k-walks of Graphs
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ABSTRACT

We obtain various sufficient conditions for a graph to have a spanning
closed walk meeting each vertex exactly k times or meeting each vertex at
most k times. In particular, we generalise the result of Oberly and Sumner
that every connected, locally connected X 1,3-free graph with at least three
vertices is hamiltonian.

1. Introduction.

Our purpose is to generalise the concept of hamiltonicity by considering spanning
closed walks in a graph which visit each vertex exactly k times, or at most k times.
Jungreis [J] considered closed walks in a Cayley digraph of Z mSZ n Visiting r vertices
twice and the rest once. Broersma [B2] considered closed walks visiting each vertex of a
graph exactly k times. We obtain sufficient conditions for the existence of such walks in
several types of graphs.

~ All our graphs are simple, and we use the term multigraph at those times when
multiple edges are permitted. We use G to denote an arbitrary graph. For an integer £,
denote by kxG the multigraph obtained from G by multiplying all edges by k. An
exact k-walk (or k-walk) of G is a connected spanning subgraph W of (2k)xG, such
that the degree of each vertex v in W is 2% (or is an even number which is at most 2%,
respectively). This nomenclature is motivated by the fact that Euler's Theorem implies that
a k-walk possesses a closed walk traversing each edge exactly once (an Euler tour), and
so a graph with a k-walk (or exact k-walk) possesses a closed walk passing through each
vertex at most k times (or exactly & times, respectively). One interesting result from [B2,
Corollary 3.3] is that if a graph has an exact k-walk then it has an exact k + 1)-walk
(k=2 1).

Given two graphs G and H, the composition of G and H, denoted by G[H], is
defined as the graph with vertex set V(G)xV(H) and edge set {(eg,v1)(ug,vg)
uiuz € E(G) or uy =uy and viv, € E(H)}. Note that for a graph with at least
three vertices, every 1-walk is a Hamilton cycle. On the other hand, for £ > 2, G has a
k-walk (or exact k-walk) if and only if G[K,] (or G[Fk], respectively) has a Hamilton
cycle. Thus we may use results on Hamilton cycles to obtain results on k-walks. There is
a strong relationship between k-walks and the hamiltonicity of compositions, since if H
has a Hamilton path then G[H] is hamiltonian if and only if G has a [V(H)|-walk. We
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exploit a similar connection in examining the complexity of finding k-walks (see Section
6).

We use 8(G) (or A(G)) to denote the minimum (or maximum, respectively)
degree of a vertex in a graph G, and a(G) to denote the independence number of G.
Also, G is Ky y-free if no induced subgraph of G is isomorphic to Ky ;. Oberly and
Sumner [OS] showed that every connected, locally connected K 3-free graph with at least
three vertices is hamiltonian. Matthews and Sumner [MS] surveyed further results on
Ky 3-free graphs and showed that any 2-connected K 3-free graph G with 8G) 2
(IV(G)! = 2) /3 has a Hamilton cycle. A classic result of Dirac [D] is that every graph G
with 8(G) 2 IV(G)I/.2 and IV(G)| 2 3 has a Hamilton cycle. Our main object is to
give several related results for k-walks, as well as results relating to a(G), toughness,
squares of graphs and planar graphs.

One of the devices used several times in our proofs is the consideration of an Euler
tour T in a k-walk W. A vertex v of degree 2r in W must be met exactly r times by

T, and so T can be partitioned into r subtours, say Ty, ..., T,, each meeting v
exactly once. We call these subtours the branches of T at v. For each vertex v of W
choose an ordered labelling T(¥) = (vy, . . ., vp,) of the neighbours of v on T in the

order in which they occur on T. Note that a neighbour of v on T may have several
different labels. We shall write v; ~ v; to mean that v; and v; are distinct labellings of the
same vertex, and use vv; to denote the unique edge of T from v to v;.

We also use N(v) to denote the set of neighbours of a vertex v in a graph G, and
NG(v) to denote the subgraph of G induced by N(v). For a vertex v of a multigraph

W, dy/(v) denotes the degree of v in W, which is the number of edges incident with
V.

