Scenic Graphs II: Non–Traceable Graphs

Michael S. Jacobson, André E. Kézdy, and Jenő Lehel[†]

Department of Mathematics University of Louisville Louisville, KY 40292

Abstract

A path of a graph is *maximal* if it is not a proper subpath of any other path of the graph. A graph is *scenic* if every maximal path of the graph is a maximum length path. In [4] we give a new proof of C. Thomassen's result characterizing all scenic graphs with Hamiltonian path. Using similar methods here we determine all scenic graphs with no Hamiltonian path.

1 Introduction

We employ the following notation some of which is non-standard. A path in a graph is a sequence of distinct vertices in which consecutive vertices are adjacent. The *length* of a path is the number of edges in the path. Thus a path $Q = (x_0, x_1, \ldots, x_k)$ has length k. All graphs we consider here are undirected. Therefore, although sequences have an orientation or direction, here we shall not distinguish between the sequences (x_0, x_1, \ldots, x_k) and $(x_k, x_{k-1}, \ldots, x_0)$ as paths. For the path Q = (x_0, x_1, \ldots, x_k) we will also use the notation (x_0, Q, x_k) , and (x_i, Q, x_j) is the corresponding subpath. If (x, P, y) and (u, Q, v) are disjoint paths with y and u adjacent, then their concatenation is a path we denote by either ((x, P, y), (u, Q, v)), or $(x, \ldots, y, (u, Q, v))$, or $((x, P, y), u, \ldots, v)$, or $(x, \ldots, y, u, \ldots, v)$. A similar natural extension of this notation is used for concatenations of concatenated paths. A path P is a subpath of Q if the sequence corresponding to P appears as a consecutive subsequence of Q. A subpath P of a path Q is proper if $P \neq Q$. If P is a proper

Australasian Journal of Combinatorics <u>19(1999)</u>, pp.287–307

Research supported by ONR Grant Number N00014-91-J-1098.

On leave from Computing and Automation Research Institute, Hungarian Academy of Sciences.

subpath of Q, then we shall say that P extends to Q, or Q extends P, or Q is an extension of P. A path is maximal if it is not a proper subpath of any other path, or equivalently, if it has no extension. The path spectrum of a connected graph G is the set of lengths of all maximal paths in G. The concept of path spectrum was introduced by Jacobson et al. [3]. We say that a connected graph is scenic if its path spectrum is a singleton. A graph with a Hamiltonian path is called traceable.

The Prism is the graph $K_6 - C_6$ obtained from K_6 by removing the edges of a six-cycle. The Cube is the graph $K_{4,4} - 4K_2$ obtained by removing four disjoint edges from the complete 4×4 bipartite graph. Except for paths P_n $(n \ge 1)$, cycles C_n $(n \ge 3)$, the Prism, and the Cube, traceable scenic graphs emerge from cliques, K_n $(n \ge 1)$, and from the complete bipartite graphs $K_{p,p}$ and $K_{p,p+1}$ $(p \ge 1)$. Traceable scenic graphs were determined by C. Thomassen [9] and a different proof can be found in [4]. To present the family we need some notation. The union of t mutually disjoint edges (a matching) will be denoted by tK_2 . The graph obtained from K_n by removing the edges of a copy of tK_2 $(1 \le t \le n/2)$ is denoted by $K_n - tK_2$. The complete $p \times p$ bipartite graph plus (resp. minus) an edge is denoted $K_{p,p} + K_2$ (resp. $K_{p,p} - K_2$). The graph obtained from the complete $p \times p$ bipartite graph by adding one edge into each partite set is denoted $K_{p,p} + 2K_2$. If $H \in \{K_3, 2K_2, K_{1,q}\}$, then $K_{p,p+1} + H$ denotes the graph obtained from the complete $p \times (p+1)$ bipartite graph by adding all the edges of H to the **largest** partite set containing p + 1 vertices. In [4] we give a new proof of the following theorem of C. Thomassen [9]:

Theorem 1.1 A traceable graph is scenic if and only if it belongs to one of the following families:

$$\begin{split} \Phi[K_n] &= \{K_n, \ K_n - tK_2 \ (1 \le t \le n/2)\}, \\ \Phi[K_{p,p}] &= \{K_{p,p}, K_{p,p} - K_2, K_{p,p} + K_2, K_{p,p} + 2K_2 \ \}, \\ \Phi[K_{p,p+1}] &= \{K_{p,p+1}, K_{p,p+1} + K_3, K_{p,p+1} + 2K_2, K_{p,p+1} + K_{1,q} \ (1 \le q \le p)\}, \\ \Psi &= \{P_n, \ C_n, \ Prism, \ Cube\}. \end{split}$$

In this paper we determine all non-traceable scenic graphs¹. In Section 2 we prove that every non-traceable scenic graph is bipartite. Let $K_{1,r}^s$ $(r \ge 3)$ be the equisubdivided star obtained from a $K_{1,r}$ by subdividing each edge with $s \ge 0$ vertices. For $p \ge 2$ and $q \ge p+2$, we call $K_{p,q} - F$ a $p \times q$ generic graph if it is obtained from $K_{p,q}$ by removing an arbitrary star forest F with its star components centered in the q-element (i.e. largest) partite set of $K_{p,q}$. Note that a disconnected generic graph has the form $K_{p,q} - K_{p,1}$ (or equivalently $K_{p,q-1} + y$, where y is an isolated vertex in the larger partite set). We show that besides a few exceptions, every non-traceable scenic graph is either an equi-subdivided star or a connected generic graph. The main result is formulated in the following theorem.

¹The same problem has been considered independently by M. Tarsi [8] (personal communication by editors of JGT and JCT B).

Theorem 1.2 A non-traceable graph is scenic if and only if it is one of the graphs G_1, \ldots, G_6 in Fig. 1, an equi-subdivided star, or a connected generic graph.

Figure 1:

It is a routine to check that the six small graphs in Fig. 1 and the equi-subdivided stars are non-traceable and scenic. To prove the same for a connected $p \times q$ generic graph one may easily show that every maximal path covers the *p*-element partite set of *G* and both of its endvertices must be in the *q*-element partite set. Therefore, all maximal paths in a connected generic graph have the same length, namely $2p \leq p + q - 2$. Hence connected generic graphs are scenic and non-traceable.

The next sections contain the proof of the 'only if' part of Theorem 1.2. The basic idea in the proof is the reduction of a non-traceable scenic graph G by removing a copy of $K_{2,2}$ from G together with all adjacent edges. To some extent the removal of a $K_{2,2}$ preserves the scenic property — the only exceptions are when the resulting graph is small or disconnected. Moreover, besides some exceptional cases discussed in Sections 4 and 5, both G and H must be generic graphs.

The problem of determining the maximum path length of a graph is NP-complete, and the same is true for computing the independence number (maximum number of mutually non-adjacent vertices), see [6]. R.S. Sankaranarayana and L.K. Stewart [7] have shown that deciding whether a graph is well-covered, i.e., deciding whether all maximal independent sets of a graph have the same cardinality, is a co-NP-complete problem. Concerning the analogous decision problem whether all maximal paths are maximum Theorems 1.1 and 1.2 imply that the property of being scenic can be tested in polynomial time.

2 Non–Traceable Scenic Graphs are Bipartite

Proposition 2.1 A tree is non-traceable and scenic if and only if it is an equisubdivided star $K_{1,r}^s$ $(r \ge 3, s \ge 0)$.

Proof. Let G be a non-traceable scenic tree, i.e., let it be different from a path. For arbitrary $x, y \in V(G)$, we use (x, G, y) to denote the (unique) path of G with endvertices x and y. Let P = (x, G, y) be a maximal path of G and let $z \in V(P) \setminus \{x, y\}$ be a vertex of degree at least three. Clearly, both x and y are leaves of G, and the subpaths (x, G, z) and (y, G, z) must have the same length. Therefore, z is the (unique) midvertex of P.

