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Abstract 

A path of a graph is maximal if it is not a proper subpath of any other 
path of the graph. A graph is scenic if every maximal path of the graph 
is a maximum length path. In [4] we give a new proof of C. Thomassen's 
result characterizing all scenic graphs with Hamiltonian path. Using 
similar methods here we determine all scenic graphs with no Hamiltonian 
path. 

1 Introduction 

We employ the following notation some of which is non-standard. A path in a graph 
is a sequence of distinct vertices in which consecutive vertices are adjacent. The 
length of a path is the number of edges in the path. Thus a path Q = (xo, Xl, .. . , Xk) 
has length k. All graphs we consider here are undirected. Therefore, although 
sequences have an orientation or direction, here we shall not distinguish between 
the sequences (xo, XI, ... ,Xk) and (Xk' Xk-l, ... ,xo) as paths. For the path Q = 
(Xo, Xl, ... , Xk) we will also use the notation (xo, Q, Xk), and (Xi, Q, Xj) is the cor­
responding subpath. If (x, P, y) and (u, Q, v) are disjoint paths with y and u adja­
cent, then their concatenation is a path we denote by either ((x, P, V), (u, Q, v)), or 
(x, . .. , y, (u, Q, v)), or ((x, P, V), u, ... , v), or (x, ... , y, u, ... , v). A similar natural 
extension of this notation is used for concatenations of concatenated paths. A path 
P is a subpath of Q if the sequence corresponding to P appears as a consecutive 
subsequence of Q. A subpath P of a path Q is proper if P i= Q. If P is a proper 
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subpath of Q, then we shall say that P extends to Q, or Q extends P, or Q is an 
extension of P. A path is maximal if it is not a proper subpath of any other path, 
or equivalently, if it has no extension. The path spectrum of a connected graph G 
is the set of lengths of all maximal paths in G. The concept of path spectrum was 
introduced by Jacobson et al. [3]. We say that a connected graph is scenic if its path 
spectrum is a singleton. A graph with a Hamiltonian path is called traceable. 

The Prism is the graph K6 - C6 obtained from K6 by removing the edges of 
a six-cycle. The Cube is the graph K 4,4 - 4K2 obtained by removing four disjoint 
edges from the complete 4 x 4 bipartite graph. Except for paths Pn (n ~ 1), cycles 
Cn (n 2: 3), the Prism, and the Cube, traceable scenic graphs emerge from cliques, Kn 
(n 2: 1), and from the complete bipartite graphs Kp,p and Kp,p+l (p ~ 1). Traceable 
scenic graphs were determined by C. Thomassen [9] and a different proof can be 
found in [4]. To present the family we need some notation. The union of t mutually 
disjoint edges (a matching) will be denoted by tK2 • The graph obtained from Kn 
by removing the edges of a copy of tK2 (1 ::; t ::; n/2) is denoted by Kn - tK2. The 
complete p x p bipartite graph plus (resp. minus) an edge is denoted Kp,p + K2 (resp. 
Kp,p - K2)' The graph obtained from the complete p x p bipartite graph by adding 
one edge into each partite set is denoted Kp,p + 2K2. If H E {K31 2K2, KI,q}, then 
Kp,p+l + H denotes the graph obtained from the complete p x (p+ 1) bipartite graph 
by adding all the edges of H to the largest partite set containing p + 1 vertices. In 
[4] we give a new proof of the. following theorem of C. Thomassen [9]: 

Theorem 1.1 A traceable graph is scenic if and only if it belongs to one of the 
following families: 

<I> [Knl = {Kn' Kn - tK2 (1 ::; t ::; n/2)}, 
<I> [Kp,pl = {Kp,p, Kp,p - K 2, Kp,p + K 2, Kp,p + 2K2 }, 
<I> [Kp,p+l] = {Kp,p+b Kp,p+1 + K 3, Kp,p+l + 2K2, Kp,p+1 + KI,q (1 ::; q ::; pH, 
W = {Pn1 Cn, Prism, Cube}. 

In this paper we determine all non-traceable scenic graphsi. In Section 2 we prove 
that every non-traceable scenic graph is bipartite. Let Kf,r (r 2: 3) be the equi­
subdivided star obtained from a KI,r by subdividing each edge with s ~ 0 vertices. 
For p 2: 2 and q ~ p + 2, we call Kp,q - F a p x q generic graph if it is obtained from 
Kp,q by removing an arbitrary star forest F with its star components centered in the 
q-element (i.e. largest) partite set of Kp,q. Note that a disconnected generic graph 
has the form Kp,q - Kp,1 (or equivalently Kp,q-I + y, where y is an isolated vertex in 
the larger partite set). We show that besides a few exceptions, every non-traceable 
scenic graph is either an equi-subdivided star or a connected generic graph. The 
main result is formulated in the following theorem. 

