ON THE MAXIMUM OUT-DEGREE IN RANDOM TREES

A. Meir and J.W. Moon

Department of Mathematics University of Alberta Edmonton, Alberta, Canada T6G 2G1

1. Introduction.

Let \mathcal{F} denote a simply generated family of rooted trees whose generating function $y = \sum_{1}^{\infty} y_n x^n$ satisfies a relation of the form $y = x \Phi(y)$ where $\Phi(t) =$ $1 + \sum_{i=1}^{\infty} c_m t^m$. If some mild conditions are satisfied, then $y_n \sim c(\Phi(\tau)/\tau)^n \cdot n^{-3/2}$ where $\tau \Phi'(\tau) = \Phi(\tau)$. We say that a node v in a rooted tree T_n has out-degree k if v is incident with k edges that lead away from the root of T_n . Our object here is to investigate the behaviour of the maximum out-degree $\Delta = \Delta(T_n)$ of trees T_n in \mathcal{F} . After describing briefly in §2 the simply generated families of trees we shall be considering, we obtain bounds in §3 for $Pr\{\Delta < k\}$ in terms of the function $r_k(\tau) = \sum_{k=1}^{\infty} c_m \tau^m$. Then in §4 we obtain certain inequalities involving the functions $r_k(\tau)$, assuming henceforth that the coefficients are reasonably well-behaved. Our main result is in §5 where we show that if $D(n) = \max\{k : nr_k(\tau) \ge 1\}$ then $Pr\{(1-\epsilon)D(n) < \Delta(T_n) < (1+\epsilon)D(n)\} \to 1 \text{ as } n \to \infty.$ We consider the problem of estimating D(n) in §6; we find that $D(n) \sim \log n / \log(R/\tau)$ if $\Phi(t)$ has a finite radius of convergence R while $D(n) = o(\log n)$ if $\Phi(t)$ is an entire function. Finally, in §7 we consider some particular families of trees. For example, if $\Phi(t) = (1-t)^{-1}$ and \mathcal{F} is the family of plane trees then $D(n) = 1 + \lfloor \log_2 n \rfloor$; and if $\Phi(t) = e^t$ and \mathcal{F} is the family of rooted labelled trees then $D(n) \sim \log n / \log \log n$. (We remark that the problem of determining the behaviour of $\Delta(T_n)$ for this last family was considered earlier in [6].)

Australasian Journal of Combinatorics 2(1990) pp 147-156

2. Simply generated families.

We recall that *plane* trees - or *ordered* trees, as they are called by some authors [2; p. 306] - are rooted trees with an ordering specified for the branches incident with each node. To each such tree T_n we assign a non-negative weight $\omega(T_n)$ satisfying the following condition: there exists a sequence of non-negative constants $c_0(=1), c_1, c_2, \ldots$ such that

(2.1)
$$\omega(T_n) = \prod_{0}^{\infty} c_m^{d_m(T_n)}$$

for every plane tree T_n , where $d_m(T_n)$ denotes the number of nodes of out-degree m in T_n . The collection of plane trees with such an assignment of weights will be called a *simply generated family*, henceforth denoted by \mathcal{F} . Let y_n denote the number of trees T_n in the family \mathcal{F} where the weights are taken into account (both here and elsewhere); that is

$$(2.2) y_n = \Sigma \ \omega(T_n)$$

where the sum is over all plane trees with n nodes. It is not difficult to see (cf. [3; p. 999] or [9; p. 24]) that if \mathcal{F} is a simply generated family then its generating function $y = \sum_{n=1}^{\infty} y_n x^n$ satisfies the relation

$$(2.3) y = x\Phi(y)$$

where $\Phi(t) = 1 + \sum_{1}^{\infty} c_m t^m$.

We shall assume henceforth that \mathcal{F} is some given simply generated family such that the function $\Phi(t)$ appearing in (2.3) is regular when $|t| < R \leq \infty$. We further assume that

 $(2.4) c_m \ge 0 \text{for} m \ge 1,$

(2.5) $gcd\{m: c_m > 0\} = 1$, and

(2.6) $\tau \Phi'(\tau) = \Phi(\tau)$ for some τ , where $0 < \tau < R$.