Assume that G has two distinct vertices of degree at least three, u and v. Consider a maximal extension P of (u, G, v). By the observation above, both u and v are midpoints of P, a contradiction. Therefore, G has exactly one vertex of degree $r \geq 3$ which is the midpoint of all paths between any two leaves. Thus G is an equi-subdivided star $K_{1,r}^s$, for some $s \geq 0$.

Theorem 2.2 Let G be a non-traceable scenic graph. If G is different from a tree, then it is a $p \times q$ bipartite graph with $p \ge 2$ and $q \ge p+2$ vertices in the partite sets. Furthermore, G has a dominating cycle on 2p vertices and the maximum path length in G equals 2p.

Proof. Let C be a cycle of G with maximum length k = |V(C)|. Observe that 3 < k < |V(G)|. Indeed, C can not be a Hamiltonian cycle, because G is non-traceable. On the other hand, $k \neq 3$ holds by the following argument. Assuming that $C = (x_1, x_2, x_3)$, at least two vertices of C have degree greater than two (otherwise G would not be scenic). Let $x_1y_1, x_2y_2 \in E(G)$, for some vertices $y_1 \neq y_2$ and y_1, y_2 not in C. Because C is a maximum cycle, every maximal extension Q of the path (y_1, x_1, x_2, y_2) misses x_3 . A maximal path longer than Q can be found by including x_3 into Q between x_1 and x_2 , contradicting that G is scenic.

A path $T \subset G$ with $|V(T) \cap V(C)| = 1$ is called a *tail* of C. For a given vertex $z \in C$, let T(z) denote the longest tail of C ending at z. Choose a maximum cycle C of G having a tail T of maximum possible length. Assume that T = T(x) is a maximum tail of C at x, clearly it has length $t \ge 1$.

Let y, x, y', x' be consecutive vertices on C (they are distinct, since $k \ge 4$). Let T(y) and T(y') be maximum length tails of C at y and y', respectively. Because C is a maximum cycle, both T(y) and T(y') are disjoint from T(x). Observe that (T(x), (x, C, y), T(y)) and (T(x), (x, C, y'), T(y')) are maximal paths of G, and because G is scenic, T(y) and T(y') have the same length s. Clearly, $1 \le t$, $0 \le s \le t$, and the maximum path length in G is s + t + (k - 1).

First we show that there is no vertex $z \in V(G) \setminus V(C)$ with $yz, y'z \in E(G)$. Suppose that such a z exists. Because C has maximum length, z is not on T(x). Hence z could substitute for x in C; that is (C - x) + z would be a maximum cycle with longer tail T(x) + y at y, a contradiction.

The previous paragraph implies that T(y) and T(y') are disjoint. If $s \neq 0$ then (T(y), (y, C-x, y'), T(y')) is a maximal path of length 2s + (k-2). From 2s + k - 2 = s + t + k - 1 we obtain s = t + 1 > t, a contradiction. Consequently, s = 0. Next we show that t = 1. Note that this will imply that every vertex not in C is adjacent to some vertex of C (that is C is a dominating cycle in G.), and the maximum path lengths equals k.

Consider a maximum length tail T(x') at x'. Because G is scenic, and ((y', C, x'), T(x')) is a maximal path, T(x') has t edges. If T(x) and T(x') are disjoint, then (T(x), (x, C - y', x'), T(x')) is a maximal path of length 2t + (k - 2) = t + k - 1 implying t = 1. If T(x) and T(x') are not disjoint, then they must share a vertex $z \notin V(C)$ such that $zx, zx' \in E(G)$. In this case $(y', x, z, (x', C - \{x, y'\}, y))$ is a maximal path of length k = t + k - 1, implying t = 1.

The argument above shows that the vertices of C have a two-coloring, namely $z \in C$ is assigned color |T(z)| (= 0 or 1). In particular, C is an even cycle of length k = 2p, for some $p \ge 2$. Let us color all vertices off of C with 0. We claim that this is a proper two-coloring of G, i.e., G is bipartite.

Any vertex off of C can only be adjacent to vertices of color 1 on C, by the definition of our coloring and because G is connected. Now assume that uv is a chord of C between vertices of the same color ϵ . Let u' and v' be neighbors of u and v, respectively, such that V(C) is partitioned into two subpaths of C: C_1 going from u to v' and C_2 going from v to u'. If $\epsilon = 1$, then both u' and v' have color 0, and the concatenation of C_1 and C_2 along the edge uv would result in a maximal path Q of length k - 1. Therefore, $\epsilon = 0$, and both u' and v' have color 1. This implies that u' and v' have a neighbor z and w not in C, respectively. If z = w, then the path Q above together with z would result in a cycle of length k + 1. Hence $z \neq w$, and (z, (u', Q, v'), w) is a maximal path of length k + 1, a contradiction.

Therefore G is a (connected) bipartite graph with p vertices in one partite sets and $q \ge p+1$ in the other one. If there was just one vertex not in C then G would be traceable. This shows that $q \ge p+2$ and the maximum path length is 2p. \Box

3 Small Non–Traceable Scenic Graphs

For $p \geq 2$ and $q \geq p+2$, denote by $\mathcal{G}_{p,q}$ the class of all $p \times q$ bipartite graphs which are non-traceable scenic graphs different from trees. Notice that members of $\mathcal{G}_{p,q}$ have all properties described in Theorem 2.2. In this section we determine $\mathcal{G}_{p,q}$ for p = 2 and 3. Recall that G is $p \times q$ generic, if $G \cong K_{p,q} - F$, where F is some star forest with all star components centered at the q-element partite set.

Proposition 3.1 If $G \in \mathcal{G}_{2,q}$, then G is a connected generic graph.

Proof. Let $\{x, y\}$ be the smallest partite set of G and $Q = V(G) \setminus \{x, y\}$. Note that 4 is the maximum path length in G (by Theorem 2.2). Because G is connected, every vertex of Q is adjacent to either x or y. Assume that one of x and y, say y, is non-adjacent to $u, v \in Q$. In this case the path (u, x, v) would be maximal, a contradiction. This proves that $G \cong K_{2,q} - F$, where $F \cong K_2$ or $2K_2$.

Proposition 3.2 If $G \in \mathcal{G}_{3,q}$ is not generic, then G is either G_1, G_2 or G_3 .

Proof. Suppose $P = \{x_1, x_2, x_3\}$ is the smallest partite set of G and $Q = V(G) \setminus P$. Note that G has a dominating 6-cycle C and 6 is the maximum path length in G(by Theorem 2.2). Because G is connected, every vertex not in C is adjacent to at least one vertex of P. For every $I \subseteq \{1, 2, 3\}$, define $Q(I) = \{z \in Q \setminus V(C) : zx_i \in E(G) \text{ iff } i \in I\}$. Obviously, $Q(I) \cap Q(J) = \emptyset$ holds for every $I \neq J$. Set q(I) = |Q(I)|. Observe that $\sum_{|I|=1} q(I) \leq 1$ and, for |I| = 2, $q(I) \leq 1$ must hold, because otherwise, one easily finds maximal paths of length 4 or 2. On the other hand, $q(I) \geq 2$, for some I, because G is non-traceable.

Case a: C is an induced 6-cycle of G. If $q(\{i\}) = 1$ for some $i \in \{1, 2, 3\}$, then q(I) = 0 must hold for every I containing i, because otherwise, one easily finds a maximal path of length 4. Therefore, $q(\{1, 2, 3\} \setminus \{i\}) = 1$ and $G \cong G_1$ follows. Assume now that q(I) = 0, for every |I| = 1. If $q(\{1, 2, 3\}) = 0$, then $\sum_{|I|=2} q(I) \ge 2$, because otherwise, G would be traceable. Therefore G is isomorphic to one of G_2 and G_3 . If $q(\{1, 2, 3\}) > 0$, then q(I) = 0, for every |I| = 2. This implies that G is generic.

