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Abstract: Let !:ten) denote the class of simple graphs of order n. 
For G € !:t(n) , G denotes the complement of G. Given a graph theoretic 
parameter f, the Nordhaus-Gaddum Problem is to find lower and upper 
bounds for: 

and 
f(G) + f(G) , 

f(G) f(G) , 

over the class !:ten). 

In this paper we consider a variation of this problem by restricting 
our attention to the subclass of !:ten) consisting of graphs having 
exactly m edges. We consider the parameters edge connectivity, 
diameter and chromatic number. We also consider the problem of 
characterizing the extremal graphs and the realizability problem. 

1. INTRODUCTION 

All graphs considered in this paper are undirected, finite, 

loopless and have no multiple edges. For the most part, our notation 

and terminology follow that of Bondy and Murty [6]. Thus G is a graph 

wi th vertex set V(G), edge set E(G), v(G) vertices, dG) edges, edge 

connectivity K'(G), chromatic number X(G), maximum degree t.(G) and 

minimum degree 8(G). However, we denote the complement of the graph G 

by G and the diameter of G by d(G). 

Let !:ten) denote the class of graphs of order nand !:ten, m) the 

subclass having m edges. Given a graph theoretic parameter f(G) and a 

positive integer n, the Nordhaus-Gaddum (N-G) Problem is to determine 

sharp bounds for: 
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(i) f(G) + f(G), 

and 

(ii) f(G) . f(G), 

as G ranges over the class §'(n), and characterize the extremal graphs. 

A further problem is to determine the set of all integer pairs (x,y) 

such that f(G) = x and fCG) = Y for some G E §'(n). We refer to this 

latter problem as the realizability problem. 

In their paper, Nordhaus-Gaddum [12] determined bounds for X(G) 

+ X(G) and X(G) X(G). The characterization of the corresponding 

extremal graphs and the real izabi I i ty problem were resolved by Finck 

[10]. Since this early work a number of authors have considered other 

graph theoretic parameters such as: edge chromatic number (Alavi and 

Behzad [2], Vizing [15]); total chromatic number (Achuthan [1]); 

clique number (Chartrand and Schuster [8]); edge connectivity (Alavi 

and Mitchem [3]) and diameter (Bondy [5]). 

A number of variations to the N-G problem have been considered -

Dirac [9], Plesnik [14]. In this paper, we consider a further 

variation. Our variation considers the above mentioned problems when 

G is restricted to the subclass §'(n,m). We are motivated to consider 

this variation as many of the sharp bounds in the classical N-G 

problem are attained by one of the graphs G and G being very dense. 

We present results for the parameters: diameter, edge connectivity and 

chromatic number. 

2. DIAMETER 

Since the diameter of a disconnected graph is 00, we shall in 

this section restrict ourselves to the case when G and G are 

connected. Hence d(G) ~ 2 and d(G) ~ 2. The Nordhaus-Gaddum bounds 

for this class of graphs are summarized in the following theorem. 

Theorem 2.1 Let G be a connected graph on n ~ 6 vert ices wi th a 

connected complement G. Then 
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4 S d(G) + dCC) S n + 1 , (2.1) 

and 

4 S d(G).d(C) S 2(n - 1) . (2.2) 

Moreover these bounds are sharp. o 

The upper bound in (2.1) was established by Bosak et.al. [7] and 

also by Bondy [5]. The bounds in (2.2) are immediate consequences of 

the fact that if d(G) ~ 4 then d(C) S 2. 

Our objective in this section is to consider the functions d(G) 

+ d(C) and d(G).d(C) when G E ~(n,m). We can assume that our graph G 

has diameter 2 or 3. With each of these cases we shall consider, 

separately, the cases when G has diameter 2,3 and 2: 4. We find it 

convenient to specify the values of d(G) and dCC) and then determine 

the possible values of m. This, of course, solves the above mentioned 

problem. In our discussion we make use of the following results from 

the literature which we state as lemmas. 

Lemma 2.1 (Murty [11]). 

