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1. Introduction.
Let F denote a simply generated family of rooted trees whose generating

o0
function y = ) ynz" satisfies a relation of the form y = z®(y) where &(t) =
1

1+ icmt"‘. If some mild conditions are satisfied, then y, ~ ¢(®(r)/r)" - n=3/?
wher:: 7®'(1) = ®(7). We say that a node v in a rooted tree T, has out-degree k
if v is incident with k edges that lead away from the root of T},. Our object here
is to investigate the behaviour of the maximum out-degree A = A(T,) of trees T),
in F. After describing briefly in §2 the simply generated families of trees we shall
be considering, we obtain bounds in §3 for Pr{A < k} in terms of the function

o0
ri(7) =Y cm7™. Then in §4 we obtain certain inequalities involving the functions
k

ri(7), assuming henceforth that the coefficients are reasonably well-behaved. Our
main result is in §5 where we show that if D(n) = max{k : nri(r) > 1} then
Pr{(l1—¢)D(n) < A(T,) < (1+¢€)D(n)} — 1 as n — oco. We consider the problem
of estimating D(n) in §6; we find that D(n) ~ logn/log(R/7) if ®(¢) has a finite
radius of convergence R while D(n) = o(logn) if ®(¢) is an entire function. Finally,
in §7 we consider some particular families of trees. For example, if ®(¢) = (1 —¢)~?
and F is the family of plane trees then D(n) = 1+ [log, n]; and if ®(t) = €' and
F is the family of rooted labelled trees then D(n) ~ logn/loglogn. (We remark
that the problem of determining the behaviour of A(T%) for this last family was

considered earlier in [6].)
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2. Simply generated families.

We recall that plane trees - or ordered trees, as they are called by some authors
[2; p. 306] - are rooted trees with an ordering specified for the branches incident
with each node. To each such tree T, we assign a non-negative weight w(Ty) sat-
isfying the following condition: there exists a sequence of non-negative constants

co(= 1),¢1,¢2,... such that

oo

21 W(To) = [ em® T
0

for every plane tree T, where d,,(T},) denotes the number of nodes of out-degree
m in T,. The collection of plane trees with such an assignment of weights will
be called a simply generated family, henceforth denoted by F. Let y, denote the
number of trees T}, in the family F where the weights are taken into account (both

here and elsewhere); that is
(2.2) yn = L w(Ty)

where the sum is over all plane trees with n nodes. It is not difficult to see (cf.
[3; p. 999) or [9; p. 24]) that if F is a simply generated family then its generating
o

function y =Y y,z" satisfies the relation
1

(2.3) y =z2(y)

where ®(t) =1+ Y17 cmt™.
We shall assume henceforth that F is some given simply generated family
such that the function ®(t) appearing in (2.3) is regular when |t| < R < co. We

further assume that

(2.4) ¢m 20 for m>1,
(2.5) ' ged{m :cm >0} =1, and
(2.6) 7®'(r) = &(7) for some 7, where 0 < 7 <R.

It follows from these assumptions (see [8; p. 216], [3; p. 999}, or [9; p. 32]) that
y(z) is regular when |z| < p, = # p, where p = 7/P(7); moreover, y(p) = 7 and

(2.7) ' Y ~ c(B(r)/7)" - n 32
as n — oo, where ¢ = (®(r)/2r®"(7))1/2.
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3. Bounds for Pr{A(T,) < k}.

oo

Let re(t) = S emt™ for k = 0,1,.... We now establish bounds for
3
Pr{A(T,) < k}, where A(T,) denotes the maximum out-degree of nodes in the

tree Ty, assuming that any given tree T, is selected from the trees in F with n
nodes with probability w(Ty,)/yn.

LEMMA 1. Let A =27/c and B = 1/®(r). Then
(8.1) Pr{A(T,) < k} < An!/? . ¢=Brre(®)

for k=1,2,... and all sufficiently large values of n.

PROOF: Let i = §x(z) = T Jrnz™ where @i, denotes the number of trees T}, in
F such that A(T,,) < k. Then it is not difficult to see that jx satisfies the relation
Tk = 2®r(Jx) where ®x(t) = ®(¢) —r&(t). Thus it follows from Lagrange’s inversion
formula (see, e.g., [1; 148]) that

Fin =071 Camr {(B1(1))"}

where C,,{f(t)} denotes the coefficient of t™ in the power series expansion of f(t).

Therefore,
Grn™™ 7t <07 (Bp(r))"
=n""{®(7) = ri(7)}"

S n—lq)n(,r) R e«Bnrk(r).

This implies inequality (3.1) since Pr{A(T}) < k} = §rn/yn and y, ~ c(B(r)/7)"-
n=3/2,

Notice that if ®(t) is a polynomial of exact degree h, then it follows from
Lemma 1 that Pr{A(7,) = h} — 1 as n — co. So we will assume henceforth that
¢m > 0 for infinitely many m, i.e., that r¢(7) > 0 for all k.