Case b: G has no induced 6-cycle. Assume first that C has just one chord, say at x_3 . In this case $q(\{1,2\}) = 0$ (otherwise G would contain a C_6). Furthermore, $q(\{1,3\}) = q(\{2,3\}) = 0$ and q(I) = 0, for every |I| = 1, because G has no maximal paths of length less than 6. This proves that G is generic. Assume now that every 6-cycle of G induces at least two chords. A similar argument as above shows that G must be generic. This proves the proposition.

4 $K_{2,2}$ -removal

In this section our goal is to prove that (to some extent) the removal of a $K_{2,2}$ preserves the scenic property — the only exceptions are when the resulting graph is small or disconnected.

Proposition 4.1 If $p \ge 4$ and $G \in \mathcal{G}_{p,q}$ is different from G_4 , then G contains a copy of $K_{2,2}$.

Proof. By Theorem 2.2, G is bipartite and has a dominating cycle $C = (x_1, y_1, x_2, y_2, \ldots, x_p, y_p)$ of length 2p, where $P = \{x_1, \ldots, x_p\}$ is one of the partite sets of G. Furthermore, the proof of Theorem 2.2 implies that every vertex of P has a neighbor off of C. Assume that G has no $K_{2,2}$. For every $i, 1 \leq i \leq p$, there exist vertices $u, v \in V(G - C)$ with $ux_i, vx_{i+2} \in E(G)$ and $ux_{i+1}, vx_{i+1} \notin E(G)$ (because G is $K_{2,2}$ -free). (Indices are reduced modulo p in this paragraph.) If $u \neq v$, then the path $(u, (x_i, C - \{y_i, x_{i+1}, y_{i+1}\}, x_{i+2}), v)$ is maximal and has length 2p - 2. Hence u = v follows, moreover, u must be adjacent to all vertices x_i, x_{i+2}, \ldots , and x_{i-2} . The same argument shows that there exists a vertex $w \in V(G - C)$ different from u and adjacent to all x_{i+1}, x_{i+3}, \ldots , and x_{i-1} . This implies that p must be even, in particular C has length $2p \geq 8$.

If $p \ge 6$, then the path $(y_1, x_1, u, x_3, y_3, x_4, w, x_2, y_2)$ of length 8 can not be maximal, hence it extends by an edge $y_{\epsilon}x_i$, where $\epsilon = 1$ or 2, and $4 \le i \le p$. Now $j = \epsilon$ or $\epsilon + 1$ has the same parity as i, hence x_i and x_j are adjacent to the same vertex z = u or w. Then $\{y_{\epsilon}, x_i, z, x_j\}$ induces a $K_{2,2}$, a contradiction. Thus we have p = 4. Because any additional vertices or any further edges included to $C \cup \{u, w\}$ would complete a $K_{2,2}$, $G \cong G_4$ follows. \Box

For $G' \subset G$, G - V(G') denotes the graph obtained from G by removing the vertices of G' together with all incident edges.

Theorem 4.2 For $p \ge 4$, let $G \in \mathcal{G}_{p,q}$ $(q \ge p+2)$, and let $K \cong K_{2,2}$ be a subgraph of G. If G is different from G_5 , then either $G - V(K) \in \mathcal{G}_{p-2,q-2}$ or G - V(K) is a scenic graph (traceable or non-traceable) plus an isolated vertex.

Proof. Let a_1, a_2, b_1 , and b_2 be the vertices of K. Let H = G - V(K), let P and Q be the partite sets of H with |P| = p - 2 and |Q| = q - 2, furthermore, let $\{a_1, a_2\} \cup P$ and $\{b_1, b_2\} \cup Q$ be the partite sets of G. We know from Theorem 2.2 that

(*) every maximal path of G has both end vertices in the larger partite set, $\{b_1, b_2\} \cup Q$, and contains all vertices from the smaller one, $\{a_1, a_2\} \cup P$.

Our goal is to show that similar properties are satisfied by the maximal paths of H, as well. Let $M = (u, \ldots, v)$ be a maximal path in H (we may assume $u \neq v$). We shall prove that $u, v \in Q$, moreover, M contains all vertices of P. Because M has an extension in G containing a_1 and a_2 , we may assume that there is an edge, say $uz \in E(G)$, for some $z \in V(K)$. Thus M can be extended in G from its endvertex u to include the four vertices of K. This new path has no extension in G from the other endvertex v (because (u, M, v) is maximal in H). Hence (*) implies $v \in Q$.

Due to the argument above we may assume that if M = (u, ..., v) is a maximal path of H, then $v \in Q$ and u sends an edge to K. The proof of the theorem consists of two claims, each will be verified in several numbered steps.

Claim I: Every maximal path of H has both end vertices in Q.

Proof. We assume that $M = (u, \ldots, v)$ is a maximal path of H with $v \in Q$. Suppose to the contrary that $u \in P$, and let $ub_1 \in E(G)$. Let $M = (u, u', \ldots, v', v)$, and let $Y = V(H) \setminus V(M)$. Observe that $|Y| \ge 2$ holds, because $q \ge p + 2$.

Assume that $va_i \in E(G)$. The path (u, M, v, a_i, K, b_j) extends in G from u, by property (*). This contradicts the maximality of M in H. Similar argument shows that $va_i, u'a_i \notin E(G)$, for each i = 1 and 2. Note also that, by property (*), path (v, M, u, b_1, K, a_i) has an extension in G from a_i . This implies that, for each i = 1and 2, there exists $y_i \in Y$ with $a_i y_i \in E(G)$.

(1) There is an edge from Y to M.

Suppose $b_2 x \in E(G)$, for some $x \in Y \cap P$. The path (x, b_2, K, a_i, y_i) covering K extends in G to include all vertices of P, as required by property (*). In this case there must be an edge from Y to M.

Next we suppose that $\{b_1, b_2\}$ has no neighbor in $Y \cap P$. If $y_1 \neq y_2$, the path $(y_1, a_1, b_1, a_2, y_2)$ extends to include P which requires of using some edge going from Y to M. Thus we may also assume that y_1 is the unique neighbor of $\{a_1, a_2\}$ in Y. Because $q \geq p+2$, there is some $y' \in Y \cap Q$ different from y_1 . By the connectivity of G, there is an edge $zy' \in E(G)$. If $z \in Y \cap P$, then the path $((v, M, u), (b_1, a_1, y_1, a_2, b_2))$ has no extension to include z, thus $z \in V(M)$ follows.

Note that (1) implies that M has at least 4 vertices. In particular, $u' \neq v$, and $u \neq v'$.

(2) There is a vertex $y \in Y \cap Q$ such that $yv' \in E(G)$.

Let $x \in V(M)$ be the closest vertex to v such that $xy \in E(G)$, for some $y \in Y$. By (1), such x exists, we shall show that x = v'. Suppose to the contrary that $x \neq v'$.

If $x \in Q$, then no extension of the path $S = (y, (x, M, u), (b_1, K, a_i), y_i)$ (i = 1 or 2) can include v', by the choice of x. This contradicts (*), thus $x \in P$ follows. Note also that the path S above cannot exist, consequently, we have $y = y_i$, for i = 1, 2. Therefore, y is the only vertex of $Y \cap Q$ which is adjacent to a_1 and a_2 . The path $(y, (x, M, u), (b_1, K, a_2)$ extends in G with some $a_2t \in E(G)$, where $t \in Q$. By the assumption on y, we know that $t \notin Y \cap Q$, that is t is a vertex of (x, M, v) different from v.

If $Y \cap P = \emptyset$, then every vertex of Y sends an edge to M, because G is connected. Define $x' \in V(M)$ as the first vertex along the subpath (x, M, u) having some neighbor $y' \in Y \setminus \{y\}$. Because $xy' \notin E(G)$, we have $x' \neq x$. Let

 x^* be the last vertex on (x, M, x') adjacent to y (possibly $x^* = x$). The path $(y', (x', M, u), (b_1, K, a_2), (t, M, x^*), y)$ is maximal and misses v', a contradiction.