Let G E ~(n,m) be a 2-connected graph of diameter 2. Then m ~ 2n - 5 

with equal i ty possible only if G is one of the two graphs drawn in 

Figure 2.1. o 

x + y n - 5, X~Of y~O 

Figure 2.1 
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A tree of diameter 3 whose centre is a pair of adjacent vertices 

is called a double star (see Figure 2.2). Observe that the complement 

of a double star has diameter 3. 

x > y > ~ 

Figure 2.2 Double star 

Lemma 2.2 (Bloom et.al. [4]) 

A graph G has diameter 2 if and only if G is non-empty and G is not 

spanned by a double star. o 

Lemma 2.3 (Ore [13]) 

Let G E ~(n.m) be a graph of diameter D 4. Then 

1 m ~ 2n - D - 2 + 2(n - D)(n - D - 1) 

with equality possible only if G is the graph in Figure 2.3. o 

K 
n - 0 -r- 1 

• • ... 
(I •• """'II."""""'~'. 

1 2 2 1 

x + y o - 1, x ~ 1, Y':::' 1, a .::. l, b ::: 1. 

Figure 2.3 
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Theorem 2.2 Let G E !7(n, m), n ~ 5, be a graph o:f diameter 2 whose 

complement G has diameter 2. Then 

2n - 5 s m s ~n(n - 1) - (2n - 5) . 
2 

(2.3) 

Furthermore, every integer in the above range is realizable. 

Proof: If G has a cut vertex, say x, then dG(X) = n - 1 and hence G 

cannot be connected. Therefore G is 2-connected. Similarly G is 

2-connected. Hence, by Lemma 2.1, G and G each have at least 2n - 5 

edges with equality possible. This proves (2.3). 

Consider the graph G drawn below in which H is a graph on n - 4 

vertices each vertex of which is adjacent to u and v. Clearly G and G 
have diameter 2 and c(G) = 2n - 5 + c(H). 

u v 

H 

n - 4 vertices 

Figure 2.4 

with 1 o s c(H) s 2"(n - 4)(n - 5). Hence every integer m 

satisfying (2.3) is realizable. o 

Consider the graphs drawn in Figure 2.5 over. 
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x + y + z n - x + y n - 5 

x,y,z > 0 x,y ::: 0 

Figure 2.5 

Observe that d(G.) 3 and d(C.) = 2, i = 1,2. 
1 1 

now prove that these graphs are edge-minimal 

Also dGi ) = n. We 

among the class G E 

~(n,m) for which d(G) = 3 and d(C) = 2. 

Lemma 2. II Let G E ~(n, m), n i':!:: 6, be a graph of diameter 3 whose 

complement has diameter 2. Then m i':!:: n and this bound is achievable 

for every n. Further, apart from two exceptions the extremal graphs 

are those of Figure 2.5. The two exceptional graphs are the cycles C
n 

for n = 6 and 7. 

Proof: Suppose that m < n. Then G must be a tree of diameter 3. 

That is, G is a double star. But then, by Lemma 2.2 d(C) * 2. Hence 

m i':!:: n. The graphs in Figure 2.5 show that this bound is sharp for n ~ 

6. To establish the structure of the extremal graphs we prove that 

for n i':!:: 6 an edge-minimal G contains a cycle of length 3 or 5. 

Let G be an edge-minimal graph. Clearly G is unicyclic. Let c 

be the length of the cycle in G. Then c ~ 5 (except when G ~ C
s 

or 

C
7

) as otherwise G has diameter > 3. So suppose c = 4. Let C 

u,v,w,x,u denote the cycle of length 4. Now the (n 4)-vertices of 
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G - C must each be joined to exact ly one vertex of C, as otherwise 

e(G) n. In fact, since d(G) = 3, no non-adjacent pairs of vertices 

of C can have neighbours in V(G - C). But then G has a spanni ng 

double star and hence d(G) > 2. So c ~ 4; it must therefore be 3 or 

5. Now it is only a simple exercise to verify that G = G when c 3 
1 

and G = when c = 5. For n :$ 7 the G can also consist of the cycle 

C This completes the proof of the lemma. 0 n 

Theorem 2.3 Let G E ~(n,m) be a graph of diameter 3 whose complement 

G has diameter Then for n ~ 6 

1 ) 2(n - 2) . (2.4) 

Furthermore, every integer in the above range is realizable. 

Proof: The lower bound in (2.4) was established in Lemma 2.4. 

Consider G. If G has a cut vertex then G is disconnected. Hence G is 

2-connected and so, by Lemma 2.1, e(G) ~ 2n - 5. Now suppose that 

2n 5. Then by Lemma 2.1, G is one of the graphs in Figure 

2.1. Examination of the graphs in Figure 2.1 reveals that their 

complements have diameter 2. This contradicts the fact that the 

diameter of G is 3. Hence e(G) ~ 2n - 4. 

bound in (2.4). 

