Disjoint Hamiltonian Cycles in Graphs*

Li Guojun
Department of Mathematics and Systems Science, Shandong University, Jinan 250100, China

Chen Chuanping
Institute of Systems Science, Academia Sinica, Beijing 100080, China

Abstract

Let G be a $2(k+1)$-connected graph of order n. It is proved that if $u v \notin E(G)$ implies that $\max \{d(u), d(v)\} \geq \frac{n}{2}+2 k$ then G contains $k+1$ pairwise disjoint Hamiltonian cycles when $\delta(G) \geq 4 k+3$.

1. Introduction

All graphs we consider are finite and simple. We use standard terminology and notation from Bondy and Murty [2] except as indicated. Let $G=(V(G), E(G))$ be a graph with vertex set $V(G)$ and edge set $E(G)$. For a subset U of $V(G), G[U]$ is the subgraph of G induced by U. For two disjoint subsets (resp. subgraphs) S, T of $V(G)($ resp. $G)$, put

$$
\begin{aligned}
& E(S, T)=\{s t \in E(G) \mid s \in S, t \in T\}, \\
& \bar{E}(S, T)=\{s t \notin E(G) \mid s \in S, t \in T\}, \\
& N_{T}(S)=\{t \in T \mid t \text { is adjacent to some vertex in } S\}, \\
& \bar{N}_{T}(S)=\{t \in T \mid t \text { is not adjacent to any vertex in } S\}, \\
& d_{T}(S)=\left|N_{T}(S)\right|, \quad \bar{d}_{T}(S)=\left|\bar{N}_{T}(S)\right| ;
\end{aligned}
$$

when $S=\{s\}$, we write $d_{T}(s)$ and $\bar{d}_{T}(s)$ for $d_{T}(\{s\})$ and $\bar{d}_{T}(\{s\})$. Let $P=u v \cdots w$ and $Q=x y \cdots z$ be two vertex-disjoint paths of G. If $u x$ and $w z$ are the edges of G, we denote by $P Q$ the cycle $P \cup Q \cup\{u x, w z\}$ with a given orientation in the order from x to z along the path Q. For a cycle C with an given orientation and a vertex $v \in V(C)$, we denote by v_{C}^{-}and v_{C}^{+}the predecessor and successor of v on C, respectively. Two Hamiltonian cycles are called disjoint when they share no common edge, and similar terminology will be applied to disjoint paths.

[^0]Let x be a real number. We denote by $[x]$ the maximum integer less than or equal to x.

The following theorem due to Geng-hua Fan [3] is well known.
Theorem A If a 2-connected graph G of order n satisfies the condition $d(u, v)=$ $2 \Longrightarrow \max \{d(u), d(v)\} \geq \frac{n}{2}$, then G contains a Hamiltonian cycle.

The proof of Fan's result was simplified by F.Tian [5]. In 1993, S.Zhou [6] proved the following theorem by using the method essentially same as used by Tian.

Theorem B If a 4-connected graph G of order n satifies the condition $d(u, v)=$ $2 \Longrightarrow \max \{d(u), d(v)\} \geq \frac{n}{2}+2$, then G contains 2 Hamiltonian cycles.

On disjoint Hamiltonian cycles, H.Li [4] proved in 1989 the following interesting result.

Theorem C Let n and k be positive integers such that $n \geq 8 k^{2}-5$, and let G be a graph on n vertices with minimum degree δ satisfying $2 k+1 \leq \delta \leq 2 k+2$. If $d_{G}(u)+d_{G}(v) \geq n$ for any pair of nonadjacent vertices u and v, and if l_{1}, \cdots, l_{k} are integers satisfying $3 \leq l_{1} \leq l_{2} \cdots \leq l_{k} \leq n$, then G contains k disjoint cycles of length $l_{1}, l_{2}, \cdots, l_{k}$, respectively. In particular, under these conditions G contains k disjoint Hamiltonian cycles.

