k-walks of Graphs

Bill Jackson and Nicholas C. Wormald

ABSTRACT

We obtain various sufficient conditions for a graph to have a spanning closed walk meeting each vertex exactly k times or meeting each vertex at most k times. In particular, we generalise the result of Oberly and Sumner that every connected, locally connected $K_{1,3}$ -free graph with at least three vertices is hamiltonian.

1. Introduction.

Our purpose is to generalise the concept of hamiltonicity by considering spanning closed walks in a graph which visit each vertex exactly k times, or at most k times. Jungreis [J] considered closed walks in a Cayley digraph of $\mathbb{Z}_m \otimes \mathbb{Z}_n$ visiting r vertices twice and the rest once. Broersma [B2] considered closed walks visiting each vertex of a graph exactly k times. We obtain sufficient conditions for the existence of such walks in several types of graphs.

All our graphs are simple, and we use the term *multigraph* at those times when multiple edges are permitted. We use G to denote an arbitrary graph. For an integer k, denote by $k \times G$ the multigraph obtained from G by multiplying all edges by k. An *exact k-walk* (or k-walk) of G is a connected spanning subgraph W of $(2k) \times G$, such that the degree of each vertex v in W is 2k (or is an even number which is at most 2k, respectively). This nomenclature is motivated by the fact that Euler's Theorem implies that a k-walk possesses a closed walk traversing each edge exactly once (an Euler tour), and so a graph with a k-walk (or exact k-walk) possesses a closed walk passing through each vertex at most k times (or exactly k times, respectively). One interesting result from [B2, Corollary 3.3] is that if a graph has an exact k-walk then it has an exact (k + 1)-walk $(k \ge 1)$.

Given two graphs G and H, the composition of G and H, denoted by G[H], is defined as the graph with vertex set $V(G) \times V(H)$ and edge set $\{(u_1,v_1)(u_2,v_2):$ $u_1u_2 \in E(G)$ or $u_1 = u_2$ and $v_1v_2 \in E(H)\}$. Note that for a graph with at least three vertices, every 1-walk is a Hamilton cycle. On the other hand, for $k \ge 2$, G has a k-walk (or exact k-walk) if and only if $G[K_k]$ (or $G[\overline{K}_k]$, respectively) has a Hamilton cycle. Thus we may use results on Hamilton cycles to obtain results on k-walks. There is a strong relationship between k-walks and the hamiltonicity of compositions, since if H has a Hamilton path then G[H] is hamiltonian if and only if G has a |V(H)|-walk. We exploit a similar connection in examining the complexity of finding k-walks (see Section 6).

We use $\delta(G)$ (or $\Delta(G)$) to denote the minimum (or maximum, respectively) degree of a vertex in a graph G, and $\alpha(G)$ to denote the independence number of G. Also, G is $K_{1,k}$ -free if no induced subgraph of G is isomorphic to $K_{1,k}$. Oberly and Sumner [OS] showed that every connected, locally connected $K_{1,3}$ -free graph with at least three vertices is hamiltonian. Matthews and Sumner [MS] surveyed further results on $K_{1,3}$ -free graphs and showed that any 2-connected $K_{1,3}$ -free graph G with $\delta(G) \ge$ (|V(G)| - 2)/3 has a Hamilton cycle. A classic result of Dirac [D] is that every graph G with $\delta(G) \ge |V(G)|/2$ and $|V(G)| \ge 3$ has a Hamilton cycle. Our main object is to give several related results for k-walks, as well as results relating to $\alpha(G)$, toughness, squares of graphs and planar graphs.

One of the devices used several times in our proofs is the consideration of an Euler tour T in a k-walk W. A vertex v of degree 2r in W must be met exactly r times by T, and so T can be partitioned into r subtours, say T_1, \ldots, T_r , each meeting v exactly once. We call these subtours the *branches* of T at v. For each vertex v of W choose an ordered labelling $T(v) = (v_1, \ldots, v_{2r})$ of the neighbours of v on T in the order in which they occur on T. Note that a neighbour of v on T may have several different labels. We shall write $v_i \sim v_j$ to mean that v_i and v_j are distinct labellings of the same vertex, and use vv_i to denote the unique edge of T from v to v_i .