This establishes the upper 

In the following we explain the realizability of integers in the 

range given in (2.4). 

x + y n - 5, x > 0, Y > 0 

Figure 2.6 
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· 1 
For an integer m between nand 2(n - 4) (n - 5) + 5, we start 

with the graph G
1 

in Figure 2.5 with x = Y = 1 and add (m - n) edges 

sui tably. 

For an integer m between ~n(n - 1) 1 5)(n 6) (2n - 4) - -
1 and 2n (n 1) - (2n - 4), we start with the complement of the graph in 

Figure 2.6 with y = 0 and delete !.n(n 1) (2n - 4) - m edges 2 
sui tably. 

This procedure results in a graph G E ~(n,m) with d(G) = 3 and 

d(C) = 2, for all possible integers m except when (i) n = 7, m = 9 and 

(ii) n 8, m = 12. In these exceptional cases one can easily check 

the realizability. This completes the proof of the theorem. o 

Theorem 2.4 Let G E ~(n,m) be a graph of diameter 3 whose complement 

has diameter 3. Then 

1 n 1 s m s 2n(n - 1) - (n - 1) 

and every integer in the above range is realizable. 

Proof: The bounds follow from the fact that both G and G are 

connected. To establish the sharpness let G be the graph displayed in 

Figure 2.2. The real izabil ity can be easily establ ished by start ing 

with the same graph and adding edges suitably. 

This completes the proof of Theorem 2.4. 

Theorem 2.5 Let G E ~(n,m) be a graph of diameter D ~ 4. Then 

n - 1 s m ~ 2n - D - 2 + !.(n - D)(n - D - 1), 
2 

and every integer in this range is realizable. 

(2.5) 

o 

Proof: The lower bound in (2.5) is obvious, the upper bound follows 

from Lemma 2.3. The realizability can be established by starting with 
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a suitable tree with diameter D and adding m - (n - 1) edges in such a 

way that the diameter remains D. 

This completes the proof of the theorem. D 

3. EDGE CONNECTIVITY 

The edge connectivity K.' (G) of a graph G is the minimum number 

of edges whose removal results in a disconnected graph. 

bounds are given in the following result. 

Theorem 3.1 (Alavi <;l,nd Mitchem [3]) 

Let G E ~(n). Then 

1 ~ K.'(G) + K./(e) ~ n - 1, 

and 

° ~ K.' (G). K.' (e) ~ M(n), 

The N-G 

{ 
if n = 0,1,2 (mod 4) 

where M(n) 
n - 3 
-2-

n + 1 
-2- ), otherwise. 

D 

In our discussion we make use of the following basic facts.: 

(i) For any graph G 

/(' CG) ~ o(G) , 

and 

/('(G) ~ 
2c(G) 
v(G) 

If o(G) 
1 1), then K.' (G) o(G) . ~ 2(v(G) (ii ) 

(iii) If G E ~(n) is a graph such that /(' (G) + K.' (e) 

then G is regular of degree K.'(G). 
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(iv) For every nand d such that 2 ~ d ~ n -1 there exists a 
1 

G e ~(n, r 2nd 1) such that K'(G) = d. 

The extremal graphs for which (iv) holds are due to Harary and 

are described in standard graph theory texts. In our constructions to 

be described we often modify these graphs. Hence it is convenient to 

describe the Harary graphs, denoted by H(n,d). 

We shall give the construct ion separately for even and odd 

values of d. 

First let d be even and d = 2r. The vertex set of H( n, d) is 

{O. 1,2 •... ,n-l} . The vertex i is joined to i ± j, 1 ~ j ~ r where 

addition is modulo n. 

Next let d be odd and d = 2r + 1. When n is even, say n = 2n
1

, 

we construct H(n, 2r) as explained in the case when d is even and 

further join i and i + n
l 

for 0 ~ i ~ n
l 

- 1. When n is odd, say n = 
2n

l 
+ 1 we start with H(n,d - 1) and further join 0 to vertices n

l 
and 

n + 1 and vertex i to vertex i + n + 1 for 1 ~ i < n . 
1 1 1 

For the rest of this section, without any loss of generality we 

assume that m ~ ~ (~). 