We shall need two known results in proving the next inequality. Firstly, let
er(n) denote the expected number of nodes of out-degree at least k in a tree T, in
F, where the expectation is taken over all trees T, in F; then it follows from [4;
Theorem 4] (see also [9; p. 26]) that

(3.2) > er(n)ynz™ = 2ri(y(z))y' (2)/y(x)
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for k=0,1,.... Secondly, it was shown in [5] (see also [7; p. 305]) that for each
family F there exists a positive constant Q such that if y = re'?, where |6] < T,
then

(3.3) |8(y)| < &(r)e™ 9.

LEMMA 2. Let K = p(c*7Q)~*/%. Then
(3.4) Pr{A(T,) > k} < Knri(r)

for k=0,1,... and all sufficiently large values of n.

ProoF: We first observe that Pr{A(Ty,) > k} < ex(n), by Boole’s inequality.
Hence it follows from (3.2) and Cauchy’s theorem that

Pr{A(T,) 2 k}yn < (2ri)~) / re((2))z* (v (2)/y(2))de

where the integration is along a small circle around z = 0. Since y'(0) = 1 we

may change variables by letting z = y/®(y); consequently

Pr{A(T) 2 Hhyn < (250)™ [ ra()8" 7 (0) vy
where now the integration can be taken around the circle |y| = 7. Butif y= relf,
where 6] <, then |r(y)| < ri(r). Therefore, taking absolute values and applying
(8.3), we find that

™

Pr{A(T,) > k}yn < (27)  ri(r) - (B(r) /7)) / e~ (n=1Q8 4o

—_T

< (4n(n— l)Q)‘“’ A(®(r)/ )" k().

This implies inequality (3.4) since yn ~ c(&(r)/7)" - n73/2,
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4. Some inequalities for ri(T).
In the last section we obtained bounds for Pr{A(7}) < k} in terms of the

O
function 7k(7) = Y cm7™. We need some information about the behaviour of
k

ry = rx(7) as k — oo in order to exploit these bounds. In the following two lemmas
we consider separately the cases when R, the radius of convergence of the function

®(t), is finite or is infinite.

LEMMA 3. Suppose that R < oo and that
(4.1) cm!/™ — R

as m — oo. Then for every § > 0 there exists a number J such that if j > J and
£> (14 26)j, then

(442) re < Tj1+6.

PROOF: Let € denote a positive constant such that

(4.3) e < %(R _7)
and
(4.4) (R+&)/(R= )} - {r)(R—)}* <1.

It follows from assumption (4.1) that there exists an integer N such that if
m > N, then

(R+€) ™ <em <(R—¢€)™™.

Consequently, if £ > N then

(r/(R+e)F <r <) (r/(R—e)"

<U-(r/(R—e)k

4.5)

where U = 2R/(R — 7), using (4.3) at the last step.
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Now let £ and j be such that £ > (1 + 26)j. Then, appealing to (4.5) twice,
we find that

re<U-(r/(R- e))l

o (B () ()

(B ()Y

if 7 > N. Condition (4.4) implies that the coefficient of r;**+¢ in this last expression

is less than one when j > M for sufficiently large M. Hence r; < r;'*® when

j > J = max{M, N}, as required.

LeEMMA 4. Suppose that R = oo so that

(4.6) emt/™ =0

as m — oo. In addition, suppose that

(4.7) g1 D < g 1/k

when k > N. Then for every § > 0 there exists a number L such that if j > L and
£ > (1+26)j7, then

(4.8) re <r;tte.

Proor: Choose L so that L > N, le/jT < 1/2, and (cj1/17)5 < 1/2for j > L.
Then it follows from our assumptions that
CH_,,TH-V < (cﬂz)(lw)/e

= C[T£ . (C[lle‘l')u S C[Te(l/Z)u

for v=0,1,.... Hence r; < 2¢cert.

On the other hand, it also follows from our assumptions that
crt < (le/jT)[ = (cjl/jr)e_éj . (c,-l/jr)éj

< (e 7) M L (1/2) = (e ) (1/2) < e (1/2)7
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Hence, re < 2¢e7t < 48 (1/2)771 <11+ as required.
We remark that it can be shown that conclusion (4.8) also holds if condition

(4.7) is replaced by either of the following conditions: there exist positive numbers
N and H such that max{cy/® : k < h <2k} < Hep'/* for all k > N or ¢ > 0 for

all m and cx41/ck decreases to 0 as k — oo.

5. Main result.

Let D(n) = max{k : nrg(r) > 1}. We now show that the distribution
of A(T,) is concentrated around D(n) if the coefficients ¢, are reasonably well-
behaved.

