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1. Introduction. 

Let F denote a simply generated family of rooted trees whose generating 

function Y Ynxn satisfies a relation of the form Y = xcp(y) where cp( t) = 
00 

1 + L: If some mild conditions are satisfied, then Y n "'-' c( cp( T ) / T t . n -3 /2 
1 

where TCP' (T) cp( T). We say that a node v in a rooted tree has out-degree k 

if v is incident with k edges that lead away from the root of Tn. Our object here 

is to the behaviour of the maximum ~ ~(Tn) of trees 

in F. After describing briefly in §2 the ;:"'A~vL .u,,,,,-,u- families of trees we shall 

be considering, we obtain bounds in §3 for Pr{~ < k} in terms of the function 
00 

rk(T) .z=CmTm
. Then in §4 we obtain certain inequalities involving the functions 

k 
rk( T), assuming henceforth that the coefficients are well-behaved. Our 

main result is in §5 where we show that if D( n) max { k : nr k( T) 2': I} then 

Pr{(l- €)D(n) < ~(Tn) < (1 + €)D(n)} -t 1 as n -t 00. We consider the problem 

of estimating D(n) in §6; we find that D(n) rv logn/log(R/r) if cp(t) has a finite 

radius of convergence R while D(n) = o(logn) if cp(t) is an entire function. Finally, 

in §7 we consider some particular families of trees. For example, if 1>(t) (1- t)-l 

and F is the family of plane trees then D(n) 1 + [log2 n]; and if 4>(t) = et and 

F is the family of rooted labelled trees then D(n) rv logn/loglogn. (\Ve remark 

that the problem of determining the behaviour of ~(Tn) for this last family was 

cC?nsidered earlier in [6].) 
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2. Sinlply generated families. 

\Ve recall that plane trees - or ordered trees, as they are called some authors 

[2; p. 306] - are rooted trees with an ordering specified for the branches incident 

with each node. To each such tree Tn we assign a non-negative weight w(Tn) sat­

isfying the foHowing condition: there exists a sequence of non-negative constants 

Co (= 1), Cl , Cz,. . such that 

(2.1 ) 

for every plane tree Tn, where dm(Tn) denotes the number of nodes of out-degree 

m in Tn. The collection of plane trees with such an assignment of weights will 

be called a simply generated family, henceforth denoted by F. Let Yn denote the 

number of trees Tn in the family F where the weights are taken into account (both 

here and elsewhere); that is 

(2.2) 

where the sum is over all plane trees with n nodes. It is not difficult to see (cf. 

[3; p. 999J or [9; p. 24]) that if F is a simply generated family then its generating 
00 

function y = 2: Ynxn satisfies the relation 
1 

(2.3) Y = x<1'(y) 

where <1'(t) = 1 + 2:~ cmtm. 

We shall assume henceforth that F is some given simply generated family 

such that the function <1'(t) appearing in (2.3) is regular when It I < R :s; 00. \Ve 

further assume that 

(2.4) 

(2.5) 

(2.6) 

Cm ~ 0 for m 1, 

gcd{m : Cm > O} 1, and 

7<1"(7) = <1'(7) for some 7, where 0 < 7 < R. 

It follows from these assumptions (see [8; p. 216], [3; p. 999], or [9; p. 32]) that 

y(x) is regular when Ixl :s; p, x i- p, where p = 7/<1'(7); lnoreover, y(p) 7 and 

as n -+ 00, where C (<1'(7)/27r<1'"(7))1/Z. 
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3. Bounds for Pr{.6.(Tn) < k}. 
<Xl 

Let rk(t) .L::cmtm for k = 0,1, .... We now establish bounds for 
k 

Pr{.6.(Tn} < k}, where .6.(Tn) denotes the maximum out-degree of nodes in the 

tree Tn, assuming that any given tree Tn is selected from the trees in :F with n 

nodes with probability w(Tn)/Yn. 

LEMMA 1. Let A = 2r/c and B = l/4>(r). Then 

(3.1) Pr{.6.(Tn) < k} < An1/ 2 . e-Bnrk(r) 

for k 1,2, . .. and all sufficiently large values of n. 

PROOF: Let ilk = ih(x) = :E fhnxn where ihn denotes the number of trees Tn in 

:F such that .6.(Tn) < k. Then it is not difficult to see that Y k satisfies the relation 

Yk = xif!k(fik) where 4>k(t) 4>(t) -rk(t). Thus it follows from Lagrange's inversion 

formula (see, e.g., [1; 148]) that 

where Cm{J(t)} denotes the coefficient of tm in the power series expansion of J(t). 

Therefore, 

ihnrn-1 :S: n- 1 • (if!k(r)f 

=n- I .{4>(r) rk(r)}n 

This implies inequality (3.1) since Pr{ .6.(Tn) < k} Ykn/Yn and Yn rv c( 4>( r )/r)n. 
n-3 / 2 . 