We also use N(v) to denote the set of neighbours of a vertex v in a graph G, and NG(v) to denote the subgraph of G induced by N(v). For a vertex v of a multigraph W, $d_W(v)$ denotes the degree of v in W, which is the number of edges incident with v.

2. Toughness and k-trees.

Let G be a graph and S a proper subset of V(G). Let $c_0(G-S)$ denote the number of isolated vertices of G-S and c(G-S) the number of components of G-S. We first state a necessary condition for G to have a k-walk or an exact k-walk.

Lemma 2.1.

(i) If G has a k-walk then $c(G - S) \le k|S|$ for all nonempty proper subsets S of V(G).

(ii) If G has an exact k-walk then $c(G - S) + (k - 1)c_0(G - S) \le k|S|$ for all nonempty proper subsets S of V(G).

Proof.

(i) This follows since a k-walk of G must meet a vertex of S on passing between two components of G - S.

(ii) This is given in [B2, Proposition 2.1].

Following Chvátal [C], we say that G is t-tough for some t > 0 if G is connected and $c(G - S) \le |S|/t$ for all vertex cutsets S of G. Thus Lemma 2(i) can be restated as "if G has a k-walk then G is (1/k)-tough."

Remark 2.1. To see that the condition in Lemma 2(i) is not also sufficient, we create for any $\varepsilon > 0$ the following graph G which is $(1/k + 2/3k^2 - \varepsilon)$ -tough and has no k-walk. We first define H to be the graph obtained from K_3 by attaching k pendant vertices at each of the three vertices. We then construct G from the disjoint union of \overline{K}_s with $\lceil (sk + 1)/2 \rceil$ copies of H by joining each vertex of \overline{K}_s to every vertex in each copy of H. Given any $\varepsilon > 0$, we may choose s large enough so that G is $(1/k + 2/3k^2 - \varepsilon)$ -tough. To see that G has no k-walk note that: any closed walk in G which meets each copy of H at least twice must meet some vertex of \overline{K}_s at least k + 1times, and, on the other hand, any spanning walk which meets some copy H_i of H exactly once, must meet some vertex of the K_3 contained in H_i at least k + 1 times.

Our next main object is to use a result of Sein Win to deduce that every (1/(k-2))-tough graph has a k-walk. A k-tree of a graph is a spanning tree with maximum degree k. We have the following relationship between k-trees and k-walks.

Lemma 2.2.

(i) If G contains a k-tree then G has a k-walk.

(ii) If G has a k-walk then G contains a (k + 1)-tree.

Proof.

(i) Doubling the edges in a k-tree in G yields a k-walk of G.

(ii) Direct the edges of a k-walk of G to follow an Euler tour T. Delete from T any edge entering a vertex previously visited by the tour. The resulting multigraph, say H, is connected and has maximum degree at most k + 1. Any spanning tree of H is a (k + 1)-tree in G.

Theorem 2.3. [SW] If G is connected, $k \ge 2$, and, for any subset S of V(G), $c(G-S) \le (k-2)|S|+2$, then G has a k-tree.

Corollary 2.4. If G is connected, $k \ge 2$, and, for any subset S of V(G), $c(G-S) \le (k-2)|S| + 2$, then G has a k-walk.

We feel that Corollary 2.4 can probably be improved to the following.

Conjecture 2.1. If $k \ge 2$ then every (1/(k-1))-tough graph has a k-walk.

Remark 2.2. For the special case k = 1, Chvátal [C] has conjectured that there is some t for which every t-tough graph has a 1-walk. The lower bound 2 on such t was established by Enomoto et al. [EJKS], who constructed, for any $\varepsilon > 0$, a graph which is $(2 - \varepsilon)$ -tough and has no 1-walk.

3. $K_{1,k+1}$ -free graphs.

In this section we examine connected claw-free graphs in general, postponing extra connectivity considerations until the next section.

Theorem 3.1. Let G be a connected, $K_{1,k+1}$ -free graph.

(i) G has a k-walk.

(ii) If $\delta(G) \ge k$ then G has an exact k-walk.

