intervals of v overlap and we obtain v E B(4,8) for all 

v = 5(mod 12) where v ~ 629. This completes the proof of the 

lemma. 

Lemma 6. 3 I f v E { 29, 11 3 , 125, 197 I 28 1, 31 7, 6 1 7} , 

t hen v E B ( 4 f 8 ) . 

Proof: The result is an immediate consequence of Lemma 4.10. 

Lemma 6. 4 { 1 37, 149} ~ B ( 4 , 8 ) . 

Proof: For the case v = 137, we start with a {5}-GDD of group-type 

8 6 and delete 5 pOints from a block to obtain a 
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GD({4,5}, ,{7,8};43). We then give each point of this GDD weight 

3 to obtain a GD({4},1,{2l,24};129). Finally, we apply Lemma 4.1 

to adjoin 8 infinite points to this GDD and obtain 137 E B(4,8 I 

using {29,32} £ B(4,8). For the case v 149, the construction is 

similar. We first delete one point from a {5}-GDD of type 8 6 to 

obtain a GD({4, 5}, 1, {7, 8}; 47) and then give each point weight 

3 to obtain a GD({4}, 1, {2l, 24}; 141). Finally, we adjoin 8 

infinite pOints to this GDD and get 149 E B(4,8). 

Lemma 6.5 233 E B(4,8). 

Proof: Start with a T(9,1;9) and delete one pOint to form a 

GD({9},l,{8};80). We further delete 5 points from a block of this 

GDD to form a GD({4, 8, 9}, 1, {7,8}; 75). In this resulting GDD, 

we give each point weight 3 to get a GD({4}, I, {2l, 24}; 225) to 

which we then adjoin 8 infinite points and thus obtain 

233 E B(4,8). 

Lemma 6.6 {245, 257, 269} £ B(4,8). 

Proof: We apply Lemma 4.8(b) with m = 9, x = 2, y = 7 and 

z E {O, 4, 8}. We need the fact that 56 E B(4, 8) and 

{13, 25, 28} £ B(4). 

Lemma 6.7 293 E B(4,8). 

Proof: We first adjoin 7 infinite points to an RT(8,1;11) so as 

to form a {8 , 9, l2}-GDD of type 8 11 7 1 , where one of the infinite 

points is adjoined to the groups. In the resulting GDD, we give 

each point weight 3 to form a {4}-GDD of type (24)1 (21)1, using 

{4}-GDDs of types 38 ,3 9 ,3 12 . Finally, we adjoin 8 infinite points 

to this GDD using Lemma 4.1 to obtain the desired result with 

{29, 32} £ B(4, 8). 

Lemma 6.8 305 E B(4, 8). 

Proof: Take a T(8,1;11) and delete one block entirely to get a 

{7,8}-GDD of type 10 8 • In all but one of the groups, we give 

weight 4 to each point. In the last group, give weight 1 to five 
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points and weight 4 to the remaining five points. This gives a 

{4,8}-GDD of type (40)7(25)1, using {4,8}-GDDs of types 47,4B,471 

which come from Lemmas 4.2 and 4.3. It follows that 305 E B(4,8). 

Combining Lemmas 6.2 - 6.8, we have essentially proved the 

following result. 

Theorem 6.9 If v = 5(mod 12), then v E B(4,8) holds for all v ~ 5, 

where v $ {5, 17,41,53,65,77,89,101,161, 173}. 

7. Members of B(4,8) congruent to 0 modulo 12. 

Lemma 7.1 Let M be as defined in Lemma 4.11. Let m E M and let mo 

be the integer in {m, m+3, m+6, m+9} such that mo = 4(mod 12). 

Then the following hold: 

(a) If m ~ {7,13,19,43}, then v E B(4,8) holds for all 

v = O(mod 12) in the interval 24m + mo + 8 ~ v ~ 32m - 8. 

(b) If m E {7,13,19,43}, then v E B«4,8) holds for all 

v = O(mod 12) in the interval 24m + mo + 8 ~ v ~ 32m-20. 