If $Y \cap P \neq \emptyset$, then the path $((v, M, x), y, (a_2, K, b_1), (u, M, u''))$ is not maximal in G. Therefore, there exists a vertex $z \in Y \cap P$ with $u''z \in E(G)$. No extension of the path $(z, (u'', M, u), (b_1, K, a_2), (t, M, x), y)$ may contain v', a contradiction. This proves (2).

(3) There is a vertex $w \in Y \cap P$ such that $wu' \in E(G)$.

By (2), there is a vertex $y \in Y \cap Q$ such that $yv' \in E(G)$. Let C be the connected component of the subgraph of H induced by Y and containing y.

Assume that $uv \notin E(G)$. First we verify that in this case C does not send any edge to K. Otherwise, let $S = (y, \ldots, y', z)$ be a shortest path from y to K (with $z \in V(K)$). Any extension of the path ((u, M, v'), (y, S, y'), (z, K, z')) (with z and z' in opposite partite sets) has endvertex at $u \in P$, which contradicts property (*). Hence $C \cup \{v\}$ has no neighbor in K. Let t be the last vertex on (v', M, u) that sends an edge to some $w \in C \cup \{v\}$. Either the path (v, (t, M, v'), y) or the path ((v, M, t), w) leads to a contradiction, since no extension of these paths may include a_i (i = 1 or 2).

So we may assume that $uv \in E(G)$. Recall that $u'a_i \notin E(G)$, for i = 1 and 2, The path (v, (u, M, v'), y) extends to include a_i . Let $S = (y, \ldots, z)$ be a shortest path from y to K (with $z \in V(K)$). Consider the path J obtained from the paths ((u', M, v'), (y, S, z)) and (b_1, u, v) by joining them in K with a shortest path between b_1 and z. Because J misses either a_1 or a_2 , there exists a vertex $w \in Y \cap P$ such that $u'w \in E(G)$. This proves (3).

(4) To conclude the proof of Claim I we show that the existence of the vertices $y, w \in Y$ obtained in (2) and (3) leads to a contradiction.

Let $S = (y, \ldots, y', z)$ be a shortest path from y to K as introduced in (3) above. If $z = b_i$ (i = 1 or 2), then any extension of $(w, (u', M, v'), (y, S, y'), (b_i, K, a_2))$ misses u. Hence we may assume that $z = a_i$ (i = 1 or 2). Furthermore, the path $(w, (u', M, v'), (y, S, y'), (a_i, K, b_2))$ extends with $b_2u \in E(G)$.

Let $R = (w, \ldots, w', r)$ be some path that we start adding when the path $(v, u, b_1, (a_i, S, y), (v', M, u'), w)$ is extended to include all vertices of $P \cup \{a_1, a_2\}$. In particular, the extension will include $a_{3-i} \in K$, thus R should enter K. Actually we assume that r is the first vertex from K along R. If $r = b_2$, then any extension of $(y, (v', M, u'), (w, R, w'), (b_2, K, a_2))$ would miss u. Hence $r = a_{3-i}$. From this we obtain that the path $(w, (u', M, v'), (y, S, a_i), b_2, (a_{3-i}, R, w'))$ must extend with $wb_1 \in E(G)$ to include u. Now any extension of $(y, (v', M, u'), w, (b_1, K, a_2))$ misses u, a contradiction. This concludes the proof of Claim I.

Claim II: Every maximal path of H with distinct endvertices contains all vertices of P.

Proof. Suppose to the contrary that there exists a maximal path $M = (u, \ldots, v', v)$ of H such that $P \setminus V(M) \neq \emptyset$. Assume that M is the *longest* such path. By Claim I, we have $u, v \in Q$. Because M extends in G, and by the symmetry of the endvertices, we may assume that $ua_1 \in E(G)$. Let $Y = V(H) \setminus V(M)$. For i = 1 or 2, the path $((v, Mu), (a_1, K, b_i))$ extends in G. Hence, for every i = 1 and 2, there exists a vertex $y_i \in Y \cap P$ with $b_i y_i \in E(G)$.

(1) There is an edge from Y to M.

First assume that $a_j z \in E(G)$, for some $z \in Y \cap Q$ and j = 1 or 2. Any maximal extension of the path $(y_1, (b_1, K, a_j), z)$ has to cover vertices of M, thus there exists an edge between Y and M. Assume now that there is no edge from $\{a_1, a_2\}$ to Y. If $y_1 \neq y_2$, then the path $(y_1, b_1, a_1, b_2, y_2)$ extends to include a_2 , hence there is an edge from Y to M. So we may suppose that $y_1 = y_2$ is the only neighbor of b_1 and b_2 in Y. In this case the path $((v, M, u), a_1, b_1, y_1, b_2, a_2)$ is maximal in G. This contradicts property (*) and concludes the proof of (1).

(2) There is a vertex $y \in Y \cap Q$ such that $yv' \in E(G)$.

By (1), there is an edge between M and Y. Let x be the first vertex along the path (v, M, u) which has a neighbor from Y, say $xy \in E(G)$, for some $y \in Y$. Suppose to the contrary that $x \neq v'$.

If $x \in P$ then the path $(y, (x, M, u), (a_1, K, b_i), y_i)$, where i = 1 or 2, has no extension including v', by the choice of x. Hence $x \in Q$. Moreover, as the path above can not exist, $y = y_1 = y_2$ is the only vertex of $Y \cap P$ adjacent to b_i (i = 1, 2) and x.

The path $((v, M, u), a_1, b_1, y, b_2, a_2)$ extends with $a_2w \in E(G)$, for some $w \in Y \cap Q$. The path $((v, M, u), (a_1, K, b_1), y)$ extends at y, thus $yz \in E(G)$, for some $z \in Y \cap Q$. If $z \neq w$, then the path $(z, y, (x, M, u), a_1, b_1, a_2, w)$ misses v'. Thus we conclude that z = w is the only neighbor of y from $Y \cap Q$.

For i = 1 or 2, the path $(w, a_2, b_{3-i}, y, (x, M, u), b_i)$ must extend at b_i to include v'. Thus there is an edge $b_i t \in E(G)$, where $t \in P$ is a vertex of (v, M, x). The path $(w, a_2, b_i, (t, M, u), a_1, b_{3-i}, y)$ misses v' unless t = v'. Therefore, we may assume that $b_i v' \in E(G)$ for i = 1 and 2. The path $(y, (x, M, u), a_1, b_1, v', b_2, a_2, w)$ has no extension at y. This contradicts property (*). Therefore, $yv' \in E(G)$ follows.

(3) For j = 1 or 2, there exists a path $S = (y, \ldots, x, b_j)$ such that $V(S) \setminus \{b_j\} \subset Y$.

Let C be the connected component of the subgraph of G induced by Y and containing y. First we show that there is a vertex $x \in C$ that is adjacent to some vertex of K. Suppose this is false. In particular, we may assume that the neighbor $y_1 \in Y \cap P$ of b_1 is not in C.

If $a_2v \in E(G)$, then no extension of $(y, (v', M, u), a_1, b_1, a_2, v)$ contains y_1 . Hence $a_2v \notin E(G)$. Similarly, if $a_1v \notin E(G)$, then no extension of $(y, (v', M, u), a_1, v)$ contains y_1 . Hence $a_1v \notin E(G)$. Let $t \in V(M)$ be the last vertex on (v', M, u) adjacent to v or to some vertex $x \in C$. One of the paths ((v, M, t), x) and (y, (v', M, t), v) exists and misses y_1 , a contradiction. Thus we obtain that some $x \in C$ is adjacent to some vertex of K.

The existence of x implies that there is a path $S = (y, \ldots, x, z)$, for some $z \in V(K)$, such that $V(S) \setminus \{z\} \subset Y$. Now suppose that in every such path S we have $z = a_i$ (i = 1 or 2). In particular, no vertex of C is adjacent to b_1 or b_2 . If $z = a_2$, then any extension of $((v, M, u), a_1, b_1, (z, S, y))$ would miss y_1 . Hence $z = a_1$, for every path S, and a_2 has no neighbor in C. The path ((v, M, u), (z, S, y)) has no extension that includes a_2 , a contradiction. This proves (3).