IThe same problem has been considered independently by M. Tarsi [8] (personal communication 
by editors of JGT and JeT B). 
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Theorem 1.2 A non-traceable graph is scenic if and only if it is one of the graphs 
G I , ... ,G6 in Fig. 1, an equi-subdivided star, or a connected generic graph. 

Figure 1: 

It is a routine to check that the six small graphs in Fig. 1 and the equi-subdivided 
stars are non-traceable and scenic. To prove the same for a connected p x q generic 
graph one may easily show that every maximal path covers the p-element partite 
set of G and both of its endvertices must be in the q-element partite set. Therefore, 
all maximal paths in a connected generic graph have the same length, namely 2p ::; 
p + q - 2. Hence connected generic graphs are scenic and non-traceable. 

The next sections contain the proof of the 'only if' part of Theorem 1.2. The basic 
idea in the proof is the reduction of a non-traceable scenic graph G by removing a 
copy of K 2,2 from G together with all adjacent edges. To some extent the removal 
of a K2,2 preserves the scenic property - the only exceptions are when the resulting 
graph is small or disconnected. Moreover, besides some exceptional cases discussed 
in Sections 4 and 5, both G and H must be generic graphs. 

The problem of determining the maximum path length of a graph is NP-complete, 
and the same is true for computing the independence number (maximum number of 
mutually non-adjacent vertices), see [6]. R.S. Sankaranarayana and L.K. Stewart [7] 
have shown that deciding whether a graph is well-covered, i.e., deciding whether all 
maximal independent sets of a graph have the same cardinality, is a co-NP-complete 
problem. Concerning the analogous decision problem whether all maximal paths 
are maximum Theorems 1.1 and 1.2 imply that the property of being scenic can be 
tested in polynomial time. 
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2 Non-Traceable Scenic Graphs are Bipartite 

Proposition 2.1 A tree is non-traceable and scenic if and only if it is an equi­
subdivided star K t,r (r 2:: 3, s 2:: 0). 

Proof. Let G be a non-traceable scenic tree, i.e., let it be different from a path. 
For arbitrary x, y E V(G), we use (x, G, y) to denote the (unique) path of G with 
endvertices x and y. Let P = (x, G, y) be a maximal path of G and let z E V(P) \ 
{ x, y} be a vertex of degree at least three. Clearly, both x and yare leaves of G, and 
the subpaths (x, G, z) and (y, G, z) must have the same length. Therefore, z is the 
(unique) midvertex of P. 

Assume that G has two distinct vertices of degree at least three, u and v. Consider 
a maximal extension P of (u, G, v). By the observation above, both u and v are 
midpoints of P, a contradiction. Therefore, G has exactly one vertex of degree 
r 2: 3 which is the midpoint of all paths between any two leaves. Thus G is an 
equi-subdivided star Ki,r, for some s 2:: O. 0 

Theorem 2.2 Let G be a non-traceable scenic graph. If G is different from a tree, 
then it is a p x q bipartite graph with p 2: 2 and q 2: p + 2 vertices in the partite sets. 
Furthermore, G has a dominating cycle on 2p vertices and the maximum path length 
in G equals 2p. 

Proof. Let C be a cycle of G with maximum length k = IV(C)I. Observe 
that 3 < k < IV(G)I. Indeed, C can not be a Hamiltonian cycle, because G is non­
traceable. On the other hand, k =1= 3 holds by the following argument. Assuming that 
C = (Xl,X2,X3), at least two vertices ofC have degree greater than two (otherwise 
G would not be scenic). Let XlYb X2Y2 E E(G), for some vertices Yl =1= Y2 and Yl, Y2 

not in C. Because C is a maximum cycle, every maximal extension Q of the path 
(Yl, xI, X2, Y2) misses X3· A maximal path longer than Q can be found by including 
X3 into Q between Xl and X2, contradicting that G is scenic. 

A path T c G with IV(T) n V(C)I = 1 is called a tail of C. For a given vertex 
z E C, let T(z) denote the longest tail of C ending at z. Choose a maximum cycle 
C of G having a tail T of maximum possible length. Assume that T = T(x) is a 
maximum tail of C at x, clearly it has length t 2: 1. 