Lemma 3.1 Let G e ~(n, m). Then 

K'(G) + K' (G) ~ max {1, n - 1 - m} (3.3) 

and 

K'(G).K'(G) ~ O. (3.4) 

These bounds are sharp for all nand m. 

Proof: The inequality (3.4) follows from Theorem 3.1. Since at least 

one of G and G must be connected, we have, 

K'(G) + K'(G) ~ 1 (3.5) 
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The inequality (3.3) reduces to (3.5) when n - 1 s m. So let n - 1 > 

m. We shall show that 

K'(G) + K'(G) ~ n - 1 - m . (3.6) 

Since n - 1 > m, G is disconnected and so K'(G) O. 

Now (3.6) reduces to K'(G) ~ n - 1 - m . 

If possible let K'CG) < n - 1 - m and E a cutset of edges of G with 

lEI = K' (G). Let Hi' 

of G - E and vCH.) 

H
2

, ... , Hk (k ~ 2) be the connected components 

n. for 1 sis k. Then 
1 1 

Therefore, 

(~] -m, 

which contradicts the fact that G E ~(n,m). Hence (3.6) is 

established and this proves (3.3). To establish the sharpness of the 

bounds, we construct a graph G* E ~(n,m) as follows: 

Case 1: m < n 

{ (ui ' un)' 1 sis 

n - 1 - m. 

- 1. Define V(G*) = {u
l
,u

2
"",un} and ECG*) 

m}. It is easy to see that K'(G*) = 0 and K'(G*) 

Case 2: m ~ n - 1. Let V(G*) 

follows: 

(a) u
l 

is adjacent to u i ' for 2 s s n. 

(b) the remaining m - (n - 1) edges are introduced on the set 

{u
2
,u

3
'" .un- 1}· 
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It is easy to see that K'(G*) 

the sharpness of the bounds. 

Lemma 3.2 Let G E ~(n,m). Then 

K'(G) + K'(G) ~ n - 1, 

and 

K'(G).K'(G) ~ M(n,m), 

where 

o , 

1 and K' (G*) 

if 

O. This establishes 
o 

(3.7) 

(3.8) 

m ~ n - 2 

M(n,m) { 2m (n 
n 

_ 1 _ 2m) 
n' if 2m=O (mod n) and m2:n 

l2: J (n - 2 - l2: J)' otherwise. 

These bounds are sharp whenever 2m - 0 (mod n) with the exception that 
n 

when m = 2 we have 

K'(G) + K'(G) ~ n - 2 

and this bound is sharp. 

Proo£: The inequality (3.7) follows from Theorem 3.1. To establish 

(3.8) first let m ~ n - 2. For G E ~(n,m), clearly 

K' (G) O. (3.9) 

Next let 2m - 0 (mod n), say 2m nd. By (3.2) we have 

n - 1 - d (3.10) 
n 

Finally let 2m = nd + l, where 1 ~ l ~ n - 1. Now, ~(G) 2: d + 1 and 

so 

n - 1 - ~(G) ~ n - 2 d. 
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By (3.1) we have 

K'(G) ~ n - 2 - d. (3.11) 

Combining (3.2), (3.9), (3.10) and (3.11) we have the inequality 

(3.8). To prove the sharpness of the bounds once again let 2m = nd. 

Case d = O. We have m = 0 and thus G = K and G 
n Kn' Clearly in 

this case the bounds in (3.7) and (3.8) are sharp. 

n 
Case d = 1. Now m = 2 and in this exceptional case, clearly K'(G) 0 

and K'(G) ~ n - 2. Thus 

K' (G). K' (G) o and K'(G) + K'(G) ~ n - 2. 

To establ ish the sharpness of this bound let G* be a set of m 

independent edges. 

Case d ~ 2. Let G* H(n,d). 

By Fact (iv) 

K'(G*) d (3.12) 

We will now show that K'(G*) = n - 1 - d. Since m s ~(~), we have d ~ 
n ; 1 Therefore o(G*) = n - 1 - d ~ n ; 1 and now using Fact (ii) 

we have 

K' (G*) o(G*) n - 1 - d (3.13) 

Now combining (3.12) and (3.13) we establish the sharpness of the 

upper bounds in (3.7) and (3.8). This completes the proof of Lemma 

3.2. o 

Lemma 3.3 Let G E ~(n,m) and 2m ~ 0 (mod n). Then 

K' (G) + K' (G) ~ N(n, m), (3.14) 

and 

K' (G).K' (G) ~ M(n,m). (3.15) 
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where N(n,m) 
{ 

n - 3 

n - 2 

if n + 1 ~ 2m ~ 2n - 4 

otherwise 

and M(n,m) is as defined in Lemma 3.2. These bounds are sharp for all 

m and n. 