Proof: We apply Lemma 4.6 with m E M so that 4m E B(4) In each 

of (a) and (b), we take 4x+y = 4(mod 12), where 0 ~ x, y ~ m, 

x + y = m t and mo ~ 4x + y ~ 4m. For (a), we can choose 

4z - 8(mod 12) such that 8 5 4z ~ 4m - 8 and (b), choose 

4z - 8 (mod 12) such that 8 ~ 4z ~ 4m - 20, where 4z E B(4,8) from 

Theorem 5.10. Let v = 24m + 4x + y + 4z. Then it is readily 

checked that the results (a) and (b) follow. Note that the gap 

between consecutive values of v for which v E B(4,8) in Theorem 

~.10 is at most 24. 

Lemma 7.2 If v = O(mod 12), then v E B(4,8) holds for all v ~ 192, 

where v ~ {216, 228, 240, 252, 264, 276, 288, 300, 312, 324, 600, 

612, 624}. 

Proof: We shall apply Lemma 7.1. If we put m = 7, 13, 16, 19, 25 

in Lemma 7.1, then we obtain v E B(4,8) for all v = O(mod 12) in 

the interval 192 ~ v ~ 792, apart from the exceptions cited in the 

lemma. If we choose m ~ 25 and apply Lemma 7.1 repeatedly, then 
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the intervals for v overlap and we obtain v E B(4,8) holds for all 

v = O(mod 12) where v ~ 636. 

Lemma 7.3 36 E B(4,8). 

Proof: We present a direct construction of a resolvable 

B({4,8},l;36) with 9 parallel classes, each containing seven 

4-blocks and one 8-block with an automorphism of order 9. The 

design is based on the set X = Z9 X Z4 where, for convenience, we 

write ij for the point (i,j) of X with i between 0 and 8 and j 

between 0 and 3 inclusive. One parallel class of the design is 

P = {(00,80,01,71,02,62,03,53), (10,31,41,70), (11,22,42,61), 

(12,23,33,52), (13,20,43,60), (63,21,83,51), (72,82,30,50), 

(81,73,32,40)}. 

All of the parallel classes are obtained by developing P modulo 9 

in the first coordinate while keeping the second coordinate fixed. 

If ~ is the union of these 9 parallel classes, then it is readily 

checked that (X,~) is a resolvable B({4,8,},1;36) and the result 

follows. 

Lemma 7.4 {84, 120, 324} £ B{4,8) 

Proof: For v = 84, we apply Theorem 3.5 with t = 4 and q = 4 to 

obtain 84 E B(4,8). Applying Theorem 3.6 with n = 4, we obtain 

120 E B(8). Finally, for 324 E B(4,8), we adjoin 4 infinite pOints 

to a T(4,1;80 by applying Lemma 4.1 and using the fact 

84 E B(4,8). 

Lemma 7.5 If v E {216, 228, 240, 252, 288, 300, 312, 600, 612, 

624}, then v E B(4,8). 

Proof: For v E {216, 228, 240, 252}, we apply Lemma 4.6 (a) with 

m 8, 4x + Y E {8, 32}, and z E {l,4,7} to get 

v 24m + 4x + y + 4zE B(4,8). For v E {288, 300, 312}, we apply 

Lemma 4.8 with m II, x = 6, y = 5 and z E {O,4,8} to first obtain 

a {4,8}-GDD of type (33)7(53)1(3z)1. We then apply Lemma 4.1(b) to 

adjoin 4 infinite points to this GDD, using the fact that {37,3z+4} 
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£. B(4) and 57 E B(8). For v E {600, 612, 624}; we apply Lemma 

4.6(a) with m 23, x 3, y = 20, and z E {4, 7, 10}. Then we 

have {4m, 4x + y, 4z} £. B(4, 8) and we readily obtain v E B(4, 8). 

Lemma 7.6 If v E {132,144,lBO,264,276}, then v E B(4,8). 

Proof: For v 132, we start with a T(4,1;32» and adjoin 4 

infinite pOints to the groups by applying Lemma 4.1 and the fact 

that 36 E B(4,8) from Lemma 7.3. For v E {144,180}, we make use of 

{4} - GODs of group-types (36)4 and (36)5 (see, for example, [8]) 

and the fact that 36 E B (4,8,) to easily obtain {144,180} £. 

B(4,8). For v E {264,276}, we first apply Lemma 4.6 with m=9 , 

4x+y E {12,24}, and z=8 to get a {4,8} - GOD of group-type (36)6 

(4X+y)1 (32)1. We then apply Lemma 4.1 to adjoin 4 infinite points 

to this GOD, using the fact that {16,28,36,40} £. B(4,8), and thus 

obtain {264,276} £. B(4,8). 