(4) For k = 1 or 2, $ua_k, va_{3-k} \in E(G)$.

Assume that $S = (y, \ldots, x, b_1)$ is a path guaranteed by (3). Let $R = (r, \ldots, y'')$ be a path (possibly empty) such that $((v, M, u), (a_1, K, b_1), (x, S, y), (r, R, y''))$ is maximal in G. The path $((v, M, u), a_1, b_1, (x, S, y), (r, R, y''))$ has an extension to include a_2 . Thus either $va_2 \in E(G)$ which proves (4), or we have $y''a_2 \in E(G)$.

Assume that $va_2 \notin E(G)$. Let v'' be the neighbor of v' in M different from v. The path $(v, v', y, (r, R, y''), a_2, b_1, a_1, (u, M, v''))$ extends with $v''w \in E(G)$, for some $w \in V(S) \cap P$. Thus we obtain a path M' = ((u, M, v''), (w, S, y), v', v) which is maximal in H and longer than M. By the choice of M, we have $P \subset M'$, and w = x. This implies that R is empty (y = y''), furthermore, $ya_2, v''x \in E(G)$, and $b_1x, b_2x \in E(G)$. Observe that the path $((u, M, v''), x, (b_1, K, a_2), y, v', v)$ is maximal in G, hence we have $S = (y, x, b_1)$.

The path $(b_2, a_1, (u, M, v''), x, y, a_2, b_1)$ extends to include v', the only uncovered vertex of P; therefore, $b_jv' \in E(G)$, for j = 1 or 2. The path $(v, v', b_j, a_1, b_{3-j}, x, (v'', M, u))$ extends to include a_2 . Thus we have $ua_2 \in E(G)$ (recall that, by assumption, $va_2 \notin E(G)$). If $va_1 \in E(G)$, then we are done. Assuming that $va_1 \notin E(G)$, we obtain that $ya_1, \in E(G)$, by the symmetry of a_1 and a_2 . For i = 1 and 2, the path $(v, v', y, x, b_1, a_i, (u, M, v''))$ extends with $v''a_{3-i} \in E(G)$. The path $((u, M, v''), (a_1, K, b_j), v', v)$ is maximal in G and misses x, a contradiction. This concludes the proof of (4).

In the next step we use $S = (y, ..., x, b_j)$, j = 1 or 2, a path guaranteed by (3), together with further paths similar to those in the proof of (4).

(5) $P \setminus V(M) = \{x\}, xb_i \in E(G), \text{ for } i = 1, 2, \text{ and there exists } z \in Y \cap Q \text{ such that } za_1, zx \in E(G).$

By (4), and by the symmetry of a_1 and a_2 , we may assume that $va_2 \in E(G)$. Also assume that $S = (y, \ldots, x, b_2)$. The path $N = (v, (a_2, K, b_2), (x, S, y), (v', M, u))$ is maximal, hence $(P \setminus V(M)) \subset V(S)$. Observe that N has no chord induced by two

non-consecutive vertices of S; for otherwise, a shorter maximal path of G would result by using that chord to skip over some vertex of $V(S) \cap P$. The same argument shows that if $b_1y_1 \in E(G)$, for some $y_1 \in Y \cap P$, then $y_1 = x$ follows. Thus we have $b_1x \in E(G)$.

The path $(a_1, b_1, x, b_2, a_2, (v, M, u))$ extends with $a_1z \in E(G)$, for some $z \in Y \cap Q$. Note that $z \notin V(S)$, because otherwise, the maximal path $((u, M, v'), (y, S, z), a_1, b_1, a_2, v)$ would miss x. We show next that $zx \in E(G)$. Every extension of $(z, a_1, b_1, a_2, (v, M, u))$ contains x, thus $z \in C$, where C is the connected component containing y in the subgraph of H induced by Y. This implies that $zz' \in E(G)$, for some $z' \in V(S) \cap P$. The maximal path $((u, M, v'), (y, S, z'), z, a_1, b_1, a_2, v)$ contains x, thus z' = x. Observe that the path $((u, M, v), a_2, b_1, a_1, z, x, b_2)$ must contain $V(S) \cap P$, on the other hand S has no chord from b_2 . Therefore, $S = (y, x, b_2)$ which concludes the proof of (5).

(6)
$$P = \{v', x\}, Q = \{u, v, y, z\}, and v'z \notin E(G).$$

The path $(z, x, b_1, a_1, (u, M, v'), y)$ extends to include a_2 . Hence we have either $ya_2 \in E(G)$ or $za_2 \in E(G)$. Suppose first that $ya_2 \in E(G)$. The path $(v, v', y, a_2, b_1, a_1, (u, M, v''))$ extends to include x, thus $v''x \in E(G)$. The path $(z, a_1, (u, M, v''), x, b_1, a_2, b_2)$ extends to include v'. Hence we have either $v'b_2 \in E(G)$ or $v'z \in E(G)$. None of them is possible, because in the first case $((u, M, v'), (b_2, K, a_2), v)$, and in the second case $((u, M, v'), z, a_1, b_2, a_2, v)$ is a maximal path of G missing x. Therefore, we may assume that $ya_2 \notin E(G)$ and $za_2 \in E(G)$, that is y and z are not interchangeable. If $zv' \in E(G)$, then y and z are interchangable with respect to v'. Thus we may also assume that $zv' \notin E(G)$,

We show that v'' = u. Suppose that this is false, that is $u' \neq v'$, where u' is the neighbor of u in M. The path $(y, v', v, (a_2, K, b_2), x, z)$ extends to include uncovered vertices of $V(M) \cap P$. Let w be the last vertex on (v'', M, u) adjacent to y or z. In the first case $(y, (w, M, v), (a_2, K, b_2), x, z)$ and in the second case $(z, (w, M, v), (a_2, K, b_2), x, y)$ is a maximal path, therefore, w = u' must hold. Observe that $u'z \notin E(G)$, for otherwise, the maximal path $((v, M, u'), z, a_2, b_1, a_1, u)$ in G would miss x. Hence we have $u'y \in E(G)$.

The path $((v'', M, u'), y, v', v, a_2, b_1, a_1, u)$ extends with $v''x \in E(G)$. The path $(z, a_1, (u, M, v''), x, b_1, a_2, b_2)$ extends with $b_2v' \in E(G)$. Thus we obtain that $((u, M, v'), (b_2, K, a_2), v)$ is a maximal path of G missing x, a contradiction. Therefore, u' = v' and (6) follows.

To conclude the proof of Claim II we show that $G \cong G_5$. By (5) and (6), G is a 4×6 bipartite graph such that its edges determined so far (explicitly or by symmetry) induce a G_5 . It is easy to check that including any of the four edges ua_2, va_1 , or $v'b_i$, i = 1, 2, would result in a non-scenic graph containing a maximal path of length less than 8. Therefore, $G \cong G_5$ follows, contradicting the assumption of the theorem. \Box

Claim II implies that H has at most one non-trivial connected component, and this component is scenic. If H is connected, then it is non-traceable, because $q \ge p+2$. If H is disconnected, then it has exactly one trivial component (i.e., isolated vertex). Indeed, in case of two isolated vertices $u, u' \in V(H)$, one would easily find a path $M \subset K + \{u, u'\}$ which is maximal in G and misses all vertices in the non-trivial component of H. This contradicts (*) and concludes the proof of Theorem 4.2. \Box

5 $K_{2,2}$ -extension

In this section we consider ways that a $K_{2,2}$ can be "added" to non-traceable scenic graphs so that the property of being scenic is preserved. If G is a non-traceable scenic graph containing a copy $K \cong K_{2,2}$, then we say that G is a *scenic* $K_{2,2}$ -*extension* of H = G - V(K).