Proof. Let G be a connected graph. To prove (i), we show that for any connected graph G, there is a connected even spanning subgraph W of $m \times G$ for some m such that $d_W(v)$ is at most $2\alpha(NG(v))$ for all $v \in V(G)$. This suffices since $\alpha(NG(v)) \leq k$ for all v. Note firstly that G has a $\Delta(G)$ -walk H, for example, $H = 2 \times G$. Let W be a $\Delta(G)$ -walk of G for which |E(W)| is minimised.

Suppose that there is some vertex v with $d_W(v) = 2r > 2\alpha(NG(v))$. Choose an Euler tour T in W, and let y_1, \ldots, y_r denote edges incident with v in distinct branches of T at v. We complete the proof of (i) by finding a $\Delta(G)$ -walk W' of G with |E(W')| < |E(W)|, yielding a contradiction. Observe that $W - \{y_i : i = 1, \ldots, r\}$ is connected. Hence, if y_i and y_j have the same end vertices for some $i \neq j$, then the deletion of y_i and y_j from W yields W' as required. Alternatively, y_1, \ldots, y_r are incident with exactly $r > \alpha(NG(v))$ distinct vertices, say u_1, \ldots, u_r , in N(v). Thus, $u_i u_j \in E(G)$ for some $i \neq j$. In this case, set $W' = W - \{y_i, y_j\} + u_i u_j$. This yields (i).

To prove (ii), we refine the proof of (i). We now assume $\delta(G) \ge k$. For a walk W, let t(W) denote the number of edges of W which are members of multiple edges of cardinality at least 3. Let W be a $\Delta(G)$ -walk of G with $\delta(W) \ge 2k$ for which |E(W)| is minimised, and, subject to this, for which t(W) is minimised. Suppose that $d_W(v) > 2k$ for some $v \in V(G)$.

A triple edge is a multiple edge of multiplicity exactly 3, and a single edge is an edge not in any multiple edge. We will find the following operations useful. Given a subgraph S of a subgraph U of $\Delta(G) \times G$, we define U(S, a, b) to be the subgraph of $\Delta(G) \times G$ obtained from U by replacing every single edge of S by a multiple edge of cardinality a and every triple edge by a multiple edge of cardinality b. We define a subgraph R of W to be a 3,1-path if it has distinct vertices $v = v_0, v_1, \ldots, v_q$ and edges $v_{2i+1}v_{2i+2}, 0 \le i \le (q-2)/2$, which are single edges in R and W, and edges $v_{2i}v_{2i+1}, 0 \le i \le (q-1)/2$, which are triple edges in R. Let $R = v_0, \ldots, v_q$ denote a maximal 3,1-path with $v = v_0$. We consider two cases. Note that the first includes q = 0.

Case 1. q is even.

First suppose that v_q is incident with no multiple edge of W of multiplicity at least 3. Put $W_1 = W(R, 3, 1)$, and note that $|E(W_1)| = |E(W)|$, $t(W_1) = t(W)$ and that $d_{W_1}(v_q) \ge 2k+2$, even if q = 0. Let s denote the number of vertices adjacent to v_q by single edges of W_1 , and m the number of vertices adjacent to v_q by multiple edges of W_1 . Denote these m vertices by u_1, \ldots, u_m . As in the proof of (i), choose an Euler tour T in W_1 . Then at least $\lceil s/2 \rceil$ single edges incident with v_q are in distinct branches of T at v_q . Let y_i , $i = 1, \ldots, \lceil s/2 \rceil$, denote a set of such edges, and let u_{i+m} denote the other end vertex of y_i . Note that v_q is incident with at most one triple edge, and no edge of multiplicity greater than 3, in W_1 , and so $m + \lceil s/2 \rceil \ge (d_{W_1}(v_q) - 1)/2 > k$. Hence, $u_i u_j \in E(G)$ for some i and j. Let x_1 denote y_{i-m} if i > m, and one of the edges $v_q u_i$ otherwise. Similarly, let x_2 denote y_{j-m} if j > m, and one of the edges $v_q u_j$ otherwise. Then $\{x_1, x_2\}$ is not a cutset of W_1 , and so $W_2 = W_1 - \{x_1, x_2\} + u_i u_j$ is a $\Delta(G)$ -walk of G with $\delta(W_2) \ge 2k$ and $|E(W_2)| = |E(W)| - 1$. This is a contradiction.