Combining Lemmas 7.2 - 7.6, we have proved the following: 

Theorem 7.7 If v = O(mod 12), then v E B(4,8) holds for all v ~ 

12, where v i 12, 24, 48, 60, 72, 96, 108, 156, 168. 

8. Members of B(4,8) congruent to 9 modulo 12. 

Lemma 8.1 Let M be as defined in Lemma 4 11. Let m E M and let 

mo be the integer in em, m + 3, m + 6, m + 9} such that 

mo - l(mod 12). Then the following hold: 

(a) If m ~ {7, 13, 19, 43}, then v E B(4, 8) holds for all v 

- 9(mod 12 ) in the interval 24m + mo + 8 ::; v ::; 32m - 1I. 

(b) If m E {7, 13, 19, 43}, then v E B(4, 8) holds for all v 

- 9(mod 12) in the interval 24m + mo + 8 s v ::; 32m - 23. 

Proof: We apply Lemma 4.6 with m E M so that we have 4m E B( 4). 

In each of (a) and (b), we take 4x + y - l(mod 12) such that the 

conditions 0 ::; x, y ::; m, x + y = m, mo ::; 4x + y ~ 4m - 3 hold. 

Note that 4x + y E B(4). For (a) we choose 4z = 8(mod 12) such 

that 8 ::; 4z ::; 4m - 8 and for (b), choose 4z = 8(mod 12) such that 
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8 5 4z 5 4m - 20, where 4z E B(4,8) from Theorem 5.10. The gap is 

at most 24 between consecutive values of v for which v E B(4, 8) in 

Theorem 5.10. If we put v = 24m + 4x + y + 4z, then it is not 

difficult to check that we obtain v E B(4, 8) for all v = 9(mod 12) 

in the specified intervals. 

Lemma 8.2 If v = 9(mod 12), then v E B(4, 8) for all v ~ 189 where 

v ~ {213, 225, 237, 249, 261, 273, 285, 297, 309, 321, 405, 597, 

609, 621}. 

Proof: We apply Lemma 8.1. If m :: 7, 13, 16, 19, 25, then we 

obtain v E B(4,8) for all v = 9(mod 12) in the interval 189 5 5 

789, apart from the exceptions cited in the leroma. If we choose m 

E M, m ~ 25, and apply Lemma 8.1 repeatedly, then it is readily 

checked that the intervals for v overlap and we obtain v E B(4,8) 

for all v = 9(mod 12) where v ~ 633. 

Lemma 8. 3 { 57 I 14 1, 285, 597 } .Q B ( 4 , 8 ) . 

Proof: We adjoin an infinite point to the groups of a T(8,l;7) to 

obtain 57 E B(8). For v = 141, we adjoin an infinite point to the 

groups of a T(4,l 35) and use the fact 36 E B(4,8). For v = 285, 

we start with a T(5,1;19) and give each point weight 3 to obtain 

285 E B(4, 57) £ B(4, 8). For v :: 597, we apply Lemma 4.9 (a) with 

m ::: 19, x 14 to obtain 597 E B(4, 8), using {57, 84} £ B(4, 8). 

Lemma 8.4 If v E {225, 237, 249, 273, 297, 309, 321, 405, 609, 

621}, then v E B(4, 8). 

Proof: For v E {225, 237, 249}, we apply Lemma 4 6(a) with m = 8, 

x 7, Y 1, and 4z E {4, 16, 28}, using the fact {29, 32, 4z} .Q 

B(4,8). For v = 273, we apply Lemma 4.7(b) with m = 9, x = 0, 

y:: 0, Z 8, using {28, 57}.Q B(4,8). If v E {297, 309, 321}, 

then we apply Lemma 4.8 with m :: 11, x = 6, y :: 5, and z E 

{3, 7, II} to first obtain a {4, 8}-GDD of type (33)7(53)1(3z) 

We then apply Lemma 4.1(b) to adjoin 4 infinite pOints to this GDD, 

using the fact that {37, 3z + 4} £ B(4) and 57 E B(8), and thus 
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obtain v E B(4,8). For v = 405, we apply Lemma 4.8 (b) with 

m = 16, x = 14, y = 2, and z = 4. Finally, for v E {609, 621}, we 

apply Lemma 4.8(b) with m = 25. x 23, y = 2, and z E {0,3}, using 

the fact that {13,76} £ B(4) and 84 E B(4, 8), and thus obtain 

v E B(4, 8). This completes the proof of the lemma. 