2. Toughness and k-trees.

Let G be a graph and S a proper subset of V(G). Let ¢y(G ~S) denote the
number of isolated vertices of G — S and ¢(G — S) the number of components of
G — S. We first state a necessary condition for G to have a k-walk or an exact k-walk.

Lemma 2.1.

(i) If G has a k-walk then ¢(G — S) < kIS| for all nonempty proper subsets S of
V(G).

(i) If G has an exact k-walk then c(G —S) + (k — 1)cg(G = §) < kIS| for all
nonempty proper subsets S of V(G).
Proof.

(1) This follows since a k-walk of G must meet a vertex of S on passing between two
components of G — S.

(ii) This is given in [B2, Proposition 2.1]. &
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Following Chvital [C], we say that G is -tough for some ¢ > 0 if G is connected
and ¢(G - S) <181/t for all vertex cutsets S of G. Thus Lemma 2(i) can be restated
as "if G has a k-walk then G is (1/k)-tough.”

Remark 2.1. To see that the condition in Lemma 2(i) is not also sufficient, we create
for any € > 0 the following graph G which is (1/k + 2/3k? — &)-tough and has no
k-walk. We first define H to be the graph obtained from K 3 by attaching & pendant
vertices at each of the three vertices. We then construct G from the disjoint union of X
with [ (sk + 1)/27 copies of H by joining each vertex of K ; to every vertex in each
copy of H. Given any € > 0, we may choose s large enough so that G is
(1/k + 2/3k%~ €)-tough. To see that G has no k-walk note that: any closed walk
in G which meets each copy of H at least twice must meet some vertex of K ; at least k +
1 times, and, on the other hand, any spanning walk which meets some copy H ;Of H
exactly once, must meet some vertex of the K5 contained in H; at least & + 1 times.

Our next main object is to use a result of Sein Win to deduce that every (1/(k - 2))-
tough graph has a k-walk. A k-tree of a graph is a spanning tree with maximum degree
k. We have the following relationship between k-trees and k-walks.

Lemma 2.2.
(i) If G contains a k-tree then G has a k-walk.
(ii) If G has a k-walk then G contains a (k + 1)-tree.

Proof.

(1) Doubling the edges in a k-tree in G yields a k-walk of G.

(ii) Direct the edges of a k-walk of G to follow an Euler tour 7. Delete from T any edge
entering a vertex previously visited by the tour. The resulting multigraph, say H, is
connected and has maximum degree at most k + 1. Any spanning tree of His a (k + 1)-
treein G. H

Theorem 2.3. [SW] If G is connected, k = 2, and, for any subset S of V(G),
c(G~8) £ (k- 2)IS| +2, then G has a k-tree.

Corollary 2.4. If G is connected, k 2 2, and, for any subset § of V(G),
c(G ~ S) < (k- 2)I5] + 2, then G has a k-walk.

We feel that Corollary 2.4 can probably be improved to the following,
Conjecture 2.1. If k 2 2 then every (1/(k — 1))-tough gfaph has a k-walk.

Remark 2.2. For the special case k = 1, Chvital [C] has conjectured that there is some
1 for which every r-tough graph has a 1-walk. The lower bound 2 on such ¢ was
established by Enomoto et al. {EJKS], who constructed, for any € >0, a graph which is
(2 — ©)-tough and has no 1-walk.



3. Kiyxks+1-free graphs.

In this section we examine connected claw-free graphs in general, postponing extra
connectivity considerations until the next section.

Theorem 3.1. Let G be a connected, K y4-free graph.
(i) G has a k-walk.
(i1) If &G) = k then G has an exact k-walk.