It follows that v_q is incident with a multiple edge of W of multiplicity at least 3. By the maximality of R, the multiple edge is incident with v_p for some p < q - 1. Then $R = R_1 \cup R_2$ where $R_1 \cap R_2 = \{v_p\}$, R_1 is the path-like subgraph of R between v_0 and v_p , and R_2 is the part between v_p and v_q . If $v_p = v_0$ then $R_1 = \{v_p\}$. Let R_3 be R_2 with a triple edge added between v_q and v_p . Put $W_1 = W(R_3, 2, 2)$. If p is odd, then $\delta(W_1) \ge 2k$, $|E(W_1)| = |E(W)|$ and $t(W_1) < t(W)$, contradicting the choice of W. Otherwise, put $W_2 = W_1(R_1, 3, 1)$ and a similar contradiction is reached. This finishes Case 1.

Case 2. q is odd.

First suppose that v_q is incident with no single edge of W. Then with $W_1 = W(R, 3, 1)$, we have $|E(W_1)| < |E(W)|$. This yields a contradiction unless $d_{W_1}(v_q) \le 2k-2$. Since all edges of W_1 incident with v_q are multiple, except perhaps $v_{q-1}v_q$, and $d_G(v_q) \ge k$, it follows that some edge $v_q u$ of G is not in W_1 . Set $W_2 = W_1 + 2v_q u$. Then $|E(W_2)| = |E(W)|$ and $t(W_2) < t(W)$, a contradiction.

It follows that v_q is incident with a single edge, say x, of W. By the minimality of W, $x = v_q v_p$ for some p < q - 1. Then $R = R_1 \cup R_2$ where $R_1 \cap R_2 = \{v_p\}$, R_1 is the part of R between v_0 and v_p , and R_2 is the part between v_p and v_q . Let $R_3 = R_2 + v_p v_q$. The rest of the argument is as in Case 1, with the two subcases p even and p odd interchanged.

Remark 3.1. Theorem 3.1 is sharp in the following sense. Since $K_{1,k}$ has no (k-1)-walk, (i) is not true with k replaced by k-1. Similarly, for any $k \ge 2$, $K_{k,k-1}$

has no exact k-walk. Thus for any $k \ge 2$ there exists a connected $K_{1,k+1}$ -free graph G with $\delta(G) = k - 1$ and no exact k-walk. Thus (ii) is false if $\delta(G) \ge k$ is replaced by $\delta(G) \ge k-1$.

4. Connectivity.

We next generalise the main theorem of [OS] by showing that the conclusion of Theorem 3.1 (i) can be strengthened if G is in addition locally connected; that is, N(v) is connected for all $v \in V(G)$.

Theorem 4.1. For $k \ge 1$, every connected, locally connected $K_{1,k+2}$ -free graph with at least two vertices has a k-walk.

Proof. Let G be a connected, locally connected $K_{1,k+2}$ -free graph with at least two vertices. Then $\alpha(NG(v)) \le k + 1$ for all $v \in V(G)$. By Theorem 3.1(i), G has a (k + 1)-walk, say W. Let g(W) denote the number of vertices of degree 2k + 2 in W, and choose W so that g(W) is minimised. Assume that for some vertex v, $d_W(v) = 2k + 2$. We will show how to obtain a (k + 1)-walk W' of G which contradicts the minimality of W.

Let T be an Euler tour in W, and let S denote the set of edges in T incident with v. If $x \in T(v)$, we use x' to denote the element of T(v) such that vx' is the other edge in S in the same branch of T as vx. As in the proof of Theorem 3.1(i) (but minimising g(W) this time, rather than |E(W)|), if vx and vy are any two edges in S in distinct branches of T at v, then $x \neq y$ and $xy \notin E(G)$. Thus, if $vx_1, \ldots, vx_{k+1} \in S$ are in distinct branches of T at v, then x_1, \ldots, x_{k+1} form an independent set. So since $\alpha(NG(v)) \leq k + 1$, we have that for each i, either $x_i \sim x_i'$ or $x_i x_i' \in E(G)$. Note that the branches of T at v can intersect only at v, since otherwise T can be rerouted so that the conditions above are not satisfied.