There are many results on Hamiltonian cycles, but few on disjoint Hamiltonian cycles. Here we focus our attention on the study of disjoint Hamiltonian cycles in graphs. As in [6], for a nonnegative integer k, a graph of order n is called a Fan $2 k$-type graph if $d(u, v)=2$ implies $\max \{d(u), d(v)\} \geq \frac{n}{2}+2 k$. In this paper, we call a graph of order n an Ore $2 k$-type graph if $u v \notin E(G)$ implies $\max \{d(u), d(v)\} \geq$ $\frac{\pi}{2}+2 k$. We will prove the following Theorem.

Theorem 1 Let G be a $2(k+1)$-connected Ore $2 k$-type graph. If $\delta(G) \geq 4 k+3$ then G contains $k+1$ disjoint Hamiltonian cycles.

We surmise the condition $\delta(G) \geq 4 k+3$ can be deleted, but this task is formidable. So we pose the following conjecture.

Conjecture 1 For any nonnegative integer k, every $2(k+1)$-connected Ore $2 k$ type graph contains $k+1$ disjoint Hamiltonian cycles.

It is easy to see that the proof of Conjecture 1 will be a stepping stone in the proof of the following conjecture 2 posed by S.Zhou in [6].

Conjecture 2 For any nonnegative integer k, every $2(k+1)$-connected Fan $2 k$ type graph contains $k+1$ disjoint Hamiltonian cycles.

We will prove Theorem 1 in section 2. As an application of the method established in section 2 , we will give, in section 3 , an alternative proof of Conjecture 1 for $k=1$. We attempt to explain how the method established in section 2 might be useful in proving the conjecture 1.

2. Proof of Theorem 1

In this section, all graphs we consider are $2(k+1)$-connected Ore $2 k$-type. The
following Lemmas are useful in proving our main results.
Lemma 1 If G is a Ore $2 k$-type graph of order n, and u, v are nonadjacent vertices of G which satisfy $\min \{d(u), d(v)\} \geq \frac{n}{2}+2 k$, then
(1) $G+u v$ is also a Ore $2 k$-type graph, and
(2) G contains $k+1$ disjoint Hamiltonian cycles if and only if $G+u v$ contains $k+1$ disjoint Hamiltonian cycles.

Proof. Let x and y be nonadjacent vertices in $G^{\prime}=G+u v$. Then $\max \left\{d_{G^{\prime}}(x)\right.$, $\left.d_{G^{\prime}}(y)\right\} \geq \max \left\{d_{G}(x), d_{G}(y)\right\} \geq \frac{n}{2}+2 k$, so (1) is valid. For (2), let $C_{1}, C_{2}, \cdots, C_{k+1}$ be $k+1$ disjoint Hamiltonian cycles of $G+u v$. We will prove that G contains $k+1$ disjoint Hamiltonian cycles as well. If $u v \notin \bigcup_{i=1}^{k+1} E\left(C_{i}\right)$, then $C_{1}, C_{2}, \cdots, C_{k+1}$ are the required cycles of G; otherwise, say $u v \in E\left(C_{1}\right)$, then $G^{\prime}=G-\bigcup_{i=2}^{k+1} E\left(C_{i}\right)$ contains a Hamiltonian path $C_{1}-u v=x_{1}(=u) x_{2} \cdots x_{n}(=v)$. Let

$$
\begin{gathered}
M=\left\{x_{i} \mid x_{1} x_{i} \in E\left(G^{\prime}\right), 2 \leq i \leq n-1\right\} \\
N=\left\{x_{i} \mid x_{i-1} x_{n} \in E\left(G^{\prime}\right), 3 \leq i \leq n\right\}
\end{gathered}
$$

Since $x_{1} \notin M \cup N$, we get that $|M \cup N| \leq n-1$. On the other hand, the inequality $\min \{d(u), d(v)\} \geq \frac{n}{2}+2 k$ implies that $\min \left\{d_{G^{\prime}}(u), d_{G^{\prime}}(v)\right\} \geq \frac{n}{2}$. Hence we get that $|M|+|N|=d_{G^{\prime}}\left(x_{1}\right)+d_{G^{\prime}}\left(x_{n}\right) \geq n$, and that $|M \cap N|=|M|+|N|-|M \cup N| \geq 1$.