Proof. Let G be a connected graph. To prove (i), we show that for any connected
graph G, there is a connected even spanning subgraph W of mxG for some m such
that dy/(v) is at most 2a(NG (v)) for all v € V(G). This suffices since a(NG(v))
<k for all v. Note firstly that G has a A(G)-walk H, for example, H = 2xG. Let
W be a A(G)-walk of G for which |E(W)| is minimised,

Suppose that there is some vertex v with dy(v) = 2r > 2a(NG(v)). Choose an
Euler tour T'in W, and let yy, . .., y, denote edges incident with v in distinct branches
of T atv. We complete the proof of (i) by finding a A(G)-walk W’ of G with
I[E(W)I <|E(W)I, yielding a contradiction. Observe that W — {y;:i=1,..., r)
is connected. Hence, if y; and y; have the same end vertices for some i # j, then the
deletion of y; and y; from W yields W’ as required. Alternatively, yy,...,y, are
incident with exactly r > a(NG(v)) distinct vertices, say Uiy .., Uy, in N(V).
Thus, wu; € E(G) for some i # j. In this case, set W' = W — iy} +wuj.
This yields (i).

To prove (ii), we refine the proof of (i), We now assume &(G) = k. For a walk
W, let (W) denote the number of edges of W which are members of multiple edges of
cardinality at least 3. Let W be a A(G)-walk of G with §(W) = 2k for which
|E(W)| is minimised, and, subject to this, for which #(W) is minimised. Suppose that
dw(v) > 2k for some v € V(G).

A triple edge is a multiple edge of multiplicity exactly 3, and a single edge is an
edge not in any multiple edge. We will find the following operations useful. Given a
subgraph § of a subgraph U of A(G)xG, we define U(S, a, b) to be the subgraph
of A(G)xG obtained from U by replacing every single edge of S by a multiple edge of
cardinality a and every triple edge by a multiple edge of cardinality b. We define a
subgraph R of W to be a 3,1-path if it has distinct vertices v = Vo, Vs e - ,'vq and
edges vo;,1v2i42. 0 €1 < (g — 2)/2, which are single edges in R and W, and edges
Voivois1, 01 < (g — 1)/2, which are triple ‘edges in R. LetR =vg, ..., Vg
denote a maximal 3,1-path with v =v,. We consider two cases. Note that the first
includes g = 0.
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Case 1. qis even.

First suppose that V4 is incident with no multiple edge of W of multiplicity at least
3. Put Wy = W(R, 3, 1), and note that [E(W )l = {E(W)I, s(W{) = t(W) and that
dwl(vq) 2 2k+2, even if ¢ = 0. Let s denote the number of vertices adjacent to Vg by
single edges of Wy, and m the number of vertices adjacent to v4 by multiple edges of
Wy. Denote these m vertices by uy, ..., u,. As in the proof of (i), choose an Euler
tour T in Wy. Then at least [s/2] single edges incident with vg are in distinct branches
of Tatvy. Lety;,i=1,...,[s/2], denote a set of such edges, and let u;,,,
denote the other end vertex of y;. Note that v, is incident with at most one triple edge,
and no edge of multiplicity greater than 3, in Wy, and so m +[s /27> (dw, (vp)-1)/2
> k. Hence, u;u; € E(G) for some i and j. Let x; denote y;_ ,, if i > m, and one
of the edges v, u; otherwise. Similarly, let x, denote Yj-m if j > m, and one of the
edges Vol otherwise. Then {xj,x,} is not a cutset of Wy, and so Wy =W —
{x1,x9) + ujujis a A(G)-walk of G with 6(Wj) 2 2k and |[E(Wy)l = |[E(W)| -
1. This is a contradiction.

It follows that v, is incident with a multiple edge of W of multiplicity at least 3. By
the maximality of R, the multiple edge is incident with v, for some p < g 1. Then R
=R; U R, where Ry N R, = {vp}, Ry is the path-like subgraph of R between v,
and v,, and R is the part between vpand v, If v, =vg then Ry = {v,]. LetR3
be R, with a triple edge added between vgand v, Put Wy =W(R3, 2,2). Ifpis
odd, then 8(W ;) 2 2k, I[E(W )| = IE(W)| and #(W ) < 1(W), contradicting the
choice of W. Otherwise, put W, = W(Ry, 3, 1) and a similar contradiction is reached.
This finishes Case 1.

Case 2. qis odd.