Let P be a shortest path in NG(v) between vertices in distinct branches of T. The local connectivity ensures the existence of P. We can assume that W and v have been chosen so that the length of P is as small as possible (subject to the minimality of g(W)), and that subject to these conditions, |E(W)| is minimised. By the previous paragraph, the length of P is at least 2. Also, if P has length at least 4, then a central vertex of P, together with x_1, \ldots, x_{k+1} , is an independent set in NG(v), a contradiction. Thus, P has length at most 3. Without loss of generality, assume P is from x_1 to x_2 , and let u denote the first vertex of P, apart from x_1 , for which $d_W(u) \ge 2k$. If no such u exists, then we can obtain W' from W by replacing the edges vx_1 and vx_2 with the path P, to get g(W') < g(W). Let $P(x_1, u)$ denote the set of edges of P from x_1 to u. Let w_1, \ldots, w_k be labelled vertices in T(u) such that uw_1, \ldots, uw_k are in distinct branches of T at u, where v is in the same branch at u as w_1 , and let uw_{k+1} be another edge in that branch. By the minimality of |E(W)|, we can assume w_1, \ldots, w_{k+1} are all distinct and independent, except perhaps for $w_1 \sim w_{k+1}$ or $w_1w_{k+1} \in E(G)$. But in either of these two cases we can modify W by deleting vx_1, uw_1 and uw_{k+1} , and inserting $P(x_1, u)$, the edge vu, and w_1w_{k+1} if $w_1 \sim w_{k+1}$ is false, to obtain a (k + 1)-walk in which P is shorter or G is decreased, a contradiction. Hence $w_1 \sim w_{k+1}$ is false, and $w_1w_{k+1} \notin E(G)$.

It follows that every neighbour of u other than w_1, \ldots, w_{k+1} is adjacent to at least one of the vertices w_1, \ldots, w_{k+1} ; that is, to a neighbour of u on T. In particular, assume $vw_i \in E(G)$. If uw_i is in the same branch of T at v as x_j and x_j' , where $j \neq$ 1, we set $W' = W + \{vw_i, x_jx_j'\} + P(x_1, u) - \{vx_j, vx_j', uw_i, vx_1\}$, and remove the loop x_jx_j' if $x_j = x_j'$. This gives the desired walk W' with g(W') < g(W). Hence, recalling that the branches at v are disjoint except at v, we see that u appears only in the same branch of T at v as x_1 and x_1' . Similarly, we find that if u' is the last vertex of P, apart from x_2 , for which $d_W(u') \ge 2k$, then u' is in the same branch of Tat v as x_2 and x_2' . Immediately, we obtain $u \ne u'$ and P has length 3. Thus, $uu' \in E(G)$. Hence, by the remark above, u' is adjacent to a neighbour of u on T, say w, and by symmetry, u is adjacent to a neighbour of u' on T, say w'. We can now set W' $= W + \{uw', u'w, x_1x_1'\} - \{vx_1, vx_1', uw, u'w'\}$, and remove x_1x_1' if it is a loop, to obtain the desired walk W' with g(W') < g(W).

We next examine global connectivity.

Theorem 4.2. If $j \ge 1$, $k \ge 3$ and G is j-connected and $K_{1,j(k-2)+1}$ -free then G has a k-walk.

Proof. Let S be a proper subset of V(G). Since G is j-connected, each component of G - S is joined to at least j vertices in S, and since G is $K_{1,j(k-2)+1}$ -free, each vertex in S is joined to at most j(k-2) components of G - S. Hence, $c(G - S) \le (k-2)|S|$. The theorem now follows from Corollary 2.4.

Note that Theorem 3.1(i) is a strengthening of Theorem 4.2 with j = 1. Also, Theorem 4.2 improves Theorem 4.1 whenever $k \ge 6$ in Theorem 4.1 because all locally connected graphs other than K_2 are 2-connected. We believe that Theorem 4.2 can be sharpened as follows.

Conjecture 4.1. If $j \ge 1$, $k \ge 2$ and G is j-connected and $K_{1,jk+1}$ -free then G has a k-walk.

Remark 4.1. The graph $K_{j,jk+1}$ has no k-walk. Hence, Conjecture 4.1 would be a best possible strengthening of Theorem 4.2 for $k \ge 2$. However, for k = 1, the graph obtained by expanding each vertex of the Petersen graph to a triangle is $K_{1,3}$ -free and 3-connected and has no 1-walk, and the Meredith graphs [M] are *r*-connected, *r*-regular (and hence $K_{1,r+1}$ -free) and have no 1-walk. A related conjecture in [MS] is that every $K_{1,3}$ -free 4-connected graph has a 1-walk. We would like to ask how much this conjecture might be strengthened, as follows.