Let y, x, y', x' be consecutive vertices on C (they are distinct, since k 2:: 4). Let 
T(y) and T(y') be maximum length tails of C at y and y', respectively. Because 
C is a maximum cycle, both T(y) and T(y') are disjoint from T(x). Observe that 
(T(x), (x, C, y), T(y)) and (T(x), (x, C, y'), T(y')) are maximal paths of G, and be­
cause G is scenic, T(y) and T(y') have the same length s. Clearly, 1 ::; t, 0 ::; s ::; t, 
and the maximum path length in G is s + t + (k - 1). 
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First we show that there is no vertex z E V(G) \ V(C) with yz, y'z E E(G). 
Suppose that such a z exists. Because C has maximum length, z is not on T(x). 
Hence z could substitute for x in C; that is (C - x) + z would be a maximum cycle 
with longer tail T(x) + y at y, a contradiction. 

The previous paragraph implies that T(y) and T(y') are disjoint. If 8 =I- 0 then 
(T(y), (y, C -x, y'), T(y')) is a maximal path of length 28+ (k 2). From 28+k - 2 = 
8 + t + k - 1 we obtain 8 = t + 1 > t, a contradiction. Consequently, 8 = O. Next 
we show that t = 1. Note that this will imply that every vertex not in C is adjacent 
to some vertex of C (that is C is a dominating cycle in G.), and the maximum path 
lengths equals k. 

Consider a maximum length tail T(x') at x'. Because G is scenic, and ((y', C, x'), 
T(x')) is a maximal path, T(x/) has t edges. If T(x) and T(x') are disjoint, then 
(T(x), (x, C - y', x'), T(x')) is a maximal path of length 2t + (k - 2) = t + k - 1 
implying t 1. If T(x) and T(x') are not disjoint, then they must share a vertex 
z rj:. V(C) such that zx, zx' E E(G). In this case (y', x, z, (x', C - {x, y'}, y)) is a 
maximal path of length k = t + k - 1, implying t = 1. 

The argument above shows that the vertices of C have a two-coloring, namely 
z E C is assigned color IT (z) I (= 0 or 1). In particular, C is an even cycle oflength 
k = 2p, for some p 2:: 2. Let us color all vertices off of C with O. We claim that this 
is a proper two-coloring of G, i.e., G is bipartite. 

Any vertex off of C can only be adj acent to vertices of color 1 on C, by the 
definition of our coloring and because G is connected. Now assume that uv is a 
chord of C between vertices of the same color E. Let u' and v' be neighbors of u and 
v, respectively, such that V(C) is partitioned into two subpaths of C: C1 going from 
u to v' and C2 going from v to u' . If E = 1, then both u' and v' have color 0, and 
the concatenation of C1 and C2 along the edge uv would result in a maximal path Q 
of length k - 1. Therefore, E = 0, and both u' and v' have color 1. This implies that 
u' and v' have a neighbor z and w not in C, respectively. If z = w, then the path 
Q above together with z would result in a cycle of length k + 1. Hence z =I- w, and 
(z, (u', Q, v'), w) is a maximal path of length k + 1, a contradiction. 

Therefore G is a (connected) bipartite graph with p vertices in one partite sets 
and q 2:: p + 1 in the other one. If there was just one vertex not in C then G would 
be traceable. This shows that q 2:: p + 2 and the maximum path length is 2p. 0 

3 Small Non-Traceable Scenic Graphs 

For p 2:: 2 and q 2:: p + 2, denote by Qp,q the class of all p x q bipartite graphs which 
are non-traceable scenic graphs different from trees. Notice that members of Qp,q 
have all properties described in Theorem 2.2. In this section we determine Qp,q for 
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p = 2 and 3. Recall that G is p x q generic, if G ~ Kp,q - F, where F is some star 
forest with all star components centered at the q-element partite set. 

Proposition 3.1 If G E ~hq, then G is a connected generic graph. 

Proof. Let {x,y} be the smallest partite set of G and Q = V(G) \ {x,y}. Note 
that 4 is the maximum path length in G (by Theorem 2.2). Because G is connected, 
every vertex of Q is adjacent to either x or y. Assume that one of x and y, say y, 
is non-adjacent to u, v E Q. In this case the path (u, x, v) would be maximal, a 
contradiction. This proves that G ~ K 2,q - F, where F ~ K2 or 2K2 . 0 

Proposition 3.2 If G E 93,q is not generic, then G is either G 1 , G2 or G 3 . 