First suppose that vg4 is incident with no single edge of W. Then with Wy =
W(R, 3, 1), we have |[E(W )l < |[E(W)l. This yields a contradiction unless dW1<Vq)
< 2k — 2. Since all edges of Wy incident with vq are multiple, except perhaps v,_1v,,
and dg(vy) 2 k, it follows that some edge vgu of G is notin Wy. Set Wy =W, +

2vqu. Then [E(W)l = [E(W)| and ¢(W5) < #(W), a contradiction.

It follows that v, is incident with a single edge, say x, of W. By the minimality of
W, x =vqvp for some p<g - 1. ThenR =R, U R, where Ry N Ry = {vp},
R is the part of R between v and vp, and R is the part between v, and vg. Let Ry
=Ry + VpVg- The rest of the argument is as in Case 1, with the two subcases p even and
p odd interchanged. B

Remark 3.1. Theorem 3.1 is sharp in the following sense. Since K1 x has no
(k — 1)-walk, (i) is not true with k replaced by k — 1. Similarly, for any & > 2, Kp -1
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has no exact k-walk. Thus for any k 2 2 there exists a connected Ky 4, -free graph G
with 6(G) = k — 1 and no exact k-walk. Thus (ii) is false if §(G) = k is replaced by
O(G) 2 k-1,

4.  Connectivity.

We next generalise the main theorem of [OS] by showing that the conclusion of
Theorem 3.1 (i) can be strengthened if G is in addition locally connected; that is, N(v) is
connected for all v € V(G).

Theorem 4.1. For k > 1, every connected, locally connected Ky ,o-free graph with
at least two vertices has a k-walk.

Proof. Let G be a connected, locally connected K g,o-free graph with at least two
vertices. Then a(NG(v)) £k + 1 for all v € V(G). By Theorem 3.1(), G has a (k
+ 1)-walk, say W. Let g(W) denote the number of vertices of degree 2k + 2 in W, and
choose W so that g(W) is minimised. Assume that for some vertex v, dy(v) = 2k +
2. We will show how to obtain a (k + 1)-walk W’ of G which contradicts the
minimality of W.

Let T be an Euler tour in W, and let S denote the set of edges in T incident with
v, If x € T(v), we use x' to denote the element of T(v) such that vx' is the other
edge in S in the same branch of T as vx. As in the proof of Theorem 3.1(i) (but
minimising g(W) this time, rather than [E(W)), if vx and vy are any two edges in S
in distinct branches of T atv, then x 2y and xy € E(G). Thus, if vxy,. .., vxgy
€ S are in distinct branches of T at v, then x4, .. ., X441 form an independent set. So
since (NG (v)) £k + 1, we have that for each i, either x; ~x;" or x;x;'€ E(G).
Note that the branches of T at v can intersect only at v, since otherwise T can be re-
routed so that the conditions above are not satisfied.

Let P be a shortest path in NG(v) between vertices in distinct branches of T. The
local connectivity ensures the existence of P. We can assume that W and v have been
chosen so that the length of P is as small as possible (subject to the minimality of g(W)),
and that subject to these conditions, |E(W)! is minimised. By the previous paragraph, the
length of P is at least 2. Also, if P has length at least 4, then a central vertex of P,
together with xy,. .., X, ;, is an independent set in NG(v), a contradiction. Thus, P
has length at most 3. Without loss of generality, assume P is from x, to x,, and let u
denote the first vertex of P, apart from x;, for which dy,(u) 2 2k. If no such u
exists, then we can obtain W' from W by replacing the edges vx; and vxy with the

path P, to get g(W’') < g(W). Let P(x;, u) denote the set of edges of P from x; to
u.
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Let wy,. .., w; be labelled vertices in T(u) such that Uwy, ..., uw, are in
distinct branches of 7 at u, where v is in the same branch at u as wy, and let uw; | be
another edge in that branch. By the minimality of |E(W)l, we can assume Wi e,
Wy are all distinct and independent, except perhaps for Wi~ Wy OTWiw, €
E(G). But in either of these two cases we can modify W by deleting vx, uw, and
uw, 1, and inserting P(xy, u), the edge vu, and WiWwg, fwy~ Wi, is false, to
obtain a (k + 1)-walk in which P is shorter or G is decreased, a contradiction. Hence
Wy ~wp, is false, and wiwi, € EG).