Question. If $j \ge 4$ and G is j-connected and $K_{1,j}$ -free, does G have a 1-walk?

Theorems 4.1 and 4.2 also suggest the following.

Conjecture 4.2. If $j \ge 0$, $k \ge 1$ and G is connected, locally *j*-connected and $K_{1,(j+1)k+1}$ -free then G has a k-walk.

Remark 4.2. Conjecture 4.2 is a common generalisation of Theorem 3.1(i) (when j = 0) and a conjecture of Oberly and Sumner [OS] (when k = 1). Since connected, locally *j*-connected graphs are (j + 1)-connected (except for K_2), Theorem 4.2 implies the weakened version of Conjecture 4.2 for $K_{1,(j+1)(k-2)+1}$ -free graphs. If true, this conjecture is sharp, in view of the graph $K_{j+1} + \overline{K_r}$ obtained by joining each vertex of K_{j+1} to each vertex of $\overline{K_r}$, where r = (j + 1)k + 1.

It is possible that local connectivity conditions facilitate the appearance of k-trees. The truth of the following conjecture would go one step closer to establishing Conjecture 4.2, by Lemma 2.2(i).

Conjecture 4.3. If $j \ge 1$, $k \ge 2$ and G is connected, locally *j*-connected and $K_{1,(j+1)(k-1)+2}$ -free then G has a k-tree.

Remark 4.3. If true, this conjecture is sharp, in view of $K_{j+1} + \overline{K}_r$. Any k-tree T in this graph requires at least j + r edges. But every edge is incident with one of the vertices in K_{j+1} , and so T has at most (j + 1)k edges. Hence, $r \le (j + 1)(k - 1) + 1$.

5. Minimum degree, independence number, squares of graphs and planar graphs.

A D_{λ} -cycle in a graph G is a cycle C such that all components of G - C have less than λ vertices. Clearly, $G[K_k]$ has a D_k -cycle if and only if G has a k-walk.

Theorem 5.1. If G is connected, $k \ge 2$ and $\delta(G) > (|V(G)| - 1) / (k + 1)$ then G has a k-walk.

Proof. We will use the following result implied by Veldman [V, part of Theorem 4]. Suppose $k \ge 2$ and G is a k-connected graph, and that the vertices of each connected subgraph of G with k vertices are adjacent to more than (|V(G)| - 1)/(k + 1) other vertices. Then G has a D_k -cycle.

Consider $H = G[K_k]$. We shall refer to the K_k -subgraphs of H corresponding to vertices of G as *inflated vertices*. Noting that |V(H)| = k|V(G)|, that H is k-connected, and that each connected subgraph F of H with k vertices has more than k(|V(G)| - 1) / (k + 1) neighbours in $V(H) \setminus V(F)$, we may apply Veldman's theorem to deduce that H has a D_k -cycle.

Remark 5.1. If we require a minimum degree condition on G for an exact k-walk (rather than a k-walk as in Theorem 5.1) then the best we can do is |V(G)|/2 for all k. The fact that all graphs G of minimum degree at least |V(G)|/2 have a k-walk follows from Dirac's Theorem [D]. To see that we cannot do any better, consider $K_{m+1,m}$.

Recently Fraisse [F2, Corollary 1] showed that if G is a k-connected graph such that the degree sum of any k + 1 independent vertices is at least |V(G)| + k(k - 1), then G has a D_k -cycle. Applying this result instead of [V, Theorem 4] in the proof of Theorem 5.1, we may deduce the stronger:

Theorem 5.2. If G is connected and every set of k + 1 independent vertices of G have degree sum at least |V(G)| then G has a k-walk.

It follows trivially from Theorem 3.1 that every connected graph G has an $\alpha(G)$ -walk. This result may be extended for graphs of higher connectivity, as follows.

Theorem 5.3. Let G be a *j*-connected graph. Put $k = \lceil \alpha(G) / j \rceil$. Then G has a k-walk.