It follows from these assumptions (see [8; p. 216], [3; p. 999], or [9; p. 32]) that y(x) is regular when $|x| \leq \rho$, $x \neq \rho$, where $\rho = \tau/\Phi(\tau)$; moreover, $y(\rho) = \tau$ and

(2.7)
$$y_n \sim c(\Phi(\tau)/\tau)^n \cdot n^{-3/2}$$

as $n \to \infty$, where $c = (\Phi(\tau)/2\pi \Phi''(\tau))^{1/2}$.

3. Bounds for $Pr\{\Delta(T_n) < k\}$.

Let $r_k(t) = \sum_{k=0}^{\infty} c_m t^m$ for $k = 0, 1, \ldots$ We now establish bounds for $Pr\{\Delta(T_n) < k\}$, where $\Delta(T_n)$ denotes the maximum out-degree of nodes in the tree T_n , assuming that any given tree T_n is selected from the trees in \mathcal{F} with n nodes with probability $\omega(T_n)/y_n$.

LEMMA 1. Let $A = 2\tau/c$ and $B = 1/\Phi(\tau)$. Then

$$(3.1) Pr\{\Delta(T_n) < k\} < An^{1/2} \cdot e^{-Bnr_k(\tau)}$$

for k = 1, 2, ... and all sufficiently large values of n.

PROOF: Let $\bar{y}_k = \bar{y}_k(x) = \Sigma \ \bar{y}_{kn} x^n$ where \bar{y}_{kn} denotes the number of trees T_n in \mathcal{F} such that $\Delta(T_n) < k$. Then it is not difficult to see that \bar{y}_k satisfies the relation $\bar{y}_k = x \Phi_k(\bar{y}_k)$ where $\Phi_k(t) = \Phi(t) - r_k(t)$. Thus it follows from Lagrange's inversion formula (see, e.g., [1; 148]) that

$$\bar{y}_{kn} = n^{-1} \cdot \mathcal{C}_{n-1}\left\{\left(\Phi_k(t)\right)^n\right\}$$

where $C_m{f(t)}$ denotes the coefficient of t^m in the power series expansion of f(t). Therefore,

$$\begin{split} \bar{y}_{kn}\tau^{n-1} &\leq n^{-1} \cdot \left(\Phi_k(\tau)\right)^n \\ &= n^{-1} \cdot \left\{\Phi(\tau) - r_k(\tau)\right\}^n \\ &\leq n^{-1}\Phi^n(\tau) \cdot e^{-Bnr_k(\tau)}. \end{split}$$

This implies inequality (3.1) since $Pr\{\Delta(T_n) < k\} = \bar{y}_{kn}/y_n$ and $y_n \sim c(\Phi(\tau)/\tau)^n \cdot n^{-3/2}$.

Notice that if $\Phi(t)$ is a polynomial of exact degree h, then it follows from Lemma 1 that $Pr\{\Delta(T_n) = h\} \to 1$ as $n \to \infty$. So we will assume henceforth that $c_m > 0$ for infinitely many m, i.e., that $r_k(\tau) > 0$ for all k.

We shall need two known results in proving the next inequality. Firstly, let $e_k(n)$ denote the expected number of nodes of out-degree at least k in a tree T_n in \mathcal{F} , where the expectation is taken over all trees T_n in \mathcal{F} ; then it follows from [4; Theorem 4] (see also [9; p. 26]) that

(3.2)
$$\sum_{1}^{\infty} e_k(n) y_n x^n = x^2 r_k(y(x)) y'(x) / y(x)$$

for $k = 0, 1, \ldots$ Secondly, it was shown in [5] (see also [7; p. 305]) that for each family \mathcal{F} there exists a positive constant Q such that if $y = \tau e^{i\theta}$, where $|\theta| \leq \pi$, then

$$|\Phi(y)| \le \Phi(\tau) e^{-Q\theta^2}.$$

LEMMA 2. Let $K = \rho(c^2 \pi Q)^{-1/2}$. Then

$$(3.4) Pr\{\Delta(T_n) \ge k\} \le Knr_k(\tau)$$

for k = 0, 1, ... and all sufficiently large values of n.