Therefore there is a vertex $x_{i} \in M \cap N$, and so G^{\prime} has a Hamiltonian cycle $C_{1}^{\prime}=x_{i} x_{1} x_{2} \cdots x_{i-1} x_{n} x_{n-1} \cdots x_{i+1} x_{i}$ disjoint from the cycles C_{2}, \cdots, C_{k+1}. Lemma 1 is proved.

Lemma 2 Let G be a complete graph of order n. Then G contains $\left[\frac{n}{2}\right]$ disjoint Hamiltonian paths.

Proof. Let the vertices of G be $v_{1}, v_{2}, \cdots, v_{n}$. Then the $\left[\frac{n}{2}\right]$ Hamiltonian paths required are

$$
\begin{gathered}
v_{1+i} v_{p+i} v_{2+i} v_{p+i-1} \cdots v_{j+i+1} v_{p+i-j} \cdots v_{\left[\frac{n}{2}\right]+i+2} v_{\left[\frac{n}{2}\right]+i+1}, \text { if } n \text { is odd, } \\
\quad v_{1+i} v_{p+i} v_{2+i} v_{p+i-1} \cdots v_{j+i+1} v_{p+i-j} \cdots v_{\frac{n}{2}+i} v_{\frac{n}{2}+i+1}, \text { if } n \text { is even }
\end{gathered}
$$

for $i=1,2, \cdots,\left[\frac{n}{2}\right]$, where the subscripts are all taken modulo n.
Lemma 3 Let G be a complete graph of order n. Then G contains $\left[\frac{n-1}{2}\right]$ disjoint Hamiltonian cycles.

Proof. Let $u_{0} \in V(G)$ be a vertex of G. By Lemma 2, $G-\left\{u_{0}\right\}$ contains $\left[\frac{n-1}{2}\right]$ disjoint Hamiltonian paths. Then the Hamiltonian cycles required are obtained from these paths by joining the vertex u_{0} to each end of these paths.

Now we start the proof of Theorem 1.
Let G be a complete graph of at least $2 k$ vertices, and $\left(u_{1}, v_{1}\right), \cdots,\left(u_{k}, v_{k}\right)$ be k pairs of vertices of G. By the proof of Lemma 2, we see that G has k disjoint

Hamiltonian paths $P\left(u_{i}, v_{i}\right), i=1,2, \cdots, k$, with u_{i} and $v_{i}, i=1,2, \cdots, k$, as their endvertices.

Since G is $2(k+1)$-connected, G has at least $2 k+3$ vertices. By Lemma 3, we only need to consider the case that G is not complete, and let

$$
S=\left\{u \in V(G) \left\lvert\, d(u) \geq \frac{n}{2}+2 k\right.\right\} .
$$

Then $S \neq \emptyset$ since G is not complete. By Lemma 1, we may assume that $G[S]$ is complete. By Lemma 3, we further assume that $S \neq V(G)$. Let $G_{i}=\left(V_{i}, E_{i}\right)$ $(1 \leq i \leq \omega)$ denote the components of $G[V \backslash S]$, and let

$$
S_{i}=N_{S}\left(V_{i}\right), \quad 1 \leq i \leq \omega .
$$

By the hypothesis that G is an Ore $2 k$-type graph, we have
Lemma $4 \omega=1$ and G_{1} is complete.
Lemma $5 \quad\left|S_{1}\right| \geq 2(k+1)$.
Proof. Suppose to the contrary that $\left|S_{1}\right|<2(k+1)$. In view of the fact that G is 2(k+1)-connected, we have that $S=S_{1}$ since otherwise S_{1} forms an cutset of G.