We use the following notations throughout this section. We assume that G is scenic non-traceable $K_{2,2}$ -extension of H = G - V(K). The vertices of K are a_1, a_2, b_1 , and b_2 , the partite sets of H are P and Q with $|P| \leq |Q| - 2$, and the partite sets of G are $P \cup \{a_1, a_2\}$ and $Q \cup \{b_1, b_2\}$. In the figures accompanying the proofs, black circles indicate vertices in the smaller partite set of G. Let (a_i, K, b_j) denote the Hamiltonian path of K from a_i to b_j $(1 \leq i, j \leq 2)$. For $H' \subseteq H$ and $u, v \in V(H')$, we denote by (u, H', v) a path of H' between u and v spanning as many vertices of $V(H') \cap P$ as possible.

By Theorem 4.2, one may assume that H is either a non-traceable scenic graph or a (traceable or non-traceable) scenic graph plus an isolated vertex. We need the following easy corollaries of Theorem 2.2.

Lemma 5.1 Let G be a scenic $K_{2,2}$ -extension of H.

(i) If there is a maximal path of H between $y, y' \in Q$, then there is an edge from $\{y, y'\}$ to $\{a_1, a_2\}$.

(ii) If at least two vertices of Q are adjacent to $\{a_1, a_2\}$, then there exist two independent edges $y_1a_1, y_2a_2 \in E(G)$, for some $y_1, y_2 \in Q$.

Proof. Because G is scenic, every maximal extension of the path between y and y' contains a_1 and a_2 which proves (i). The maximum path length in G is 2|P| + 2, thus no maximal extensions of the path (a_1, K, b_2) or (a_2, K, b_2) may start at a_1 or at a_2 . Therefore, both a_1 and a_2 are adjacent to Q. This observation together with the condition in (ii) imply that the edges between Q and $\{a_1, a_2\}$ can not be covered with one vertex. Hence there exist two independent edges, and (ii) follows.

Proposition 5.2 The equi-subdivided star $K_{1,r}^s$ ($r \ge 3$, $s \ge 1$) and the graphs G_1, \ldots, G_6 have no scenic $K_{2,2}$ -extensions.

Proof. Suppose on the contrary that G is a scenic $K_{2,2}$ -extension of H, where H is one of the seven graphs in the proposition.

Figure 2:

Case 1: $H = K_{1,r}^s$ $(r \ge 3, s \ge 1)$. Because $|P| \le |Q| - 2$, the center of H is a vertex $x_0 \in P$, and all leaves of H are in Q. Let $y_1, y_2, y_3 \in Q$ be distinct leaves of H. By Lemma 5.1 (i), one may assume that $y_1a_1 \in E(G)$. The path $((y_2, H, y_1), (a_1, K, b_1))$ is not maximal, thus $b_1x_1 \in E(G)$ holds, for some $x_1 \in (x_0, H, y_3)$ (see Fig. 2). If $y_4 \in Q$ is an arbitrary vertex on (x_0, H, x_1) , then no extension of the path $((y_4, H, y_1), (a_1, K, b_1), (x_1, H, y_3))$ contains the vertices of P on the path (x_0, H, y_2) , a contradiction.

Case 2: $H = G_1, G_2$ or G_3 . Let $y, y' \in Q$ be any pair of vertices such that their removal does not disconnect H (note that all pairs satisfy this in $H = G_2$ or G_3 , and just one pair fails it in $H = G_1$). It is easy to check that between y and y' there exists a maximal path in H (actually, covering all vertices in P). Hence, by Lemma 5.1 (i) and (ii), there exist $y_1a_1, y_2a_2 \in E(G)$, with distinct $y_1, y_2 \in Q$. Consider a maximal path $(b_1, a_1, (y_1, H - x_1, y_2), a_2, b_2)$ in H which does not cover a vertex $x_1 \in P$. This path has an extension $b_1x_1 \in E(G)$ to include x_1 . Fig. 3 (a) shows a particular case, where $H = G_1$. The argument works for any other choice of H, and for other positions of y_1 and y_2 , as well. Thus we always have $x_1b_1 \in E(G)$, for some vertex $x_1 \in P$.

Let x_2 and x_3 be the other two vertices in P. If x_2 and x_3 have two common neighbors in H, then, by Lemma 5.1 (i), one of them is adjacent to K, say $y_2a_2 \in E(G)$. The maximal path $(y_1, x_1, (b_1, K, a_2), y_2, x_3, y_3)$ shown in Fig. 3 (b) misses x_2 , a contradiction. Assume now that the previous argument does not apply (even if we relabel the vertices of P), because there is no edge from $\{x_2, x_3, y_2\}$ to K. In this case any path of H between x_2 and y_2 not containing edge x_2y_2 is maximal in G and misses K, a contradiction.

Figure 3:

Case 3: $H = G_4$. Since G is connected, either $x_1b_{\epsilon} \in E(G)$ or $y_1a_{\epsilon} \in E(G)$ holds, for some $x_1 \in P$ or $y_1 \in Q$, and $\epsilon = 1$ or 2. Assume that $y_1a_1 \in E(G)$ and let x_1 be a neighbor of y_1 . The path $((b_1, K, a_1), (y_1, H - x_1, y_3))$ extends to include x_1 (see Fig. 4 (a)). Thus $x_1b_1 \in E(G)$ follows. Because there is a path of H between y_2 and y_3 that covers all vertices of P, say $y_2a_2 \in E(G)$. The path $(y_1, x_1, (b_1, K, a_2), (y_2, H - \{x_1x_4\}, y_4))$ in Fig. 4 (b) is maximal and misses x_4 , a contradiction.

Figure 4:

Case 4: $H = G_5$. It is easy to verify that between any pair $y, y' \in Q$ there exists a maximal path in H. Hence by Lemma 5.1, $y_1a_1, y_2a_2 \in E(G)$, for some $y_1, y_2 \in Q$. The path $(b_1, a_1, (y_1, H - x_1, y_2), a_2, b_2)$ as shown in Fig. 5 (a) extends to include x_1 . Thus one may assume that $x_1b_1 \in E(G)$, so $(y_1, x_1, (b_1, K, a_2), (y_2, H - \{x_1, x_4\}, y_4))$ in Fig. 5 (b) is a maximal path missing x_4 , a contradiction. **Case 5:** $H = G_6$. Label the vertices of H as shown in Fig. 6. An easy argument using Lemma 5.1 shows the existence of $x_1b_1, y_2a_2 \in E(G)$. The maximal path $(y_3, x_3, y_1, x_1, (b_1, K, a_2), y_2, x_2, y_4)$ misses x_4 , a contradiction.

This concludes the proof of the proposition.

Figure 5:

The following technical lemma will be used when proving that a $K_{2,2}$ -extension of a generic graph is generic. We note in advance that the only exception will be the generic graph $K_{2,4} - 2K_2$ which has a non-generic $K_{2,2}$ -extension, namely G_6 . Recall that a $p \times q$ generic graph has the form $K_{p,q} - F$, where the partite sets Pand Q contain $p \ge 2$ and $q \ge p+2$ vertices, respectively, and F is a star forest with its star components centered in Q.

Figure 6:

Lemma 5.3 Let H be a $p \times q$ generic graph with partite sets P and Q. If $H \neq K_{2,4} - 2K_2$, then

(A) H has a maximal path between any two non-isolated vertices $y, y' \in Q$;

(B) for every $x \in P$ and for every $y, y' \in Q$ which are distinct non-isolated vertices of H - x, there is a path in H - x between y and y' that contains all vertices in $P \setminus \{x\}$.

Proof. (A) Let $M = (y, x, \ldots, x', y')$ be a maximum length path of H from y to y'. We shall prove that M contains P. Suppose on the contrary that $x_1 \in P \setminus V(M)$. First assume that there are vertices $y_1, y_2, y_3 \in Q \setminus V(M)$. Because H is generic, x_1 is adjacent to y or y', say $x_1y' \in E(H)$. Moreover, by the pigeon hole principle, some y_i is adjacent to both x' and x_1 , for i = 1, 2 or 3. The path $((y, M, x'), y_i, x_1, y')$ would be longer than M, a contradiction.