PROOF: We first observe that $Pr\{\Delta(T_n) \ge k\} \le e_k(n)$, by Boole's inequality. Hence it follows from (3.2) and Cauchy's theorem that

$$Pr\{\Delta(T_n) \ge k\} y_n \le (2\pi i)^{-1} \int r_k(y(x)) x^{1-n}(y'(x)/y(x)) dx$$

where the integration is along a small circle around x = 0. Since y'(0) = 1 we may change variables by letting $x = y/\Phi(y)$; consequently

$$Pr\{\Delta(T_n) \ge k\}y_n \le (2\pi i)^{-1} \int r_k(y) \Phi^{n-1}(y) \cdot y^{-n} dy$$

where now the integration can be taken around the circle $|y| = \tau$. But if $y = \tau e^{i\theta}$, where $|\theta| \leq \pi$, then $|r_k(y)| \leq r_k(\tau)$. Therefore, taking absolute values and applying (3.3), we find that

$$Pr\{\Delta(T_n) \ge k\}y_n \le (2\pi)^{-1} r_k(\tau) \cdot (\Phi(\tau)/\tau)^{n-1} \int_{-\pi}^{\pi} e^{-(n-1)Q\theta^2} d\theta$$
$$\le (4\pi(n-1)Q)^{-1/2} \cdot (\Phi(\tau)/\tau)^{n-1} \cdot r_k(\tau).$$

This implies inequality (3.4) since $y_n \sim c(\Phi(\tau)/\tau)^n \cdot n^{-3/2}$.

4. Some inequalities for $r_k(\tau)$.

In the last section we obtained bounds for $Pr\{\Delta(T_n) < k\}$ in terms of the function $r_k(\tau) = \sum_{k}^{\infty} c_m \tau^m$. We need some information about the behaviour of $r_k = r_k(\tau)$ as $k \to \infty$ in order to exploit these bounds. In the following two lemmas we consider separately the cases when R, the radius of convergence of the function $\Phi(t)$, is finite or is infinite.

LEMMA 3. Suppose that $R < \infty$ and that

$$(4.1) c_m^{1/m} \to R^{-1}$$

as $m \to \infty$. Then for every $\delta > 0$ there exists a number J such that if $j \ge J$ and $\ell \ge (1+2\delta)j$, then

$$(4.2) r_{\ell} < r_{j}^{1+\delta}$$

PROOF: Let ϵ denote a positive constant such that

(4.3)
$$\epsilon < \frac{1}{2}(R-\tau)$$

and

(4.4)
$$\{(R+\epsilon)/(R-\epsilon)\}^{1+\delta} \cdot \{\tau/(R-\epsilon)\}^{\delta} < 1.$$

It follows from assumption (4.1) that there exists an integer N such that if $m \ge N$, then

$$(R+\epsilon)^{-m} < c_m < (R-\epsilon)^{-m}.$$

Consequently, if $k \geq N$ then

(4.5)
$$(\tau/(R+\epsilon))^k < r_k < \sum_k^\infty (\tau/(R-\epsilon))^m < U \cdot (\tau/(R-\epsilon))^k$$

where $U = 2R/(R - \tau)$, using (4.3) at the last step.