Since G is not complete, there is a vertex, say $s \in S$, which is not adjacent to some vertex in V_{1}. Since $s \in S$, we have $d_{G}(s) \geq \frac{n}{2}+2 k$, and then

$$
|S| \geq \frac{n}{2}+2 k+1-\left(\left|V_{1}\right|-1\right)=\frac{n}{2}+2 k-\left|V_{1}\right|+2,
$$

while $|S|+\left|V_{1}\right|=n$, we get $n \geq 4 k+4$.
On the other hand, because of $|S| \leq 2 k+1$, we get

$$
\left|V_{1}\right|=n-|S| \geq 4 k+4-(2 k+1)=2 k+3 \geq|S|+2 .
$$

Since $\sum_{v \in V_{1}} d_{S}(v)=\sum_{s \in S} d_{V_{1}}(s)$, we get $\left|V_{1}\right| \max _{v \in V_{1}} d_{S}(v) \geq|S| \min _{s \in S} d_{V_{1}}(s)$. It follows from $\frac{|S|}{\left|V_{1}\right|}-1<0$ and $\min _{s \in S} d_{V_{1}}(s) \leq\left|V_{1}\right|$ that

$$
\begin{aligned}
& \max _{v \in V_{1}} d_{S}(v) \geq \min _{s \in S} d_{V_{1}}(s)+\left(\frac{|S|}{\left|V_{1}\right|}-1\right) \min _{s \in S} d_{V_{1}}(s) \\
& \geq \min _{s \in S} d_{V_{1}}(s)+\left(\frac{|S|}{\left|V_{1}\right|}-1\right)\left|V_{1}\right|=\min _{s \in S} d_{V_{1}}(s)+|S|-\left|V_{1}\right|,
\end{aligned}
$$

but then

$$
\begin{aligned}
& \frac{n}{2}+2 k>\max _{v \in V_{1}} d_{G}(v)=\left|V_{1}\right|-1+\max _{v \in V_{1}} d_{S}(v) \\
& \geq\left|V_{1}\right|-1+\min _{s \in S} d_{V_{1}}(s)+|S|-\left|V_{1}\right|=|S|-1+\min _{s \in S} d_{V_{1}}(s) \\
& =\min _{s \in S} d_{G}(s) \geq \frac{n}{2}+2 k, \text { a contradiction. Lemma } 5 \text { is proved. }
\end{aligned}
$$

If $\left|V_{1}\right| \geq 2(k+1)$, then, by Lemma 5 and since G is $2(k+1)$-connected, there are at least $2(k+1)$ independent edges between S_{1} and V_{1}, and by Lemma $2, G$ has $k+1$ disjoint Hamiltonian cycles since both $G[S]$ and $G\left[V_{1}\right]$ contain $k+1$ disjoint Hamiltonian paths respectively, and so we assume in the rest of the proof that $\left|V_{1}\right| \leq$ $2 k+1$. Put

$$
l=\max _{s \in S}\left\{\bar{d}_{G_{1}}(s)\right\}
$$

Lemma $6 \quad n \geq 4 k+2 l+2$.
Proof. Let $s \in S$ be a vertex of G with $\bar{d}_{G_{1}}(s)=l$. Then $d_{G}(s)=n-l-1$, together with the inequality $d_{G}(s) \geq \frac{n}{2}+2 k$, we get $n \geq 4 k+2 l+2$.

Denote by B_{1} the bipartite graph ($S_{1} \cup V_{1}, E\left(S_{1}, V_{1}\right)$), and by M_{1} the maximum matching of B_{1}, and by U_{1} the set of vertices of M_{1} which are in S_{1}. Since G is $2(k+1)$-connected and $\left|V_{1}\right|<2(k+1)$, we have that $\left|V_{1}\right|=\left|U_{1}\right|$. By Lemma 5 , we can choose $W_{1} \subseteq S_{1} \backslash U_{1}$ such that $\left|U_{1} \cup W_{1}\right|=\left|V_{1} \cup W_{1}\right|=2(k+1)$. By Lemma 6, we have that $\left|S \backslash W_{1}\right|=n-\left|V_{1} \cup W_{1}\right| \geq 4 k+2 l+2-2(k+1)=2 k+2 l \geq 2 k+2$ since G is not complete.