Thus we may assume that $Q \setminus V(M) = \{y_1, y_2\}, P \setminus V(M) = \{x_1\}$. Furthermore, x_1 is non-adjacent to one of y_1 and y_2 , say $x_1y_2 \notin E(G)$. We have $x_1y_1, x_1y', x_1y \in E(G)$, and by the argument above, $xy_1, x'y_1 \notin E(G)$. Hence $xy_2, x'y_2 \in E(G)$. Also $H \neq K_{2,4} - 2K_2$, thus $p \ge 3$. In particular, $x \neq x'$, and $M = (y, x, \ldots, y'', x', y')$. We shall prove by induction on p that in the particular generic graph H described above there exists a path from y to y' that covers P. This will contradict our assumption and will prove (A).

For p = 3, the path $(y, x, y_2, x', y'', x_1, y')$ covers P. Thus (A) is true for p = 3. Assume that $p \ge 4$ and (A) is true for p - 1. Because our graph H is generic, x is adjacent to every vertex of $Q \setminus \{y_1\}$ and x_1 is adjacent to every vertex of $Q \setminus \{y_2\}$. Hence y and y'' are not isolated vertices in $H' = H - \{x', y'\}$. By the induction hypothesis, H' has a path $M' = (y, \ldots, y'')$ that contains $P \setminus \{x'\}$. The path ((y, M', y''), x', y') covers P, a contradiction. Thus (A) follows.

(B) If H or H' = H - x has an isolated vertex $u \in Q$, then $H - \{x, u\}$ is a complete bipartite graph and (B) obviously holds. Assume that H and H' are both connected, in particular, $H' \neq K_{2,4} - 2K_2$. Now (B) follows by applying (A) for the generic graph H'.

Proposition 5.4 If H is the union of an isolated vertex and one of the following graphs: G_1, \ldots, G_6 , an equi-subdivided star $K_{1,r}^s$ $(r \ge 2, s \ge 1)$, or a connected $p \times q$ generic graph $(p \ge 2, q \ge p+2)$ different from a complete bipartite graph, then H has no scenic $K_{2,2}$ -extension.

Proof. Let u be the isolated vertex of H and let H' = H - u be one of the graphs in the proposition. Suppose on the contrary that G is a scenic $K_{2,2}$ -extension of H. Observe that $u \in Q$, for otherwise, G would have a path $(u, (b_1, K, a_1))$ and a maximal extension of it with a black end vertex $u \in P$. One may assume that $ua_1 \in E(G)$. The path $S = (u, (a_1, K, b_2))$ extends in G with an edge $b_2 z$, for some $z \in V(H') \cap P$. All maximal extensions of S are obtained by concatenating a maximal path of H' starting at z. Hence all maximal paths of H' starting at z have the same length. This is obviously not true, for any black vertex z of H', if H' is one of the graphs G_1, \ldots, G_6 in Fig. 1 or an equi-subdivided star $K_{1,r}^s$ with $r \ge 2$, $s \ge 1$.

Now suppose that H' is a connected generic graph different from a complete bipartite graph. The previous argument shows that $H' \neq K_{2,4} - 2K_2$. Let $xy \notin E(H')$, for some $x \in P$ and $y \in Q \setminus \{u\}$. By the connectivity of H', y is non-isolated in H' - x. In addition, because $H' \neq K_{2,4} - 2K_2$, we may choose x and y such that every $y' \in Q \setminus \{u\}$ is a non-isolated vertex of H' - x.

By Lemma 5.3 (A), there is a maximal path S_1 of H' between any two distinct vertices $y', y'' \in Q \setminus \{u, y\}$. This path covers P and extends in G, say from end vertex y' with an edge to $\{a_1, a_2\}$. If $y'a_2 \in E(G)$, then $M_1 = ((y'', S_1, y'), a_2, b_1, a_1, u)$ is a maximal path of G. If $y'a_2, y''a_2 \notin E(G)$, then one may assume that $y'a_1, ua_2 \in E(G)$, and hence $M_2 = ((y'', S_1, y'), a_1, b_1, a_2, u)$ is a maximal path of G.

By Lemma 5.3 (B), H' - x has a path S_2 between y' and y covering all vertices in $P \setminus \{x\}$. By a similar argument as above, we obtain that either $M'_1 = ((y, S_2, y'), a_2, b_1, a_1, u)$ or $M'_2 = ((y, S_2, y'), a_1, b_1, a_2, u)$ exists and is a maximal path of G. The lengths of the maximal paths M_i and M'_i are different, for i = 1 or 2, hence G is not scenic. This contradiction concludes the proof of the proposition.

Proposition 5.5 If G is a scenic $K_{2,2}$ -extension of a $p \times q$ generic graph H, then either $G \cong G_6$ or G is generic.

Proof. By definition, G is generic if and only if at most one edge is missing at any vertex of $P \cup \{a_1, a_2\}$.

Case 1: *H* is connected and different from $K_{2,4}-2K_2$. Suppose that $xy \notin E(G)$, for some $x \in P$ and $y \in Q$. By Lemma 5.3 (A), there is a maximal path of *H* between any two distinct vertices $y_1, y_2 \in Q \setminus \{y\}$. This path extends in *G*, say $y_1a_i \in E(G)$ (i = 1 or 2). Obviously, *y* and y_1 are non-isolated vertices in H - x, thus by Lemma 5.3 (B), there is a path $S = (y, \ldots, y_1)$ in H - x containing $P \setminus \{x\}$. The path $((y, S, y_1), (a_i, K, b_j))$ extends, hence $b_j x \in E(G)$ holds, for j = 1 and 2.

Let $x \in P$ be a vertex such that $xb_i \notin E(G)$, i = 1 or 2. We shall prove that $xb_{3-i} \in E(G)$. By the argument above, $xy \in E(G)$, for every $y \in Q$. Lemmas 5.3 (A) and 5.1 imply the existence of independent edges $ya_1, y'a_2 \in E(G), y, y' \in Q$. If y and y' are non-isolated in H - x, then by Lemma 5.3 (B), H - x has a path S between y and y' which contains $P \setminus \{x\}$. The path $(b_i, a_1, (y, S, y'), a_2, b_{3-i})$ extends with $b_{3-i}x \in E(G)$.

We show that the previous argument applies even if one of y and y', say y', is an isolated vertex of H - x. Note that no $y'' \in Q \setminus \{y'\}$ is isolated in H - x. Thus if we can not replace y' with some $y'' \in Q \setminus \{y, y'\}$, and proceed as above, this is because $y''a_2 \notin E(G)$, for every $y'' \in Q \setminus \{y\}$. We prove that this can not happen. Because $y'x' \notin E(G)$ holds for each $x' \in P \setminus \{x\}$, there exists $ux' \in E(G)$ with $x' \in P \setminus \{x\}$ and $u \in Q \setminus \{y'\}$ such that $H - \{x', u\}$ is a connected generic graph. By Lemma 5.3 (A), the generic graph $H - \{x', u\}$ has a path S between any two vertices $y_1, y_2 \in Q \setminus \{u, y'\}$ which contains $P \setminus \{x'\}$. We know that there is an edge between $\{y_1, y_2\}$ and $\{a_1, a_2\}$. By our assumption, y_1 or y_2 is adjacent to a_1 , say $a_1y_1 \in E(G)$. Thus the path $(u, x', b_1, a_1, (y_1, S, y_2))$ misses a_2 , a contradiction. We conclude that at every $x \in P$ at most one edge is missing in G.

Next assume that $a_iy_1, a_iy_2 \notin E(G)$, for some $y_1, y_2 \in Q$ and i = 1 or 2. By Lemma 5.3 (A), H has a path $S = (y_1, x, \ldots, y_2)$ containing P. Furthermore, we know that one of y_1 and y_2 sends an edge to K, say $y_1a_{3-i} \in E(G)$. The path $(y_1, a_{3-i}, b_1, (x, S, y_2))$ is maximal in G and misses a_i , a contradiction. Therefore Gis scenic.