Now let ℓ and j be such that $\ell \ge (1+2\delta)j$. Then, appealing to (4.5) twice, we find that

$$r_{\ell} < U \cdot (\tau/(R-\epsilon))^{\ell}$$

$$= U \cdot \left(\frac{R+\epsilon}{R-\epsilon}\right)^{(1+\delta)j} \cdot \left(\frac{\tau}{R-\epsilon}\right)^{\ell-(1+\delta)j} \cdot \left(\frac{\tau}{R+\epsilon}\right)^{(1+\delta)j}$$

$$< U \cdot \left\{ \left(\frac{R+\epsilon}{R-\epsilon}\right)^{1+\delta} \cdot \left(\frac{\tau}{R-\epsilon}\right)^{\delta} \right\}^{j} \cdot r_{j}^{1+\delta}$$

if $j \geq N$. Condition (4.4) implies that the coefficient of $r_j^{1+\delta}$ in this last expression is less than one when $j \geq M$ for sufficiently large M. Hence $r_{\ell} < r_j^{1+\delta}$ when $j \geq J = \max\{M, N\}$, as required.

LEMMA 4. Suppose that $R = \infty$ so that

$$(4.6) c_m^{-1/m} \to 0$$

as $m \to \infty$. In addition, suppose that

(4.7)
$$c_{k+1}^{1/(k+1)} \le c_k^{1/k}$$

when $k \ge N$. Then for every $\delta > 0$ there exists a number L such that if $j \ge L$ and $\ell \ge (1+2\delta)j$, then

$$(4.8) r_{\ell} < r_j^{1+\delta}.$$

PROOF: Choose L so that $L \ge N$, $c_j^{1/j}\tau < 1/2$, and $(c_j^{1/j}\tau)^{\delta} < 1/2$ for $j \ge L$. Then it follows from our assumptions that

$$c_{\ell+\nu}\tau^{\ell+\nu} \leq (c_{\ell}\tau^{\ell})^{(\ell+\nu)/\ell}$$
$$= c_{\ell}\tau^{\ell} \cdot (c_{\ell}^{1/\ell}\tau)^{\nu} \leq c_{\ell}\tau^{\ell}(1/2)^{\nu}$$

for $\nu = 0, 1, \ldots$ Hence $r_{\ell} \leq 2c_{\ell}\tau^{\ell}$.

On the other hand, it also follows from our assumptions that

$$c_{\ell}\tau^{\ell} \leq (c_{j}^{1/j}\tau)^{\ell} = (c_{j}^{1/j}\tau)^{\ell-\delta j} \cdot (c_{j}^{1/j}\tau)^{\delta j}$$

$$< (c_{j}^{1/j}\tau)^{(1+\delta)j} \cdot (1/2)^{j} = (c_{j}\tau^{j})^{1+\delta} \cdot (1/2)^{j} < r_{j}^{1+\delta} \cdot (1/2)^{j}.$$

152

Hence, $r_{\ell} \leq 2c_{\ell}\tau^{\ell} < r_j^{1+\delta} \cdot (1/2)^{j-1} \leq r_j^{1+\delta}$, as required.

We remark that it can be shown that conclusion (4.8) also holds if condition (4.7) is replaced by either of the following conditions: there exist positive numbers N and H such that $\max\{c_k^{1/h}: k \le h \le 2k\} \le Hc_k^{1/k}$ for all $k \ge N$ or $c_m > 0$ for all m and c_{k+1}/c_k decreases to 0 as $k \to \infty$.

5. Main result.

Let $D(n) = \max\{k : nr_k(\tau) \ge 1\}$. We now show that the distribution of $\Delta(T_n)$ is concentrated around D(n) if the coefficients c_m are reasonably wellbehaved.

THEOREM 1. Suppose the coefficients c_m satisfy the conditions of Lemma 3 or of Lemma 4. Then for every $\epsilon > 0$

$$Pr\{(1-\epsilon)D(n) < \Delta(T_n) < (1+\epsilon)D(n)\} \to 1$$

as $n \to \infty$.