Let G^{*} be the graph obtained from G by adding all edges between V_{1} and W_{1} which are not in $E\left(V_{1}, W_{1}\right)$ to G such that $G^{*}\left[V_{1} \cup W_{1}\right]$ is complete.

We now consider the induced subgraphs $G^{*}\left[S \backslash W_{1}\right]$ and $G^{*}\left[V_{1} \cup W_{1}\right]$. By Lemma $2, G^{*}\left[S \backslash W_{1}\right]$ contains $k+1$ disjoint Hamiltonian paths P_{1}, \cdots, P_{k+1}; and $G^{*}\left[V_{1} \cup W_{1}\right]$ contains $k+1$ disjoint Hamiltonian paths Q_{1}, \cdots, Q_{k+1}, such that P_{i} has endvertices either $u_{i}, u_{i}^{\prime} \in U_{1}$, or $u_{i} \in U_{1}, s \in S \backslash\left(U_{1} \cup W_{1}\right)$, or $s, s^{\prime} \in S \backslash\left(U_{1} \cup W_{1}\right)$; and to which correspond, Q_{i} has endvertices either $v_{i}, v_{i}^{\prime} \in V_{1}$, or $v_{i} \in V_{1}, w \in W_{1}$, or $w, w^{\prime} \in W_{1}$, where $u_{i} v_{i}, u_{i}^{\prime} v_{i}^{\prime} \in M_{1}$. Let $C_{i}=P_{i} Q_{i}, i=1, \cdots, k+1$. Then C_{1}, \cdots, C_{k+1} are $k+1$ disjoint Hamiltonian cycles of G^{*}.

To prove Theorem 1, we need to construct $k+1$ disjoint Hamiltonian cycles of G from the disjoint Hamiltonian cycles of G^{*}. Let $E_{i}=\left\{v w \in E\left(Q_{i}\right) \mid v w \notin E(G)\right\}, i=$ $1,2, \cdots, k+1$. Then $\left|E_{i}\right| \leq 2 k+1, i=1,2, \cdots, k+1$. Since $\delta(G) \geq 4 k+3$, we have that $d_{P_{i}}(v) \geq 2 k+\bar{d}_{W_{1}}(v)+2$ for each $v \in V_{1}$. Consequently, we can choose $k+1$ pairwise edge-disjoint subsets $F_{1}, F_{2}, \cdots, F_{k+1}$ of G such that

1) $F_{i}=\left\{v s \in E(G) \backslash M_{1} \mid v \in V_{1}, s \in S \backslash W_{1}\right.$, and there is a vertex w such that $\left.v w \in E\left(C_{i}\right) \backslash E(G)\right\}, i=1,2, \cdots, k+1$;
2) $\left|F_{i}\right|=\left|E_{i}\right|, i=1,2, \cdots, k+1$;
3) Every two edges in F_{i} have no vertex of P_{i} in common.
4) There is at most one edge in F_{i} connecting an endvertex u of P_{i} and a vertex $v \in V_{1}$ such that if $v v_{C_{i}}^{+}$is not an edge of G then $u_{C_{i}}^{+} \notin V_{1}$, and if $v v_{C_{i}}^{-}$is not an edge of G then $u_{C_{i}}^{-} \notin V_{1}$.

Let $v s \in F_{i}$. When $v v_{C_{i}}^{+} \notin E(G)$, we have that $v_{C_{i}}^{+} s_{C_{i}}^{+} \in E(G)$ because $v_{C_{i}}^{+} \in W_{1}$. While $v_{C_{i}}^{-} v \notin E(G)$, we have that $v_{C_{i}}^{-} s_{C_{i}}^{-} \in E(G)$ because $v_{C_{i}}^{-} \in W_{1}$.