It follows that every neighbour of u other than Wi, ..., W, is adjacent to at
least one of the vertices Wis ..o, Wiy qs that is, to a neighbour of u on 7. In particular,
assume vw; € E(G). If uw; is in the same branch of T at v as x; and xj’, where j #
I, we set W =W + {vwi,xjxj’} + Plxy, u) - {vxj, vxj', uw, vxy}, and remove
the loop xjxj' iij :xj'. This gives the desired walk W’ with g(W') < g(W).
Hence, recalling that the branches at v are disjoint except at v, we see that u appears only
in the same branch of T at v as x; and x;’. Similarly, we find that if u’ is the last
vertex of P, apart from Xy, for which dy,(u") 2 2k, then u’ is in the same branch of T
at v as xp and x,". Immediately, we obtain u # u’ and P has length 3. Thus, uu’ €
E(G). Hence, by the remark above, u' is adjacent to a neighbour of u on T, say w,
and by symmetry, u is adjacent to a neighbour of u’ on T, say w'. We can now set W’

=W + {uw’, u’w,xlxl’} - {vxy, vxy',uw, u'w’}, and remove xyxy ifitis a
loop, to obtain the desired walk W’ with gWHY <gW). B

We next examine global connectivity.

Theorem 4.2. If j 21,k 2 3 and G is j-connected and Ky, j(k-2)+1-free then G
has a k-walk.

Proof. Let S be a proper subset of V(G). Since G is J-connected, each component
of G ~§ is joined to at least j vertices in S, and since G is K1, jk-2)+1-free, each
vertex in § is joined to at most j(k—2) components of G —S. Hence, c(G-8)<
(k —2)I8I. The theorem now follows from Corollary 2.4. &

Note that Theorem 3.1(i) is a strengthening of Theorem 4.2 with j = 1. Also,
Theorem 4.2 improves Theorem 4.1 whenever & 2 6 in Theorem 4.1 because all locally
connected graphs other than K, are 2-connected. We believe that Theorem 4.2 can be
sharpened as follows.

Conjecture 4.1. If j> 1,k 22 and G is j-connected and K1, jk+1-free then G has
a k-walk.
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Remark 4.1. The graph K; j;,; has no k-walk. Hence, Conjecture 4.1 would be a
best possible strengthening of Theorem 4.2 for k 2 2. However, for k = 1, the graph
obtained by expanding each vertex of the Petersen graph to a triangle is K 13-free and 3-
connected and has no 1-walk, and the Meredith graphs [M] are r-connected, r-regular
(and hence Ky ,,1-free) and have no 1-walk. A related conjecture in [MS] is that every
K 3-free 4-connected graph has a 1-walk. We would like to ask how much this conjec-
ture might be strengthened, as follows.

Question. Ifj 24 and G is j-connected and K 1, j-free, does G have a 1-walk?
Theorems 4.1 and 4.2 also suggest the following.

Conjecture 4.2. If j>0,k > 1 and G is connected, locally j-connected and
K1 (s 1)k+1-free then G has a k-walk.

Remark 4.2. Conjecture 4.2 is a common generalisation of Theorem 3.1(1) (when j =
0) and a conjecture of Oberly and Sumner [OS] (when & = 1). Since connected, locally j-
connected graphs are (j + 1)-connected (except for K,), Theorem 4.2 implies the
weakened version of Conjecture 4.2 for K1 (+1)(k-2)+1-free graphs. If true, this
conjecture is sharp, in view of the graph K;i1 + K, obtained by joining each vertex of
Kj,1 to each vertex of K, where r = (j + 1)k + 1.

It is possible that local connectivity conditions facilitate the appearance of k-trees.
The truth of the following conjecture would go one step closer to establishing Conjecture
4.2, by Lemma 2.2(1).