THEOREM 1. Suppose the coefficients c,, satisfy the conditions of Lemma 3 or of

Lemma 4. Then for every ¢ > 0
Pr{(1 - €)D(n) < A(T,) < (1+€)D(n)} — 1
as n — oo.
Proor: We first show that
(5.1) Pr{A(T,) z (1+€¢)D(n)} — 0

as n — oo. Let h = D(n), £ =[(1+€)h], and § = ¢/3. Since we are assuming
that ¢(t) is not a polynomial, it follows that h — oo asn — oo. Thus we may
suppose that n is large enough to ensure that (1 + 28)(h + 1) < £ and that, by
Lemma 3 or Lemma 4, ry < (rpt1)!'™%. But r44y < n7', by the definition of h, so

nre<mn-n"17% = n~¢. Hence it follows from Lemma 2 that

Pr{A(T,) > (1 +e)h} < Pri{A(Tn) 2 {}

< Knry < Kn™%,

and this implies (5.1).
We now show that

(5.2) Pr{A(T,) < (1-¢e)D(n)} — 0
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as n — oo. As before, we let h = D(n) and § = ¢/3 but this time we let j =
[(1 — €)h] + 1. We may suppose that n is large enough to ensure that (1+28)j <h

and that, by Lemma 3 or Lemma 4, r, < r;’*¢. But r, > n™!, so

nrj > nrhll(l'*"s) >n- n~ V(A8 — /048

Hence it follows from Lemma 1 that

Pr{A(T,)<(1- e)h} = Pr{A(T,) <j}

< An1/2 ~6anrj < Anl/2 . e-—-Bn“(l'H)

bl

and this implies (5.2) and completes the proof of the theorem.

6. The behaviour of D(n).
We now consider the problem of estimating the function
D(n) = max{k : nr(r) > 1}. It turns out that the behaviour of D(n) depends on

whether R, the radius of convergence of ¢(t), is finite or infinite.

THEOREM 2. Suppose that R < co and that
le/m — R71

as m — oo. Then

D(n) ~ logn/log(R/T)

as n — 0.

PRrOOF: We saw in the proof of Lemma 3 that if € is any sufficiently small positive

constant, then there exists an integer N such that if & > /N then
(6.1) (r/(R+e)* <re <U-(r/(R—e€)*

where U =2R/(R~7). Now let h - D(n); we may suppose that n is large enough
to ensure that h > N. Then it follows from (6.1) and the definition of h that

U™l ((R=e))r) <my ™  Sn<rppr < (R+€)/m)"
Consequently

Rlog((R —€)/7) —logU < logn < (h + 1)log((R + €)/7),
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which implies the required result.
THEOREM 3. Suppose that R = co so that

lejm — 0

as m — oco. Then
D(n) = o(logn)

asn — oo.

PRroOF: For any small positive ¢, let § = 771 - e~!/¢; we may suppose that
€ < 1/log2 so that 7 < 1/2. There exists an integer N such that if m > N then
Cm < 6™; hence if k > N, then

TE < i(&)"‘ < 2(67)k.
k

Now let h = D(n); we may suppose that n is large enough to ensure that h > N,

Then, since r, > n™1, it follows that
1 1
n>r, > -2—(67)_" =3 el

Consequently, h < elog(2n) and this implies the required resuilt.

7. Special cases.

The plane trees and the rooted labelled trees illustrate the contrast in the
behaviour of D(n) when R < oo and when R = co. For the plane trees d(t) =
(1-t)"',s0 R=1, 7 = 1/2, and ri(r) = (1/2)*"!; consequently, D(n) =
1 + [log, n] in accordance with Theorem 2. For the rooted labelled trees ®(t) = e
so R =00 and 7 = 1; it is not difficult to see that for this case 1/k! < ri(r) <
(14 %~1)/k! from which it follows that D(n) ~ logn/loglog n (sce also [6]).

In general, when R = oo the behaviour of D(n) depends very much on
the rate at which the coefficients ¢, of ®(t) approach zero. For example, let g(z)
denote an increasing function of z such that g(z) — co and g(z + 1) — g(z) — oo as

¢ — co. Consider the function ®(t) = 1+ Y ¢,,t™ where ¢, = ¢~ 9™ for m > 3,
' 1

o0 .
2 =1=3(m—=1)cm, and ¢; = 0. Then R = oo,7 = 1, and ri(7) ~ ¢ ~
3
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e 9%¥) as k — oo; consequently, D(n) ~ ¢~*(logn) for this family, where g~!
denotes the inverse of the function g. In particular, if g(z) = €* then D(n) ~
log logn, if g(z) = ¢ then D(n) ~ logloglogn, and so on. And if, for example,
g(z) = zlogz then D(n) ~ logn/loglogn, and if g(z) = z loglog z, then D(n) ~
log n/logloglogn, and so on. Consequently, D(n) can approach infinity arbitrarily
slowly and Theorem 3 is, in a sense, best possible.

We remark in closing that it is not difficult to show that the expected value
of A(T,) is asymptotically equal to D(nr) as n — oo, assuming that ®(t) satisfies
the hypothesis of Lemma 3 or of Lemma 4.
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