Proof. Suppose P = {XI,X2,X3} is the smallest partite set of G and Q = V(G) \ P. 
Note that G has a dominating 6-cycle C and 6 is the maximum path length in G 
(by Theorem 2.2). Because G is connected, every vertex not in C is adjacent to at 
least one vertex of P. For every I ~. {I, 2, 3}, define Q(1) = {z E Q \ V( C) : ZXi E 
E(G) iff i E I}. Obviously, Q(I)nQ(J) = 0 holds for every I =J J. Set q(1) = IQ(1)I. 
Observe that L: q(1) ::; 1 and, for III = 2, q(1) :S 1 must hold, because otherwise, 

111=1 
one easily finds maximal paths of length 4 or 2. On the other hand, q(1) 2 2, for 
some I, because G is non-traceable. 

Case a: C is an induced 6-cycle of G. If q( {i}) = 1 for some i E {I, 2, 3}, 
then q(1) = ° must hold for every I containing i, because otherwise, one easily finds 
a maximal path of length 4. Therefore, q( {I, 2, 3} \ {i}) = 1 and G ~ G1 follows. 
Assume now that q(1) = 0, for every III = 1. If q( {I, 2, 3}) = 0, then L: q(I) 2: 2, 

111=2 
because otherwise, G would be traceable. Therefore G is isomorphic to one of G2 

and G3 . If q( {I, 2, 3}) > 0, then q(1) = 0, for every III = 2. This implies that G is 
generic. 

Case b: G has no induced 6-cycle. Assume first that C has just one chord, say 
at X3. In this case q({1,2}) = ° (otherwise G would contain a C6 ). Furthermore, 
q( {I, 3}) = q( {2, 3}) = ° and q(1) = 0, for every III = 1, because G has no maximal 
paths of length less than 6. This proves that G is generic. Assume now that every 
6-cycle of G induces at least two chords. A similar argument as above shows that 
G must be generic. This proves the proposition. 0 

4 K 22-removal , 

In this section our goal is to prove that (to some extent) the removal of a K 2,2 

preserves the scenic property - the only exceptions are when the resulting graph is 
small or disconnected. 
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Proposition 4.1 If p 2: 4 and G E Yp,q is different from G 4, then G contains a copy 
of K 2,2. 

Proof. By Theorem 2.2, G is bipartite and has a dominating cycle C = (Xl, YI, X2, 

Y2, ... , XP' Yp) of length 2p, where P = {Xl, ... , xp} is one of the partite sets of G. 
Furthermore, the proof of Theorem 2.2 implies that every vertex of P has a neighbor 
off of C. Assume that G has no K 2,2. For every i, 1 ::; i ::; p, there exist vertices 
u, v E V(G C) with UXi, VXi+2 E E(G) and UXi+1, VXi+1 ~ E(G) (because G is 
K2,2-free). (Indices are reduced modulo p in this paragraph.) If U =1= v, then the 
path (u, (Xi, C - {Vi, Xi+1, Yi+1}, Xi+2), v) is maximal and has length 2p - 2. Hence 
U = v follows, moreover, U must be adjacent to all vertices Xi, Xi+2, ... , and Xi-2' 

The same argument shows that there exists a vertex w E V (G - C) different from 
U and adjacent to all Xi+l, Xi+3, .. . , and Xi-I' This implies that p must be even, in 
particular C has length 2p 2: 8. 

Ifp 2: 6, then the path (Yl,XI,U,X3,Y3,X4,W,X2,Y2) of length 8 can not be maximal, 
hence it extends by an edge YEXi, where E = 1 or 2, and 4 ::; i ::; p. Now j = E or E + 1 
has the same parity as i, hence Xi and Xj are adjacent to the same vertex z = u or 
w. Then {Vi' Xi, Z, Xj} induces a K 2,2, a contradiction. Thus we have p = 4. Because 
any additional vertices or any further edges included to C U {u, w} would complete 
a K2,2, G ~ G4 follows. 0 

For G' c G, G - V(G') denotes the graph obtained from G by removing the 
vertices of G' together with all incident edges. 

Theorem 4.2 For p 2: 4, let G E Yp,q (q 2: p + 2), and let K ~ K2,2 be a subgraph 
of G. If G is different from G5 , then either G - V(K) E Yp-2,q-2 or G - V(K) is a 
scenic graph (traceable or non-traceable) plus an isolated vertex. 

Proof. Let aI, a2, bl , and b2 be the vertices of K. Let H = G - V(K), let P 
and Q be the partite sets of H with IPI = p - 2 and IQI q - 2, furthermore, let 
{aI, a2} U P and {bl, b2} U Q be the partite sets of G. We know from Theorem 2.2 
that 

(*) every maximal path of G has both end vertices in the larger partite set, 
{bl , b2 } U Q, and contains all vertices from the smaller one, {aI, a2} UP. 