From the argument above, we can get $k+1$ Hamiltonian cycles of G, which may have edges in common, from the $k+1$ Hamiltonian cycles of G^{*}.

To begin with, for every integer $i(1 \leq i \leq k+1)$, we first choose $v s \in F_{i}$ such that s is an endvertex of P_{i} if possible.

If $v v_{C_{i}}^{+} \notin E(G)$ then $v_{C_{i}}^{+} s_{C_{i}}^{+} \in E(G)$ since $v_{C_{i}}^{+}$and $s_{C_{i}}^{+}$are vertices of S, and the edge $v_{C_{i}}^{+} s_{C_{i}}^{+}$is said to be A-type. If $v v_{C_{i_{i}}}^{-} \notin E(G)$ then $v_{C_{i}}^{-} s_{C_{i}}^{-} \in E(G)$ since $v_{C_{i}}^{-}$and $s_{C_{i}}^{-}$are vertices of S, and the edge $v_{C_{i}}^{-} s_{C_{i}}^{-}$is said to be A-type.

Replacing $v v_{C_{i}}^{+}$and $s s_{C_{i}}^{+}$by $v s$ and $v_{C_{i}}^{+} s_{C_{i}}^{+}$, or $v v_{C_{i}}^{-}$and $s s_{C_{i}}^{-}$by $v s$ and $v_{C_{i}}^{-} s_{C_{i}}^{-}$, we get a Hamiltonian cycle C_{i}^{\prime} of G^{*} with at least one more edge of G than C_{i} has.

Writing C_{i} for C_{i}^{\prime}, and repeating the procedure above until all edges of F_{i} are included in the edges of C_{i}, we then obtained a Hamiltonian cycle C_{i} of G.

It is easy to see that every A-type edge has its endvertices in S.
Using the procedure above on all cycles of G^{*}, we get $k+1$ cycles, still written $C_{1}, C_{2}, \cdots, C_{k+1}$, of G. All A-type edges have their endvertices in S. Clearly, if an edge is a common edge of a number of cycles, then the edge must be A-type, and so the endvertices of it are in S.

Denote by $m_{e}\left(C_{1}, \cdots, C_{k+1}\right)$ the number of cycles having the edge e in common. Put

$$
m\left(C_{1}, \cdots, C_{k+1}\right)=\sum_{e \in E(G)} \max \left\{m_{e}\left(C_{1}, \cdots, C_{k+1}\right)-1,0\right\}
$$

If $m\left(C_{1}, \cdots, C_{k+1}\right)=0$, then C_{1}, \cdots, C_{k+1} are the required Hamiltonian cycles of G. Suppose $m\left(C_{1}, \cdots, C_{k+1}\right)>0$.

Let $u v \in E\left(C_{i}\right)$ be an edge belonging to two or more Hamiltonian cycles of G. Since both u and v are vertices of S, they have degree in G at least $n-l-1$. Let $G^{\prime}=G-\bigcup_{j=1}^{k+1} E\left(C_{j}\right)+E\left(C_{i}\right) \backslash\{u v\}$. Then, by Lemma 6, we get

$$
d_{G^{\prime}}(u)+d_{G^{\prime}}(v) \geq 2(n-l-1-2 k) \geq 2\left(\frac{n}{2}+2 k+l+1-l-1-2 k\right)=n
$$

By the same method as that of proving Lemma $1(2)$, we conclude that G^{\prime} has a Hamiltonian cycle C_{i}^{\prime}. It follows that $m\left(C_{1}, \cdots, C_{i}^{\prime}, \cdots, C_{k+1}\right)=m\left(C_{1}, \cdots, C_{k+1}\right)-1$.

Writing C_{i}^{\prime} for C_{i}, and repeating this procedure until $m\left(C_{1}, \cdots, C_{k+1}\right)=0$, we get $k+1$ disjoint Hamiltonian cycles of G. Theorem 1 is proved.