Conjecture 4.3. If j 21,k =2 and G is connected, locally j-connected and
K1 (i+1)(k=1)+2-free then G has a k-tree.

Remark 4.3. If true, this conjecture is sharp, in view of Kip1+ K,. Any k-tree T in
this graph requires at least j + r edges. But every edge is incident with one of the vertices
in K11, and so T has at most (j + 1)k edges. Hence, r < (j + 1)(k— 1) + 1.

5.  Minimum degree, independence number, squares of graphs and planar
graphs.

A Dj-cycle in a graph G is a cycle C such that all components of G — C have less
than 4 vertices. Clearly, G[K}] has a D;-cycle if and only if G has a k-walk.

Theorem 5.1. If G is connected, k = 2 and 6(G) > (IV(G)l - 1)/ (k + 1) then G
has a k-walk.



Proof. We will use the following result implied by Veldman [V, part of Theorem 4].
Suppose k 2 2 and G is a k-connected graph, and that the vertices of each connected
subgraph of G with & vertices are adjacent to more than ({V(G)l — 1) / (k + 1) other ver-
tices. Then G has a Dy-cycle.

Consider H = G[K;]. We shall refer to the K-subgraphs of H corresponding
to vertices of G as inflated vertices. Noting that |V(H)| = k|V(G)|, that H is k-
connected, and that each connected subgraph F of H with k vertices has more than
k(IV(GHl — 1)/ (k + 1) neighbours in V(H)\ V(F), we may apply Veldman's theorem
to deduce that H has a Dy-cycle. B

Remark 5.1. If we require a minimum degree condition on G for an exact k-walk
(rather than a k-walk as in Theorem 5.1) then the best we can do is [V(G)|/ 2 for all k.
The fact that all graphs G of minimum degree at least [V(G)|/ 2 have a k-walk follows
from Dirac's Theorem [D]. To see that we cannot do any better, consider K1 .

Recently Fraisse [F2, Corollary 1] showed that if G is a k-connected graph such
that the degree sum of any & + 1 independent vertices is at least [V(G)| + k(k — 1), then
G has a Dy-cycle. Applying this result instead of [V, Theorem 4] in the proof of Theo-
rem 5.1, we may deduce the stronger:

Theorem 5.2. If G is connected and every set of ¥ + 1 independent vertices of G
have degree sum at least |V(G)| then G has a k-walk. &

It follows trivially from Theorem 3.1 that every connected graph G has an o(G)-
walk. This result may be extended for graphs of higher connectivity, as follows.

Theorem 5.3. Let G be a j-connected graph. Put k =[a(G)/jl. Then G has a
k-walk.

Proof. Again consider H = G[K}]. Since H is kj-connected and kj 2 o(H) =
a(G), it follows from the Chvétal-Erdos Theorem [CE] that H is hamiltonian. &

Fleischner [F1] has shown that the square of a 2-connected graph has a 1-walk.
Using this result we deduce the following.

Theorem 5.4, If G is connected then G2 has.a 2-walk.

Proof. Since G[K,] is 2-connected and G2[K,] = G[K 2]2, it follows from [F1] that
G?[K,] is hamiltonian. §
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If G has minimum degree 2 then Theorem 5.4 may be strengthened as in the next
theorem. We first need a lemma for trees.

Lemma 5.5. If T is a tree then TZ has a 2-walk W such that for all v € V(T),
dy(v) =2 iff dp(v) =L

Proof. Let n = V(T) and let u be an arbitrary vertex of T which we will call a roor.
We strengthen the statement to be proved by asserting that, in addition to W, there is a 2-
walk W' such that for all v € V(T), dy.(v) = 2 iff dp(v) =1l orv =u. This is
proved by induction on n. If n = 2 then it is immediate, so take n 2 3. Let T(u) denote
the subtree of T induced by u and its neighbours. We can assume that for each
component H of T — u, tooted at the neighbour of u in H, there is a 2-walk in H? of
the type of W'. The union of these walks over all components H, together with a 1-walk
in T(u)?, yields the desired 2-walk W’. (Note that if any of the components is a single
vertex, its 2-walk contains no edges.) Otherwise, we can assume that d(u) = 2, and then
instead of a 1-walk in T(u)?, use a 2-walk in which u is the only vertex of degree 4.
This yields the walk W.