Lemma 8.5: If v E {213,26l}, then v E B(4,8). 

Proof: For v = 213 we apply Lemma 4.8 with m = 8, x = 6, y = 2 and 

z = 3 to get a {4,8} - GDD of group-type (24)7 (32)1 (9)1 To 

this GDD we adjoin 4 infinite pOints by applying Lemma 4.1 and the 

fact that {13, 28, 36} £ B(4,8). This gives us 213 E B(4,8). For 

v = 261, we apply Lemma 4.6 with m = 9, x 0, y = 9 and z = 8 to 

obtain a {4,8} - GDD of group-type (36)6 (9)1 (32)1. We then 

apply Lemma 4.1 to adjoin 4 infinite points to thi GDD, using the 

fact that {13, 36, 40} £ B(4,8), and obtain 261 E B(4,8). 

Combining Lemmas 8.2 - 8.5, we have proved the following: 

Theorem 8.6 If v = 9(mod 12), then v E B(4,8) holds for all v ~ 9, 

where v ". 9, 21, 33, 45, 69, 81, 93, 105, 117, 129, 153, 165, 177. 

9. The spectrum of B(4,8) and applications. 

Before stating the main result regarding the spectrum of 

B(4,8), we shall deal with some impossible cases. First of all, it 

is not difficult to establish the following lemma. 

Lemma 9.1 Let (X, ~) be a PBD B(K,l;v) whose smallest block size 

is at least m and which contains a block of size k which is the 

largest block size in K. Then v ~ kCm-l)+l. 

Proof: Let A be a block of size k and x be a point not on A. The 

number of blocks containing x and a paint of A is k and 

consequently, v must be at least k(m-l)+l. 

Lemma 9.2 If v E {5, 9, 12, 17, 20, 21, 24}, then there does not 

exist a PBD B({4,8},I;v). 

Proof: If v E {5, 9, 12, 17, 20, 21, 24}, then it is obvious from 

Theorem 3.1 that any B({4,8},1;v) must contain at least one block 
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A of size 8 and some point x not on A. From Lemma 9.1, it follows 

that v ~ 25. 

Lemma 9.3 Let(X,~) be a PBD B({4,8},l;v). L~t x be a point of X 

and let rx denote the number of blocks of ~ containing x. Let 

r4(x) and ra(x) be the number of 4-blocks and 8-blocks in ~, 

respectively, which contain x. Then the following hold: 

(i) 3 r4(x) + 7 ra(x) = v-I, 

(i) (v-I)/7 S rx S l (v-I)/3 J where r x 1 denotes the 

greatest integer less than or equal to x and L x J is the 

least integer greater than or equal to x. 

Proof: The proof of (i) follows directly from the fact that every 

other element must occur is exactly one block with x, and the 

inequality of (ii) is an immediate consequence of (i). 

Lemma 9.4 There does not exist a PBD B({4,8},l;33). 

Proof: Suppose (X, ~) is a PBD B({4,8},1;33). Then by applying 

Lemma 9.3, we determine that each point of X must be contained in 

precisely six 4-blocks and two 8-blocks. So there are 33/4 

8-blocks, which is clearly impossible. 

Lemma 9.5 There does not exist a PBD B({4,8},l;4l). 

Proof: Suppose (X, ~) is a PBD B({4,8},1;4l). Then we can apply 

Lemma 9.3 to determine that each point x of X is one of two types 

Type I - x is contained in 11 4-blocks and 1 8-block. 

Type II x is contained in 4 4-blocks and 4 8-blocks. 

Now, not all pOints of X can be of type I, since this would imply 

that there are 41/8 8 blocks, which is impossible. By deleting a 

point of type II, we obtain a {4,8} - GDD of group-type (3)4(7)4. 

It is easy to see that no paint of this GDD is contained in 4 

8-blocks, because of the 3-groups. Consequently, the 12 points in 

the 3-groups are all of type I and the PBD contains exactly 7 

8-blocks. But there can be no such configuration on 41 points with 

7 8-blocks, where each point is contained in 1 or 4 8-blocks. 
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Lemma 9.6 There does not exist a PBD B({4,8},l;44). 