Proof: Using the fact that 2m ~ 0 (mod n) and Fact (iii) we notice 

that 

K'(G) + K'(G) ~ n - 2 (3. 16) 

The inequality (3.15) follows from Lemma 3.2. 

The proof of the sharpness is divided into different cases. 

Case A: m l.!:: n. Let 2m = nd + e where 1 ~ e ~ n - 1. 

Subcase 0): d is even. Let G* be the graph H(n, d) along with the 

d (.. ln
2
J) f e - 2 e ges 1, 1 + or 0 ~ i ~ --2-- Clearly o(G*) = d and ~(G*) = 

d + 1. It is easy to show that 

K' (G*) d. 

We shall prove that 

K' (G*) n - 2 - d. 

From the assumption that m 

that d ~ ~(n - 2). 

~ ~(n) and the fact that e l.!:: 
2 2 

(3.17) 

(3.18 ) 

1 it follows 

If d < n - 2 , then o(G*) 
2 

n - 2 - d n - 1 
l.!:: -2-.- Now using Fact 

(i i), we have 

K' (G*) 

Next let d 

o(G*) 

n - 2 
-2-

n - 2 - d. 

Using the structure of G* we shall show that, 
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n 2 - d 
n - 2 
-2-

n - 4 
If possible let K'(G*) :s -2- and E a set of edges such that lEI 
1(.' (G*) and whose removal disconnects G*. Then there exists a subset A 

s.;; V(G*) such that the set of edges between A and V(G*) - A is 

precisely E. 

Without loss of generality let IAI s IV(G*) 
n 

AI and t IAI· 

Then it follows that t :s 2' Now 

and 

L dG* (x) s t(t - 1) + n ; 4 
xEA 

(3.19) 

(3.20) 

Combining (3 19) and (3.20) and rearranging the terms we have 

(t - l)(t - 12:0 . 

This is possible only if t n 
2: 2 

n 
This gives t = 2 and it follows that there exist xl' x

2 
E A such 

that they are not incident with any of the edges in E. Thus xland x
2 

are adjacent to all the vertices of V - A in G* and are not adjacent 

to any vertex in A. This is a contradiction since from the 

construction of G*, we can see that there is no such pair xl ,x
2 

with 

exactly the neighbour sets. Thus 1(.' (G*) = n - 2 and this same -2-
establishes (3.18) . Using (3.17) and (3.18) , the sharpness of (3.15 ) 

and (3.16) is verified in this subcase. 

Subcase (ii): d is odd; n is even. Note that £ is even in this case. 
n - 2 Let G* be the graph H(n,d) along with the edges (i, --2-- + i) for 0 s 

£ - 2 
i :s --2- Now by arguing along the same lines as in subcase (i) we 

can show the sharpness of (3.15) and (3.16) in this subcase. 
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Subcase (iii)= nand d are both odd. In this case l is also odd. Let 

G* be the graph H(n,d) along with ~ new edges added in such a way 

that MG*) = d + 1. Clearly K' (G*) = d. In this case also one can 

easily show that K'(e*) = n - 2 - d, thus establishing the sharpness 

of (3.15) and (3.16). 

Case B: 1 :s m :s n - 1. 

Subcase (i): 1 :s m < ~. Let G* E ~(n,m) be such that A(G*) :s 1. 

Note that G* is disconnected and so K'(G*) = O. Now K'(e*) = n - 2. 

This establishes the sharpness of (3.15) and (3.16) in this subcase. 

Subcase (ii): n 2' < m :s n - 2. In this case it is easy to see that 

K'(G) + K'(e) :s n - 3 (3.21) 

To show that this bound is sharp, we let G* be a path on m + 1 

vertices. Clearly K' (G*) = 0 and K' (e*) = n - 3. When m :s n - 2, 

obviously G is disconnected and hence K'(G) o giving K'(G).K'(e) = 
O. 

Subcase (iii): m = n - 1. In this case take G* to be a path on n 

vertices. Then K'(G*) 1 and K' (e*) = n - 3. This establishes the 

sharpness of the upper bounds in (3.15) and (3.16) in this subcase. 