Notice that if 4>(t) is a polynomial of exact degree h, then it follows from 

Lemma 1 that Pr{ .6.(Tn) = h} ---t 1 as n ---t 00. So we will assume henceforth that 

em > 0 for infinitely many m, i.e., that rk( r) > 0 for all k. 

We shall need two known results in proving the next inequality. Firstly, let 

ek(n) denote the expected number of nodes of out-degree at least k in a tree Tn in 

F, where the expectation is taken over all trees Tn in F; then it follows from [4; 

Theorem 4] (see also [9; p. 26]) that 

<Xl 

(3.2) Lek(n)YnXn = x2rk(Y(X))Y'(x)/y(x) 
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for k 0,1, .... Secondly, it was shown in [5] (see also [7; p. 305]) that for each 

family F there exists a positive constant Q such that if y = Te iB
, where lei ~ rr, 

then 

LEMMA 2. Let]{ = p( c2rrQ)-1/2. Then 

for k = 0,1, '" and all sufficiently large values of n. 

PROOF: We first observe that Pr{.6.(Tn) 2:: k} ~ ek(n), by Boole's inequality. 

Hence it follows from (3.2) and Cauchy's theorem that 

where the integration is along a small circle around x = O. Since y'(O) = 1 we 

may change variables by letting x = yjif!(y); consequently 

where now the integration can be taken around the circle Iyl = T. But if y = Te iB
, 

where lei ~ rr, then Irk(y)1 ~ rk(T). Therefore, taking absolute values arid applying 

(3.3), we find that 

Pr{.6.(Tn) 2:: k}Yn ~ (2rr)-lrk(T)' (if!(T)jTt-l [7r7r e-(n-l)Q02 de 

:::; (4rr(n - 1)Q)-1/2. (if!(T)jT)n-l . rk(T). 

This implies inequality (3.4) since Yn "-' C(if!(T)jT)n. n-3j2 . 
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4. Some inequalities for rk( T). 

In the last section we obtained bounds for Pr{ ~(Tn) < k} in terms of the 
00 

function r k ( T) = I: em T m • We need some information about the behaviour of 
k 

r k = r k ( T) as k -t 00 in order to exploit these bounds. In the following two lemmas 

we consider separately the cases when R, the radius of convergence of the function 

<1>( t), is finite or is infinite. 

LEMMA 3. Suppose that R < 00 and that 

(4.1 ) 

as m -t 00. Then for every 8 > 0 there exists a number J such that if j 2:: J and 

R ~ (1 + 28)j, then 

( 4.2) 

PROOF: 

( 4.3) 

and 

( 4.4) 

Let € denote a positive constant such that 

1 
€ < -(R - T) 

2 

It follows from assumption (4.1) that there exists an integer N such that if 

m 2:: N, then 

Consequently, if k ~ N then 

00 

( 4.5) 
(T/(R+ €)l < rk < L)T/(R _ €))m 

k 

where U = 2R/(R - T), using (4.3) at the last step. 
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Now let l and j be such that £ 2:: (1 + 28)j. Then, appealing to (4.5) twice, 

we find that 

U, (R + €)(1+6)j . (_r_)l-(1+6)j , (_T_)(1+6)j 
R-€ R € R+€ 

if j 2:: N, Condition ( 4.4) implies that the coefficient of r j 1 +6 in this last expression 

is less than one when j 2:: M for sufficiently large M. Hence rl < r/+6 when 

j 2:: J = max{M, N}, as required. 

LEMMA 4. Suppose that R = 00 so that 

( 4.6) Cm lim -+ 0 

as m -+ 00. In addition, suppose tbat 

( 4.7) 

wben k 2:: N, Tben for every 8 > 0 tbere exists a number L sucb tlJat if j 2:: Land 

l 2:: (1 + 28)j, tben 

( 4.8) 

PROOF: Choose L so that L 2:: N, c//jr < 1/2, and (c/ li r)6 < 1/2 for j 2:: L, 

Then it follows from our assumptions that 

CHvrHv S (clr1)(Hv)/l 

= clr~ . (c//1r t S clTl (1/2t 

for v = 0,1, ... , Hence rl S 2ClTl, 

On the other hand, it also follows from our assumptions that 

l /. l /. l 6j 1/' )6 j 
ccr S (c/ J T) = (c/ J r ) - . (Cj J r 

< (C/ liT)(l+6)j . (1/2)i = (Cjr i )1+6 . (1/2)j < r/+6 -.(1/2)j, 
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Hence, re ::; 2ClTl < r/+6 . (1/2)j-l ::; r/+6, as required. 

We remark that it can be shown that conclusion (4.8) also holds if condition 

(4.7) is replaced by either of the following conditions: there exist positive numbers 

Nand H such that max{c~/h: k::; h::; 2k} ::; HCk1/k for all k ~ N or Cm > 0 for 

all m and ck+d Ck decreases to 0 as k -+ 00. 

5. Main result. 

Let D(n) = max{k : nrk(T) ~ I}. We now show that the distribution 

of ~(Tn) is concentrated around D( n) if the coefficients Cm are reasonably well­

behaved. 