Proof. Again consider $H = G[K_k]$. Since H is kj-connected and $kj \ge \alpha(H) = \alpha(G)$, it follows from the Chvátal-Erdos Theorem [CE] that H is hamiltonian.

Fleischner [F1] has shown that the square of a 2-connected graph has a 1-walk. Using this result we deduce the following.

Theorem 5.4. If G is connected then G^2 has a 2-walk.

Proof. Since $G[K_2]$ is 2-connected and $G^2[K_2] = G[K_2]^2$, it follows from [F1] that $G^2[K_2]$ is hamiltonian.

If G has minimum degree 2 then Theorem 5.4 may be strengthened as in the next theorem. We first need a lemma for trees.

Lemma 5.5. If T is a tree then T^2 has a 2-walk W such that for all $v \in V(T)$, $d_W(v) = 2$ iff $d_T(v) = 1$.

Proof. Let n = V(T) and let u be an arbitrary vertex of T which we will call a *root*. We strengthen the statement to be proved by asserting that, in addition to W, there is a 2-walk W' such that for all $v \in V(T)$, $d_{W'}(v) = 2$ iff $d_T(v) = 1$ or v = u. This is proved by induction on n. If n = 2 then it is immediate, so take $n \ge 3$. Let T(u) denote the subtree of T induced by u and its neighbours. We can assume that for each component H of T - u, rooted at the neighbour of u in H, there is a 2-walk in H^2 of the type of W'. The union of these walks over all components H, together with a 1-walk in $T(u)^2$, yields the desired 2-walk W'. (Note that if any of the components is a single vertex, its 2-walk contains no edges.) Otherwise, we can assume that $d(u) \ge 2$, and then instead of a 1-walk in $T(u)^2$, use a 2-walk in which u is the only vertex of degree 4. This yields the walk W.

Theorem 5.6. If G is connected and $\delta(G) \ge 2$ then G^2 has an exact 2-walk.

Proof. Let T be a spanning tree of G and let H denote the subgraph of G induced by the endvertices of T. Let F be a spanning subgraph of H such that $d_F(v) \ge 1$ for all $v \in V(H)$ with $d_H(v) \ge 1$ and such that |E(F)| is minimal. Clearly F is a spanning forest of H and each component of F is a star. Let S_i denote the set of vertices in F of degree i, and let M denote a set of edges of G - T covering all the members of S_0 , each edge containing one member of S_0 . Define a spanning subgraph G' of G by $E(G') = E(T) \cup E(F) \cup M$. All vertices in S_0 and S_1 have degree 2 in G'. Let R denote a subset of $S_0 \cup S_1$ which contains all vertices but one in each component of F. (The only case in which there is some choice for membership in R is for those components of order 2.) Slicing each vertex of G' in R into two vertices of degree 1, we obtain a tree T' whose endvertices are the vertices coming from R. By Lemma 5.5, T'^2 has a 2-walk in which all these vertices have degree 2 and the rest have degree 4. This induces an exact 2-walk in G'^2 and hence in G^2 .

Tutte [T] has shown that every 4-connected planar graph is hamiltonian. On the other hand, $K_{2,2k+1}$ is an example of a 2-connected planar graph which has no k-walk for any $k \ge 1$. For the remaining case of 3-connected planar graphs, Barnette [B] has shown that all such graphs have a 3-tree. Using Lemma 2.2(i) we deduce the next result.

Theorem 5.7. Every 3-connected planar graph has a 3-walk.

Perhaps the following stronger assertion is valid.

Conjecture 5.1. Every 3-connected planar graph has a 2-walk.

Note that if Conjecture 5.1 were true then, by Lemma 2.2(ii), it would generalise Barnette's result on 3-trees.

6. NP-completeness of k-walk problems.

It was shown in [B2] that the problem of whether a given graph has an exact k-walk is NP-complete. The proof was by transformation of an arbitrary graph G to a graph G'such that G has a Hamilton cycle iff G' has an exact k-walk. The NP-completeness of the exact k-walk problem thus follows from the NP-completeness of the Hamilton cycle question. In fact, with the proof given, G has a Hamilton cycle iff G' has any k-walk, and thus the question of whether a given graph has a k-walk is NP-complete. However, the graphs G' have many cut-vertices, and so it is natural to ask whether the restriction of the question to more highly connected graphs is still NP-complete. Using the conventions of Garey and Johnson [GJ], we may state the problems precisely as follows.