This completes the proof of the lemma. o 

Combining Lemmas 3.1, 3.2 and 3.3 we state the following theorem. 

Theorem 3.2 Let G E ~(n,m). Then 

max {l,n - 1 - m} :s K'(G) + K'(e) :s N(n,m), (3.22) 

and 

o :s K' (G).K' (e) :s M(n,m), (3.23) 

where 
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{ 
n - 3 if n + 1 s 2m s 2n 4 

N(n,m) 2 
if (2 s 2m s n) or (m = n - 1) 

n - (2m ~ 0 (mod n) and m ?! n). or 

n - 1 otherwise 

and 

= { 

0 if m s n - 2 

M(n,m) ( 2m) (n _ 1 _ 2m) if 2m == 0 (mod n) and m ?! n n n' 

l2~J (n - 2 - l2~J) , otherwise 

The bounds in (3.22) and (3.23) are sharp for all nand m. o 

4. CHROMATIC NUMBER 

The chromatic number X(G) of a graph G is the minimum number of 

colours needed to colour the vertices of G such that no two adjacent 

vertices receive the same colour. We state some known results that we 

need for our discussion. 

Theorem 4.1 (Nordhaus and Gaddum [12]) 

Let G E ~(n). Then 

2vn s X(G) + X(G) S n + 1 

These bounds are sharp for every n. o 

Finck [10] characterized the extremal graphs for Theorem 4. 1. 

We now describe some of these graphs which we make use of in our 

discussion. 

For 1 S a :s n, let G
1 
(a) = (K

1 
v Ka -

1
) v Kn-

a 
Let ~ (n, m, a) 

11 
denote the class of graphs obtained from G

1
(a) by adding m - ~(a - 1) 

edges between the vertices of K land K . Figure 4.1 illustrates a- n-a 
the construction. Observe that if G E ~l(n,m,a) then X(G) = a and 

X (G) = n + 1 - a. 
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m 

Figure 4.1 ~l(n.m,a) 

2 
-
K 

n-Q. 

For 1 s ~ s n - 5, let G2C~) (CS v K~) v Kn-~-5' 

Let ~2(n,m.~) denote the class of graphs obtained from G2(~) by adding 

1 
m + 5 - 2(~ + 5) (~ + 4) edges between the vertices of K~ and 

Kn-~-5' Figure 4.2 illustrates the construction. Observe that if G E 

~2(n,m,~), then X(G) = ~ + 3 and X(G) = n - ~ 2. 

-
KS Kn-S-S 

( 8+5 ) m + 5 -
2 

edges 

Figure 4.2 ~2(n,m,a) 

Suppose d is a divisor of n. Let G
3

(d) denote the graph 

consisting ~f n~d disjo.int copies of Kd . Label the vertices of the 

i th copy v 1, V 1 •.•• ,v d 1 • Let ~ (n, m, d) denote the class of graphs 
1 2 3 1 i j 

obtained from G
3

(d) by adding m - 2n(d 1) edges of the type v
t 

v
t

' 

such that i '* j and t '* t'. Observe that for G E ~3(n,m,d), the 
1 2 n/d 

induced subgraph G[v
t 

,v
t 

, ... ,v
t 

] has no edges. Further, X(G) = d 

and xCG) = n/d. 

We can now restate a result of Finck [10]. 
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Lemma 4.1 Let G E ~Cn). Then 

(i) X(G) + X(G) = n + 1 if and only if G E ~lCn,m,a) v 

~2(n.m.~) for some a,~ and m; 

(ii) xCGLxCG) =l~(n + 1)2
J 

if and only if G or G belongs 

to ~lCn,m, r~l) v ~2Cn,m, r~Cn - 6)1) for some m; 

(iii) X(G)'xCG) = n if and only if G E ~3(n.m,d) for some 
1 

divisor d of nand m ~ 2nCd - 1). 0 

Henceforth, we assume without any loss of general i ty that m 

Let w be an integer such that m = (~) + t where 0 ~ t ~ w - 1. 

Lemma 4.2 Let G E ~(n.m). Then 

x(G) + X(G) ~ n + 1 . 

This bound is sharp for all nand m. 