THEOREM 1. Suppose the coefficients em satisfy the conditions of Lemma 3 or of 

Lemma 4. Then for every € > 0 

Pr{(l - €)D(n) < 6.(Tn) < (1 + €)D(n)} ~ 1 

as n -+ 00. 

PROOF: We first show that 

(5.1) Pr{ 6.(Tn) ~ (1 + €)D(n)} -+ 0 

as n ~ 00. Let h = D(n), e = [(1 + €)h], and 8 = €/3. Since we are assuming 

that <pet) is not a polynomial, it follows that h -+ 00 as n -+ 00. Thus we may 

suppose that n is large enough to ensure that (1 + 28)( h + 1) < e and that, by 

Lemma 3 or Lemma 4, rc < (rh+l )1+6. But rh+l < n-1, by the definition of h, so 

nrc < n· n-1 - 6 = n-6. Hence it follows from Lemma 2 that 

and this implies (5.1). 

We now show that 

(5.2) Pr{~(Tn) ::; (1 - €)D(n)} -+ 0 
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as n -+ 00. As before, we let h = D(n) and 8 = f/3 but this time we let J 

[(1- f)h] + 1. We may suppose that n is large enough to ensure that (1 + 28)j ~ h 

and that, by Lemma 3 or Lemma 4, rh < r/+6 • But rh ~ n- 1 so 

Hence it follows from Lemma 1 that 

and this implies (5.2) and completes the proof of the theorem. 

6. The behaviour of D(n). 

We now consider the problem of estimating the function 

D(n) = max{k : nrk(r) ~ I}. It turns out that the behaviour of D(n) depends on 

whether R, the radius of convergence of !..p(t), is finite or infinite. 

THEOREM 2. Suppose that R < 00 and that 

as m -+ 00. Then 

D(n) r-..J 10gn/log(R/r) 

as n -+ 00. 

PROOF: We saw in the proof of Lemma 3 that if f is any sufficiently small positive 

constant, then there exists an integer N such that if Ie ~ N then 

(6.1 ) (r/(R + €))k < rk < U. (r/(R - €))k 

where U = 2R/(R-r). Now let h = D(n); we may suppose that '/1 is large enough 

to ensure that h ~ N. Then it follows from (6.1) and the definition of h that 

Consequently 

hlog«R - €)/r) -logU < logn < (h + l)log«R + €)/r), 
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which implies the required result. 

THEOREM 3. Suppose that R = 00 so that 

Cm 11 m -4 0 

as m -t 00. Then 

D(n) = o(logn) 

as n -4 00. 

PROOF: For any small positive to, let 5 = T- 1 . 1 we may suppose that 

to < 1/ log 2 so that 57 < 1/2. There exists an integer N such that if m ~ N then 

Cm < 8m ; hence if k ~ N, then 

00 

rk < L(5T)m < 2(5r)k. 
k 

Now let h D(n); we may suppose that n is large enough to ensure that h ~ N. 

Then, since r h ~ n -1 , it follows that 

1 hi!'. _. e . 
2 

Consequently, h < dog(2n) and this implies the required result. 

7. Special cases. 

The plane trees and the rooted labelled trees illustrate the contrast in the 

behaviour of D(n) when R < 00 and when R 00. For the trees <1>(t) = 
(1 - t)-I, so R = 1, 7 = 1/2, and rk( T) = (1/2)k-l; consequently, D( n) = 

1 + [log2 n] in accordance with Theorem 2. For the rooted labelled trees <1>(t) = et 

so R 00 and 7 = 1; it is not difficult to see that for this case 1/ k! < r k( T) < 
(1 + k- 1

)/ k! from which it follows that D( n) log 11/ log log n (see also [6]). 

In general, when R = 00 the behaviour of D( 11) depends very much on 

the rate at which the coefficients em of <1>( t) approach zero. For example, let g( x) 

denote an increasing function of x such that g( x) -t 00 and g( x + 1) g( x) -t 00 as 
00 

x -t 00. Consider the function <1>(t) = 1 + L cmtm where Cm = e-g(m) for m ~ 3, 
1 

00 

C2 = 1 - L::(m - l)cm , and Cl = O. Then R = 00,7 = 1, and Tk( T) rv Ck t'V 

3 
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e-g(k) as k -+ 00; consequently, D( n) rv g-1 (log n) for this family, where g-1 

denotes the inverse of the function g. In particular, if g( x) eX then D( n) rv 

log log n, if g( x) = then D( n) '" log log log n, and so on. And if, for example, 

g(x) = xlogx then D(n) f'V logn/loglogn, and if g(x) = x log log x, then D(n) I".) 

log n/ log log log n, and so on. Consequently, D(n) can approach infinity arbitrarily 

slowly and Theorem 3 is, in a sense, best possible. 

\Ve remark in closing that it is not difficult to show that the expected value 

of .6.(Tn) is asymptotically equal to D(n) as n -+ 00, assuming that cf?(t) satisfies 

the hypothesis of Lemma 3 or of Lemma 4. 
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