K-WALK IN J-CONNECTED GRAPH

Instance: j-connected graph *G*. *Question*: Does *G* have a *k*-walk?

EXACT K-WALK IN J-CONNECTED GRAPH

Instance: j-connected graph G.

Question: Does G have an exact k-walk?

We generalise the result given in [B2] to the following.

Theorem 6.1. For k and j fixed, K-WALK IN J-CONNECTED GRAPH and EXACT K-WALK IN J-CONNECTED GRAPH are NP-complete.

Proof. We give a polynomial reduction from HAMILTON CYCLE to each problem. Let G be an arbitrary graph with $|V(G)| \ge 2$, and form the composition $H = G[K_j]$. To each inflated vertex of H (in the terminology of the proof of Theorem 5.1), join jk - 1 separate copies of K_j , to obtain G'. Then a k-walk in G' uses at most two edges of H incident with any inflated vertex, and so yields a 1-walk of G. The converse also holds. In addition, G' is *j*-connected. Thus, we have reduced HAMILTON CYCLE to K-WALK IN J-CONNECTED GRAPH. The proof for exact k-walks is exactly the same since if G has a 1-walk it follows that G' has an exact k-walk.

Acknowledgement.

Some of the results of this paper (Lemma 2.1(i), Theorem 5.1 and a generalisation of Theorem 6.1) were obtained, amongst other things, independently very recently by Pruesse [P]. The authors are grateful to Pruesse for pointing out an error in an earlier version of this manuscript.

References.

- [B1] D. W. Barnette, Trees in polyhedral graphs, Canad. J. Math. 18 (1966) 731-736.
- [B2] H. Broersma, *k*-traceable graphs (submitted to *Discrete Math.*).
- [C] V. Chvátal, Tough graphs and Hamilton circuits, *Discrete Math.* 5 (1973) 215-228.
- [CE] V. Chvátal and P. Erdos, A note on Hamilton cycles, *Discrete Math.* 2 (1972) 111-113.
- [D] G. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc. 2 (1952) 69-81.
- [EJKS] H. Enomoto, B. Jackson, P. Katerinis, A. Saito, Toughness and the existence of k-factors, J.Graph Theory 9 (1985) 87-95.
- [F1] H. Fleischner, The square of every two-connected graph is hamiltonian. J. Combinatorial Theory (B) 16 (1974) 29-34.
- [F2] P. Fraisse, D_{λ} -cycles and their applications for Hamiltonian graphs (submitted to *Discrete Math.*).
- [GJ] M. R. Garey and D. S. Johnson, *Computers and Intractability, A Guide to the Theory of NP-Completeness*, Freeman, San Francisco, 1979.
- [J] D. S. Jungreis, Generalised Hamiltonian circuits in the Cartesian product of twodirected cycles, J. Graph Theory 12 (1988) 113-120.
- [MS] M. M. Matthews and D. P. Sumner, Longest paths and cycles in K_{1,3}-free graphs, J. Graph Theory 9 (1985) 269-277.
- [M] G. H. J. Meredith, Regular n-valent n-connected nonhamiltonian non-n-edgecolorable graphs, J. Combinatorial Theory B 14 (1973) 55-60.
- [OS] D. Oberly and D. Sumner, Every connected, locally connected nontrivial graph with no induced claw is Hamiltonian, *J. Graph Theory* **3** (1979) 351-356.
- [P] G. Pruesse, A Generalization of Hamilonicity, M.Sc. Thesis, U. of Toronto (1990).
- [SW] Sein Win, On a connection between the existence of *k*-trees and the toughness of a graph, *Graphs and Combinatorics* **5** (1989) 201-205.
- [T] W. T. Tutte, A theorem on planar graphs, *Trans. Amer. Math. Soc.* 82 (1956) 99–116.
- [V] H. J. Veldman, Existence of D_{λ} -cycles and D_{λ} -paths, Discrete Math. 44 (1983) 309-316.

Bill Jackson Department of Mathematical Studies Goldsmith's College London SE14 6NW England Nicholas C. Wormald Department of Mathematics and Statistics University of Auckland Auckland New Zealand