Theorem 5.6. If G is connected and §(G) = 2 then G2 has an exact 2-walk.

Proof. Let T be a spanning tree of G and let H denote the subgraph of G induced by
the endvertices of 7. Let F be a spanning subgraph of H such that dp(v) 2 1 for all v
€ V(H) with d;(v) 2 1 and such that |E(F)| is minimal. Clearly F is a spanning
forest of H and each component of F is a star. Let S; denote the set of vertices in F of
degree i, and let M denote a set of edges of G — T covering all the members of S, each
edge containing one member of §,. Define a spanning subgraph G’ of G by E(G") =
E(Ty U E(F) U M. All vertices in S, and §, have degree 2 in G'. Let R denote a
subset of Sy U S, which contains all vertices but one in each component of F. (The
only case in which there is some choice for membership in R is for those components of
order 2.) Slicing each vertex of G’ in R into two vertices of degree 1, we obtain a tree
T’ whose endvertices are the vertices coming from R. By Lemma 5.5, T'2 has a 2-walk
in which all these vertices have degree 2 and the rest have degree 4. This induces an exact
2-walk in G'? and hence in G%. &

Tutte [T] has shown that every 4-connected planar graph is hamiltonian. On the other
hand, K3 5., is an example of a 2-connected planar graph which has no k-walk for any
k2 1. For the remaining case of 3-connected planar graphs, Barnette [B] has shown that
all such graphs have a 3-tree. Using Lemma 2.2(1) we deduce the next result.

Theorem 5.7. Every 3-connected planar graph has a 3-walk. ¥
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Perhaps the following stronger assertion is valid.
Conjecture 5.1. Every 3-connected planar graph has a 2-walk.

Note that if Conjecture 5.1 were true then, by Lemma 2.2(ii), it would generalise
Bamnette's result on 3-trees.

6. NP-completeness of k-walk problems.

It was shown in [B2] that the problem of whether a given graph has an exact k-walk
is NP-complete. The proof was by transformation of an arbitrary graph G to a graph G’
such that G has a Hamilton cycle iff G’ has an exact k-walk. The NP-completeness of
the exact k-walk problem thus follows from the NP-completeness of the Hamilton cycle
question. In fact, with the proof given, G has a Hamilton cycle iff G’ has any k-walk,
and thus the question of whether a given graph has a k-walk is NP-complete. However,
the graphs G’ have many cut-vertices, and so it is natural to ask whether the restriction of
the question to more highly connected graphs is still NP-complete. Using the conventions
of Garey and Johnson [GI], we may state the problems precisely as follows.

K-WALK IN J-CONNECTED GRAPH
Instance: j-connected graph G.
Question: Does G have a k-walk?

EXACT K-WALK IN J-CONNECTED GRAPH
Instance: j-connected graph G.
Question: Does G have an exact k-walk?

We generalise the result given in [B2] to the following.

Theorem 6.1. For k and j fixed, K-WALK IN J-CONNECTED GRAPH and
EXACT K-WALK IN J-CONNECTED GRAPH are NP-complete.

Proof. We give a polynomial reduction from HAMILTON CYCLE to each problem. Let
G be an arbitrary graph with [V(G)| = 2, and form the composition H = G[K;l. To
each inflated vertex of H (in the terminology of the proof of Theorem 5.1), join jk — 1
separate copies of K, to obtain G'. Then a k-walk in G’ uses at most two edges of H
incident with any inflated vertex, and so yields a 1-walk of G. The converse also holds.
In addition, G’ is j-connected. Thus, we have reduced HAMILTON CYCLE to K-
WALK IN J-CONNECTED GRAPH. The proof for exact k-walks is exactly the same
since if G has a 1-walk it follows that G” has an exact k-walk. &
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