3. Proof of Conjecture 1 for $k=1$

A proof of conjecture 1 for $k=1$ is contained in reference [6]. Here we use the method posed in section 2 to simplify that proof. For explicitness, we rewrite Conjecture 1 for $k=1$ as the following Theorem.

Theorem 2 Let G be a 4-connected graph. If $u v \notin E(G) \Longrightarrow \max \{d(u), d(v)\} \geq$ $\frac{n}{2}+2$, then G contains two disjoint Hamiltonian cycles.

Proof Let U_{1}, V_{1}, W_{1} and S_{1} be defined as in section 2. That $k=1$ implies $\left|U_{1} \cup W_{1}\right|=\left|V_{1} \cup W_{1}\right|=4$, and so $0 \leq\left|\bar{E}\left(V_{1}, W_{1}\right)\right| \leq 2$. We just consider the case $\left|\bar{E}\left(V_{1}, W_{1}\right)\right|=2$ since the other cases are simpler. Clearly, $\left|V_{1}\right| \geq 2$. Let $v_{1} w_{1}, v_{2} w_{2} \in \bar{E}\left(V_{1}, W_{1}\right)$. Then $v_{1} \neq v_{2}$.

If $w_{1} \neq w_{2}$, then $C_{1}=P_{1} Q_{1}$ where $Q_{1}=v_{1} w_{1} w_{2} v_{2}$ is a Hamiltonian cycle of G^{*}, but not of G, and $C_{2}=P_{2} Q_{2}$ where $Q_{2}=w_{1} v_{2} v_{1} w_{2}$ is a Hamiltonian cycle of G. By Lemma 7, we can construct a Hamiltonian cycle of G from the cycle C_{1} of G^{*}. Let $s \in P_{1} \backslash\left\{u_{1}\right\}, t \in P_{1} \backslash\left\{u_{2}\right\}$ be two vertices adjacent to v_{1} and v_{2}, respectively. By Lemma $7,\{s, t\} \neq\left\{u_{1}, u_{2}\right\}$, say $s \neq u_{2}$. If t lies in $P\left(s, u_{2}\right)$, we substitute $v_{1} s, w_{1} s_{C_{1}}^{+}$ for $s s_{C_{1}}^{+}, v_{1} w_{1}$, and $v_{2} t, w_{2} t_{C_{1}}^{-}$for $t t_{C_{1}}^{-}, v_{2} w_{2}$ to get a Hamiltonian cycle in $G-E\left(C_{2}\right)$. If t lies in $P\left(u_{1}, s_{C_{1}}^{+}\right)$, we substitute $v_{1} s, v_{2} t, w_{2} t_{C_{1}}^{-}$and $w_{1} s_{C_{1}}^{-}$for $v_{1} w_{1}, v_{2} w_{2}, s s_{C_{1}}^{-}$and $t t_{C_{1}}^{-}$to get a Hamiltonian cycle in $G-E\left(C_{2}\right)$.

Conseqently, we assume that $w_{1}=w_{2}=w$. Then $V_{1}=\left\{v_{1}, v_{2}, v_{3}\right\}$. Let $v_{1} w, v_{2} w \in \bar{E}\left(V_{1}, W_{1}\right)$. Let $Q_{1}=v_{1} v_{3} w v_{2}$ and $Q_{2}=v_{3} v_{2} v_{1} w$. Then $C_{1}=P_{1} Q_{1}$
and $C_{2}=P_{2} Q_{2}$ are two disjoint Hamiltonian cycles of G^{*}. Let $s \in P_{2}$ be a neighbour of v_{1}.

If $s \neq u_{3}$, then we can get two disjoint Hamiltonian cycles of G in the same way as above.