Proof: Suppose (X, S) is a PBD B({4,8},1;44). From Lemma 9.3, 

it is easy to determine that each point z of X is one of two types: 

Type I - z is contained in 12 4-blocks and 1 8-block. 

Type II - z is contained in 54-blocks and 4 8-blocks. 

Let b4 and be denote the number of 4-blocks and 8-blocks 

respectively in~. Let x and y denote the number of type I and 

type II points. Then the following equations hold: 

(1) x + y 44 

(2) 3b 4 + 14bs = 473 

(3) 12x + 5y 4b4 

(4) x + 4y = 8be 

The first equation comes from counting points; the second 

comes from counting pairs of paints. The third (respectively, 

fourth) equation comes from counting pairs (z, A) where z is a 

point and A is 4-block (respectively, 8-block) containing z. Now, 

equations (1) (4) are not independent. There is a solution in 

terms of the integer parameter s given by the following: 

x 56 - 8s 

y 8s 12 

b4 153 - 14s 

be 3s + 1 

Since x and yare non-negative integers, we must have 2 ~ s ~ 7. 

Let t denote the maximum over all 8-blocks A, of the number of 

type II points in A. If A is an 8-block with t type II points, 

then the number of 8-blocks intersecting A, including A itself, is 

3t + 1; so 3t + 1 ~ be and t ~ s. By counting pairs (z, A) where z 

is a type II point and A is any 8-block containing z, we readily 

obtain that 4y ~ tbe and 32s - 48 s t(3s + 1). Since t ~ s, we 

get 32s - 48 ~ s(3s + 1) or 3s 2 - 31s + 48 ~ 0, which is impossible 

for s E {2, 3, 4, 5, 6,7}. 
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Lemma 9.7 There does not exist a PBD B{{4,8},1;45). 

Proof: Suppose (X, ~) is a PBD B({4,8},1;45). By applying Lemma 

9.3, it is readily determined that each point x of X is one of two 

types: 

Type I - x is contained in 10 4-blocks and 2 8-blocks. 

Type II - x is contained in 3 4-blocks and 58-blocks. 

Now, proceeding as we did in Lemma 9.5, we arrive at the 

conclusion that the PBD on 45 points must contain exactly 11 

8-blocks, where each point is in either 2 or 5 of them. However, 

no such configuration exists. 

For convenience, let 

E {5, 9, 12, 17, 20, 21, 24, 33, 41, 44, 45}, 

S {48, 53, 60, 65, 68, 69, 72, 77, 81, 89, 93, 96, 101, 105, 108, 

117, 129, 153, 156, 161, 164, 165, 168, 173, l77}. 

Combining the results of Theorems 3 1, 5.10, 6.9, 7.7 and 8.6 

with Lemmas 9. , 9.4 - 9.7, we obtain our main theorem 

Theorem 9.8 The necessary condition v E a or 1 (mod 4) for 

v E B(4,8) i sufficient for all v ~ 4 with the exception of vEE 

and the possible exception of v E S. 

As already mentioned, the spectrum of B(4,8) has useful 

applications to the construction of other types of combinatorial 

structures (see, for example, [1, 2, 9, 13, 14, 16]). In 

particular, we wish to briefly mention an application to the 

spectrum of a variety of two-variable quasigroup identities, which 

will supplement the results of [2]. It is fairly well-known that 

there are idempotent models of the Schroder identity (xy)(yx) = x 

for orders 4 and 8 (see [13J). Also, there are models for orders 4 

and 8 of quasigroups satisfying the identity (xy)y = x(xy), which 

implies the idempotent law (see [2]). From Theorem 9.8 we can then 

conclude the following (see [2, Theorem 2.7J). 
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Theorem 9.9 There are idempotent Schroder quasigroups for all 

orders n = 0 or l(mod 4) all of whose two-generated subquasigroups 

are of order 4 or 8, with the possible exception of those orders 

listed in E U S. 

Theorem 9.10 The spectrum of the quasigroup identity (xy)y = x(xy) 

contains all integers n ~ 1 where n = 0 or l(mod 4), with the 

possible exception of those values listed in E U S. 
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