PROOF: We first show that

(5.1)
$$Pr\{\Delta(T_n) \ge (1+\epsilon)D(n)\} \to 0$$

as $n \to \infty$. Let h = D(n), $\ell = [(1 + \epsilon)h]$, and $\delta = \epsilon/3$. Since we are assuming that $\varphi(t)$ is not a polynomial, it follows that $h \to \infty$ as $n \to \infty$. Thus we may suppose that n is large enough to ensure that $(1 + 2\delta)(h + 1) < \ell$ and that, by Lemma 3 or Lemma 4, $r_{\ell} < (r_{h+1})^{1+\delta}$. But $r_{h+1} < n^{-1}$, by the definition of h, so $nr_{\ell} < n \cdot n^{-1-\delta} = n^{-\delta}$. Hence it follows from Lemma 2 that

$$\begin{aligned} \Pr\{\Delta(T_n) \geq (1+\epsilon)h\} &\leq \Pr\{\Delta(T_n) \geq \ell\} \\ &\leq Knr_{\ell} < Kn^{-\delta}, \end{aligned}$$

and this implies (5.1).

We now show that

(5.2)
$$Pr\{\Delta(T_n) \le (1-\epsilon)D(n)\} \to 0$$

as $n \to \infty$. As before, we let h = D(n) and $\delta = \epsilon/3$ but this time we let $j = [(1-\epsilon)h] + 1$. We may suppose that n is large enough to ensure that $(1+2\delta)j \le h$ and that, by Lemma 3 or Lemma 4, $r_h < r_j^{1+\delta}$. But $r_h \ge n^{-1}$, so

$$nr_{j} > nr_{h}^{1/(1+\delta)} \ge n \cdot n^{-1/(1+\delta)} = n^{\delta/(1+\delta)}.$$

Hence it follows from Lemma 1 that

$$Pr\{\Delta(T_n) \le (1-\epsilon)h\} = Pr\{\Delta(T_n) < j\}$$

$$< An^{1/2} \cdot e^{-Bnr_j} < An^{1/2} \cdot e^{-Bn^{\delta/(1+\delta)}}$$

and this implies (5.2) and completes the proof of the theorem.

6. The behaviour of D(n).

We now consider the problem of estimating the function $D(n) = \max\{k : nr_k(\tau) \ge 1\}$. It turns out that the behaviour of D(n) depends on whether R, the radius of convergence of $\varphi(t)$, is finite or infinite.

THEOREM 2. Suppose that $R < \infty$ and that

$$c_m^{1/m} \to R^{-1}$$

as $m \to \infty$. Then

$$D(n) \sim \log n / \log(R/\tau)$$

as $n \to \infty$.

PROOF: We saw in the proof of Lemma 3 that if ϵ is any sufficiently small positive constant, then there exists an integer N such that if $k \ge N$ then

(6.1)
$$(\tau/(R+\epsilon))^k < r_k < U \cdot (\tau/(R-\epsilon))^k$$

where $U = 2R/(R-\tau)$. Now let h = D(n); we may suppose that n is large enough to ensure that $h \ge N$. Then it follows from (6.1) and the definition of h that

$$U^{-1} \cdot ((R-\epsilon)/\tau)^h < {r_h}^{-1} \le n < {r_{h+1}}^{-1} < ((R+\epsilon)/\tau)^{h+1}$$

Consequently

$$h \log((R-\epsilon)/\tau) - \log U < \log n < (h+1) \log((R+\epsilon)/\tau),$$

$$\sqrt{54}$$

which implies the required result.

THEOREM 3. Suppose that $R = \infty$ so that

$$c_m^{1/m} \to 0$$

as $m \to \infty$. Then

$$D(n) = o(\log n)$$

as $n \to \infty$.

PROOF: For any small positive ϵ , let $\delta = \tau^{-1} \cdot e^{-1/\epsilon}$; we may suppose that $\epsilon < 1/\log 2$ so that $\delta \tau < 1/2$. There exists an integer N such that if $m \ge N$ then $c_m < \delta^m$; hence if $k \ge N$, then

$$r_k < \sum_k^\infty (\delta \tau)^m < 2(\delta \tau)^k.$$

Now let h = D(n); we may suppose that n is large enough to ensure that $h \ge N$. Then, since $r_h \ge n^{-1}$, it follows that

$$n \ge r_h^{-1} > \frac{1}{2} (\delta \tau)^{-h} = \frac{1}{2} \cdot e^{h/\epsilon}.$$

Consequently, $h < \epsilon \log(2n)$ and this implies the required result.