(4.1) 

Proof: The inequal ity (4.1) follows from Theorem 4.1. Taking G* E 

~l(n.m,w) the sharpness follows from Lemma 4.1 

Lemma 4.3 Let G E ~(n,m), n'= r~l and m 

Then 

C~) + t, 0 ~ t ~ w - 1. 

x(G).x(G) ~ A(n,m) C4.2) 

where 

A(n,m) [ wCn + 1 - w), otherwise . 

This bound is sharp for all nand m. 
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Proo£,: Let m ~ Then the inequal i ty (4.2) follows from 

Theorem 4.1 and the sharpness follows from Lemma 4.1. Now let m < 
n' 

(2 ). It is easy to see that X(G) :S wand consequently X(G). X(e) :S 

wen + 1 - w). To establish the sharpness in this case, define G* E 

~l(n.m,w). This completes the proof of the lemma. o 

Lemma 4.4 Let G E ~(n, m) and n
1 

(:;t1) be the smallest divisor of n. 

Then 

(4.3) 

where 

{ 

n , if m=O or n is not a prime and m ~ 
(n -1)n 

1 

2 

B(n,m) 2(n-m) 

n + 1 , 

if 1:s m < 

otherwise. 

The inequality (4.3) is sharp for all nand m. 

Proo£,: We shall divide the proof into three cases. 

Case 1: m = 0 or n is not a prime and m ~ 
(n - 1)n 

1 

2 

The inequality (4.3) follows from Theorem 4.1. 

sharpness, we define G* as follows: 

To establ ish the 

(i) G* E ~3(n,0,1), if m 0; 

(ii) G* E ~3(n.m.nl)' if m ~ 1. (This is always possiqle since 

1 n 
m :S 2( 2) ) . 

Now invoking Lemma 4.1 the sharpness is established. 

Case 2: n is odd, not a prime and r~l :S m < 
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(n -1)n 
1 

2 
or n is a 



From Finck's characterization (Lemma 4.1), it follows that in this 

case 

x(G).x(G) ~ n + 1. 

To establish the sharpness, let G* be a subgraph of Kl~J r~l such that 
2 , 2 

G* has a matching of size l~J and c(G*) = m. This is possible since m 

Clearly X(G*) = 2 and X(G*) = n ; 1. Hence the sharpness 

follows. 

Case 3: 1 s m < r ~ 1. 
Since m ~ 1 we have X(G) ~ 2 and it is easy to see that X(G) ~ n - m. 

Hence X(G).X(G) ~ 2(n - m). To establish the sharpness we take G* to 

consist of m independent edges. Clearly X(G*) = 2 and X(G*) = n - m. 

This establishes the sharpness and completes the proof of the lemma. 0 

Lemma 4.5 Let G E ~(n.m) and nl r~l. Then 

x(G) + X(G) ~ C(n,m) (4.4) 

where 

if m = 0 

C(n,m) m • if S m < n' 

otherwise . 

This inequality is sharp when m < n/. 

Proof: If m = 0 then G Sf K and X(G) = 0 and X(G) = n. If 1 S m < n 
nl, it is easy to see that X(G) ~ n - m and hence X(G).X(G) ~ n + 2 -

m and the graph G* consisting of m independent edges shows that the 

inequality is sharp. When m ~ n ' the inequality follows from Theorem 

4.1. 

25 

o 



'"'''' ... _ ..L v ... .J.V...,.l.LL5 v.1.1'1;;;;U.1 'C;11l. 

Theorem 4.2 Let G E ~(n,m), n' = r~l, 
of n and m = (~) + t, 0 s t s w - 1. 

n (:;1:1) be the smallest divisor 
1 

Then 

C(n,m) s X(G) + X(G) s n + 1 (4.5) 

and 

B(n,m) s X(G).X(G) s A(n,m) (4.6) 

where 

2 
(n) 

{ 
l(n; 1) J- if m 2:; 

2 

A(n,m) 

wen + 1 - w) otherwise; 

if m=O n is not a prime and m 
(n

l
-1)n 

{ 
n or 2:; 

2 

B(n,m) 2(n-m) if 1 s m < n ' 

n + 1 otherwise ; 

and 

{ 
n + 1 if m = 0 

C(n,m) n + 2 - m , if s m < n' 

r2Vril 
, otherwise 

The upper bounds and the lower bound in (4.6) are sharp for all n and 

m. The lower bound in (4.5) is sharp for 0 s m < n/. o 

The sharpness of the lower bound in (4.5) is not established for 

m 2:; n/. 
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