Case 2: *H* is disconnected. By Proposition 5.4, H = H' + u, where $u \in Q$ is an isolated vertex of *H*, and *H'* is a complete bipartite graph. We may assume that $ua_j \in E(G)$ (j = 1 or 2). For every i = 1, 2, the path $(u, (a_j, K, b_i))$ extends with an edge, say $b_i x_i \in E(G)$, where $x_i \in P$.

First we show that $ya_{3-j} \in E(G)$, for some $y \in Q \setminus \{u\}$. This is obvious if $ua_{3-j} \notin E(G)$, because the path $(u, a_j, b_1, (x_1, H', y))$ extends with $ya_{3-j} \in E(G)$. If $ua_{3-j} \in E(G)$, then any maximal path (y, \ldots, y') of H' extends with an edge, say $ya_k \in E(G)$. Now the claim follows by choosing j = 3 - k, because $ua_j \in E(G)$ holds for every i = 1, 2, by assumption.

Our next claim is that $b_i x \in E(G)$, for every i = 1, 2 and $x \in P$. For any $x \in P$, H'-x is a complete bipartite graph, hence it has a path $S = (x_i, \ldots, y)$ containing all vertices in $P \setminus \{x\}$. The path $(u, a_j, b_{3-i}, a_{3-j}, (y, S, x_i), b_i)$ extends with $b_i x \in E(G)$.

Suppose now that $ua_i, ya_i \notin E(G)$, for some $y \in Q \setminus \{u\}$ and i = 1 or 2. Let $S = (x_1, \ldots, y)$ be a path of H' containing P. The path $(u, a_{3-i}, b_1, (x_1, S, y))$ is maximal in G and misses a_i , a contradiction. Therefore, it remains to show that if $ya_i \notin E(G)$, for some $y \in Q \setminus \{u\}$ and i = 1 or 2, then $y'a_i \in E(G)$, for every $y' \in Q \setminus \{u, y\}$. Let $x, x' \in P$, and let $S = (x', \ldots, y')$ be a path of $H' - \{x, y\}$ covering all vertices in $P \setminus \{x\}$. The path $(y, x, b_1, a_{3-i}, b_2, (x', S, y'))$ extends with $y'a_i \in E(G)$. This proves that G is generic and concludes the proof of the proposition.

Case 3: $H = K_{2,4} - 2K_2$. We show that if G is not generic, then $G \cong G_6$. Let $P = \{x_1, x_2\}, Q = \{y_1, \ldots, y_4\}$, and assume that the two missing edges are $x_1y_3, x_2y_4 \notin E(H)$. Suppose that $G \cong K_{4,q} - F$, and G is not generic.

First we assume that one of x_1 or x_2 has degree more than 1 in F, say $x_2b_2 \notin E(G)$. If $y_ia_j \in E(G)$ holds, for some $1 \leq i, j \leq 2$, then the maximal path $((b_2, K, a_j), y_i, x_1, y_4)$ would miss x_2 . Hence there are no edges between the sets $\{a_1, a_2\}$ and $\{y_1, y_2\}$. This observation together with Lemma 5.1 imply the existence of two independent edges between the sets $\{a_1, a_2\}$ and $\{y_3, y_4\}$. Assume that

1

 $a_1y_3, a_2y_4 \in E(G)$. We shall verify that there are no further edges between H and K.

If $x_2b_1 \in E(G)$, then the maximal path $(y_1, x_1, y_4, a_2, b_1, x_2, y_2)$ misses a_1 , a contradiction. If $x_1b_j \in E(G)$ (j = 1 or 2), then the maximal path $(y_1, x_1, b_j, a_1, y_3, x_2, y_2)$ misses a_2 , a contradiction. Assume now that one of a_1y_4 and a_2y_3 is an edge, say $a_1y_4 \in E(G)$. The maximal path $(y_1, x_1, y_4, a_1, y_3, x_2, y_2)$ misses a_2 , a contradiction. Thus we obtain that $G \cong G_6$.

Second we assume that one of a_1 and a_2 has degree more than one in F. Because G is not generic, and $\{x_1, y_1, x_2, y_2\}$ induces a $K_{2,2}$ in G, we have $G - \{x_1, x_2, y_1, y_2\} \cong G - \{a_1, a_2, b_1, b_2\} \cong K_{2,4} - 2K_2$. By the symmetry of the sets $\{x_1, x_2\}$ and $\{a_1, a_2\}$ in G, the previous argument applies, and $G \cong G_6$ follows.

Proof of Theorem 1.2. Let G be a scenic non-traceable graph. If G has no cycle, then it is an equi-subdivided star by Proposition 2.1. Otherwise, by Theorem 2.2, G is a $p \times q$ bipartite graph with $p \geq 2$ and $q \geq p + 2$. If p = 2 or 3 then, by Propositions 3.2 and 3.1, G is either G_1, G_2, G_3 , or a connected generic graph.

From now on assume that $p \ge 4$. If $G \ne G_4$ then, by Proposition 4.1, there exists a subgraph $K \cong K_{2,2}$ of G, so that G is a scenic $K_{2,2}$ -extension of H = G - V(K). If $G \ne G_5$, then by Theorem 4.2, either H is a scenic non-traceable graph or H is disconnected.

If H is a scenic non-traceable graph, then H must be generic. This follows by Proposition 3.1, for p = 4, and by Proposition 5.2, for p > 4. If H is disconnected, then by Theorem 4.2, H = H' + u, where H' is scenic and u is an isolated vertex. If H' is traceable, then $H' \cong K_{p,p+1}$, by Theorem 1.1. If H' is non-traceable, then by definition, $H' \in \mathcal{G}_{p-2,q-3}$. By Proposition 5.4, H' + u might have a scenic $K_{2,2}$ extension only if H' is a complete bipartite graph. In these cases H is a disconnected $(p-2) \times (q-2)$ generic graph.

The previous paragraph shows that, whether or not H is connected, it must be generic. Proposition 5.5 implies that G is a connected generic graph or $G \cong G_6$. Consequently, every $G \in \mathcal{G}_{4,q}$ is either G_4, G_5, G_6 , or a connected generic graph. Furthermore, each graph in $\mathcal{G}_{5,q}$ and $\mathcal{G}_{6,q}$ is generic. Proposition 5.5 implies that the same is true for every $\mathcal{G}_{p,q}$, $p \geq 7$. This concludes the proof of Theorem 1.2.

References

- G. Chartrand, and H.V. Kronk, Randomly traceable graphs, SIAM J. Appl. Math., 16 (1968), pp. 696-700.
- [2] J.F. Fink, Randomly Near-Traceable Graphs, SIAM J. Alg. Disc. Meth., Vol. 6, No. 2 (1985), pp. 251-258.

- [3] M.S. Jacobson, A.E. Kézdy, E. Kubicka, G. Kubicki, J. Lehel, C. Wang and D.B. West, *The path spectrum of graphs*, Congressus Numerantium 112 (1995) pp. 49-63.
- [4] M.S. Jacobson, A.E. Kézdy, and J. Lehel, Scenic Graphs I: Traceable Graphs, Ars Combinatoria 49 (1998), pp. 79–96.
- [5] M.D. Plummer, Well-covered graphs: a survey, Quaestiones-Math., 16 (1993) pp. 263-287.
- [6] R.M. Karp, *Reducibility among combinatorial problems*, in R.E. Miller et al. (eds.) Complexity of Computer Computations. Plenum Press, New York, pp. 85-103.
- [7] R.S. Sankaranarayana and L.K. Stewart, Complexity results for well-covered graphs, Networks 22 (1992) pp. 247-262.
- [8] M. Tarsi, Graphs where every maximal path is maximum, J. Combin. Theory Ser. B 67 (1996) pp. 304-324.
- C. Thomassen, Graphs in which every path is contained in a Hamiltonian path, J. Reine Angew. Math.268/269 (1974) pp. 271-282.

(Received 13/3/96; revised 13/3/98)