7. Special cases.

The plane trees and the rooted labelled trees illustrate the contrast in the behaviour of D(n) when $R < \infty$ and when $R = \infty$. For the plane trees $\Phi(t) = (1-t)^{-1}$, so R = 1, $\tau = 1/2$, and $r_k(\tau) = (1/2)^{k-1}$; consequently, $D(n) = 1 + [\log_2 n]$ in accordance with Theorem 2. For the rooted labelled trees $\Phi(t) = e^t$ so $R = \infty$ and $\tau = 1$; it is not difficult to see that for this case $1/k! < r_k(\tau) < (1+k^{-1})/k!$ from which it follows that $D(n) \sim \log n/\log \log n$ (see also [6]).

In general, when $R = \infty$ the behaviour of D(n) depends very much on the rate at which the coefficients c_m of $\Phi(t)$ approach zero. For example, let g(x)denote an increasing function of x such that $g(x) \to \infty$ and $g(x + 1) - g(x) \to \infty$ as $x \to \infty$. Consider the function $\Phi(t) = 1 + \sum_{1}^{\infty} c_m t^m$ where $c_m = e^{-g(m)}$ for $m \ge 3$, $c_2 = 1 - \sum_{3}^{\infty} (m-1)c_m$, and $c_1 = 0$. Then $R = \infty, \tau = 1$, and $r_k(\tau) \sim c_k \sim$ $e^{-g(k)}$ as $k \to \infty$; consequently, $D(n) \sim g^{-1}(\log n)$ for this family, where g^{-1} denotes the inverse of the function g. In particular, if $g(x) = e^x$ then $D(n) \sim \log \log n$, if $g(x) = e^{e^x}$ then $D(n) \sim \log \log \log n$, and so on. And if, for example, $g(x) = x \log x$ then $D(n) \sim \log n / \log \log n$, and if $g(x) = x \log \log x$, then $D(n) \sim \log n / \log \log n$, and if $g(x) = x \log \log x$, then $D(n) \sim \log n / \log \log n$, and if $g(x) = x \log \log x$, then $D(n) \sim \log n / \log \log \log n$, and so on. Consequently, D(n) can approach infinity arbitrarily slowly and Theorem 3 is, in a sense, best possible.

We remark in closing that it is not difficult to show that the expected value of $\Delta(T_n)$ is asymptotically equal to D(n) as $n \to \infty$, assuming that $\Phi(t)$ satisfies the hypothesis of Lemma 3 or of Lemma 4.

The preparation of this paper was assisted by grants from the Natural Sciences and Engineering Research Council of Canada.

References

- [1] L. Comtet, Advanced Combinatorics, Reidel, Dordrect, 1974.
- [2] D.E. Knuth, The Art of Computer Programming, Vol. I, Addison-Wesley, Reading, 1973.
- [3] A. Meir and J.W. Moon, On the altitude of nodes in random trees, Can. J. Math. 30 (1978) 997-1015.
- [4] A. Meir and J.W. Moon, On nodes of out-degree one in random trees, Colloq. Math. Soc. J. Bolyai 52 (1987) 405-416.
- [5] A. Meir and J.W. Moon, The asymptotic behaviour of coefficients of powers of certain generating functions, submitted for publication.
- [6] J.W. Moon, On the maximum degree in a random tree, Mich. Math. J. 15 (1968) 429-432.
- [7] A.M. Odlyzko and L.B. Richmond, On the unimodality of high convolutions of discrete distributions, Ann. Probabl. 13 (1985) 299-306.
- [8] R. Otter, The multiplicative process, Ann. Math. Satist. 20 (1949) 206-224.
- [9] J.-M. Steyaert and P. Flajolet, Patterns and pattern-matchings in trees: an analysis, Inf. and Control 58 (1983) 19-58.