If $s=u_{3}$, then $C_{2}^{\prime}=C_{2}+\left\{w v_{3}, v_{1} u_{3}\right\}-\left\{u_{3} v_{3}, w v_{1}\right\}$ is a Hamiltonian cycle of G. Let $C_{1}^{\prime}=C_{1}-\left\{v_{3} w\right\}$. By Lemma 7, there is a vertex $t \in S \backslash\left(U_{1} \cup W_{1}\right)$, such that $t v_{2} \in E(G)$ or $t v_{3} \in E(G)$.

If $t v_{2} \in E(G)$, substituting $u_{3} w, u_{3} v_{3}$ for $w v_{3}$, and $u_{3}^{+} u_{3}^{-}$for $u_{3}^{+} u_{3} u_{3}^{-}$, and $v_{2} t, w t_{C_{1}}^{-}$ for $w v_{2}, t t_{C_{1}}^{-}$(if $t=u_{3}^{+}$then $t_{C_{1}}^{-}$should be taken as u_{3}^{-}), we get a Hamiltonian cycle $C_{1}^{\prime \prime}$ with the only one edge $u_{3}^{+} u_{3}^{-}$which may be a common edge of $C_{1}^{\prime \prime}$ and C_{2}^{\prime}. If $u_{3}^{+} u_{3}^{-} \notin E\left(C_{2}^{\prime}\right)$, the two disjoint Hamiltonian cycles of G are obtained. Otherwise, by Lemma 6, we have

$$
\begin{aligned}
& d_{G-E\left(C_{2}^{\prime}\right)}\left(u_{3}^{+}\right)+d_{G-E\left(C_{2}^{\prime}\right)}\left(u_{3}^{-}\right) \\
= & 2(n-l-2-1) \geq 2\left(\frac{n}{2}+2 k+l+1-l-2-1\right) \\
= & n+4 k-4 \geq n .
\end{aligned}
$$

By the method used to prove Lemma 1 (2), we can show that $G-E\left(C_{2}^{\prime}\right)$ contains a Hamiltonian cycle, and so G contains two disjoint Hamiltonian cycles.

If $t v_{2} \notin E(G)$, then $t v_{3} \in E(G)$, and $v_{2} u_{1} \in E(G)$ or $v_{2} u_{3} \in E(G)$ (say $v_{2} u_{1} \in$ $E(G)$). Substituting $v_{3} t w$ for $v_{3} w$, and $t_{C_{1}}^{+} t_{C_{1}}^{-}$for $t_{C_{1}}^{-} t t_{C_{1}}^{+}$, and $u_{1} v_{2}, u_{1}^{-} w$ (if $u_{1}=t_{C_{1}}^{+}$, then u_{1}^{-}should be taken as $t_{C_{1}}^{-}$) for $v_{2} w$ and $u_{1} u_{1}^{-}$, we get a Hamiltonian cycle $C_{1}^{\prime \prime}$ with only the one edge $t_{C_{1}} t_{C_{1}}^{+}$which may be a common edge of $C_{1}^{\prime \prime}$ and C_{2}^{\prime}. Note that $t_{C_{1}}^{-}, t_{C_{1}}^{+} \in S$. It follows from the discussion above that G contains two disjoint Hamiltonian cycles of G. The proof of Theorem 2 is completed.

References

[1] L.W.Beineke and R.L.Wilson, Selected topics in graph theory, Academic Press, New York(1978)161.
[2] J.A.Bondy and U.S.R.Murty, Graph Theory with Applications, The Macmillan Press, London(1976).
[3] G.H.Fan, New sufficient condition for cycles in graphs, J.Combin. Theory B37(1984)221-227.
[4] H.Li, Edge disjoint cycles in graphs, J.Graph Theory 13(1989), No.3, 313-322.
[5] F.Tian, A short proof of a theorem about the circumference of a graph, J.Combin. Theory B45(1988)373-375.
[6] S.Zhou, Disjoint Hamiltonian cycles in Fan $2 k$-type graphs, J. Graph Theory 3(1989), 313-322.

[^0]: *This research was supported by CityU Strategic Research Grant 7000743, and by the National Natural Science Foundation of China and by the Doctoral Discipline Foundation.