Our goal is to show that similar properties are satisfied by the maximal paths of 
H, as well. Let M = (u, ... , v) be a maximal path in H (we may assume U =1= v). We 
shall prove that u, v E Q, moreover, M contains all vertices of P. Because M has 
an extension in G containing al and a2, we may assume that there is an edge, say 
uz E E(G), for some Z E V(K). Thus M can be extended in G from its endvertex 
U to include the four vertices of K. This new path has no extension in G from the 
other endvertex v (because (u, M, v) is maximal in H). Hence (*) implies v E Q. 
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Due to the argument above we may assume that if M = (u, ... , v) is a maximal 
path of H, then v E Q and u sends an edge to K. The proof of the theorem consists 
of two claims, each will be verified in several numbered steps. 

Claim I: Every maximal path of H has both end vertices in Q. 

Proof. We assume that M = (u, ... , v) is a maximal path of H with v E Q. 
Suppose to the contrary that u E P, and let UbI E E(G). Let M = (u, ut

, •• • , VI, v), 
and let Y = V(H) \ V(M). Observe that IYI 2: 2 holds, because q 2: p + 2. 

Assume that vai E E(G). The path (u, M, v, ai, K, bj ) extends in G from u, by 
property (*). This contradicts the maximality of M in H. Similar argument shows 
that vai, u'ai ~ E(G), for each i = 1 and 2. Note also that, by property (*), path 
(v, M, U, bI , K, ai) has an extension in G from ai. This implies that, for each i = 1 
and 2, there exists Yi E Y with aiYi E E(G). 

(1) There is an edge from Y to M. 

Suppose b2x E E(G), for some x E Y n P. The path (x, b2, K, ai, Yi) covering K 
extends in G to include all vertices of P, as required by property (*). In this case 
there must. be an edge from Y to M. 

Next we suppose that {b I , b2} has no neighbor in Y n P. If YI =f. Y2, the path 
(YI, aI, bI, a2, Y2) extends to include P which requires of using some edge going from 
Y to M. Thus we may also assume that YI is the unique neighbor of {aI, a2} in Y. 
Because q 2: p+2, there is some y l E YnQ different from YI. By the connectivity of G, 
there is an edge zY' E E(G). If z E Ynp, then the path ((v, M, u), (bI , aI, Yl, a2, b2)) 
has no extension to include z, thus z E V(M) follows. 

Note that (1) implies that M has at least 4 vertices. In particular, u' =f. v, and 
u =f. v'. 

(2) There is a vertex Y E Y n Q such that yv' E E(G). 

Let x E V(M) be the closest vertex to v such that xy E E(G), for some Y E Y. 
By (1), such x exists, we shall show that x = v'. Suppose to the contrary that x =f. VI. 

If x E Q, then no extension of the path S = (y, (x, M, u), (bI , K, ai), Yi) (i = 1 or 
2) can include v', by the choice of x. This contradicts (*), thus x E P follows. Note 
also that the path S above cannot exist, consequently, we have Y = Yi, for i = 1,2. 
Therefore, Y is the only vertex of Y n Q which is adjacent to al and a2. The path 
(y, (x, M, u), (b I , K, a2) extends in G with some a2t E E(G), where t E Q. By the 
assumption on y, we know that t ~ Y n Q, that is t is a vertex of (x, M, v) different 
from v. 

If Y n P = 0, then every vertex of Y sends an edge to M, because G is con­
nected. Define x' E V(M) as the first vertex along the subpath (x, M, u) hav­
ing some neighbor Y' E Y \ {y}. Because xyl ~ E( G), we have x' =f. x. Let 
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x* be the last vertex on (x, M, x') adjacent to y (possibly x* = x). The path 
(y', (x', M, u), (bI , K, a2), (t, M, x*), y) is maximal and misses v', a contradiction. 

If Y n P =f. 0, then the path ((v, M, x), y, (a2' K, bd, (u, M, u")) is not maximal 
in G. Therefore, there exists a vertex z E Y n P with u"z E E(G). No extension of 
the path (z, (u", M, u), (bI , K, a2), (t, M, x), y) may contain v', a contradiction. This 
proves (2). 

(3) There is a vertex wE Y n P such that wu' E E(G). 

By (2), there is a vertex y E YnQ such that yv' E E(G). Let C be the connected 
component of the subgraph of H induced by Y and containing y. 

Assume that uv ~ E(G). First we verify that in this case C does not send any 
edge to K. Otherwise, let S = (y, ... , y', z) be a shortest path from y to K (with 
z E V(K)). Any extension of the path ((u, M, v'), (y, S, y'), (z, K, Zl)) (with z and 
Zl in opposite partite sets) has endvertex at u E P, which contradicts property (*). 
Hence C U {v} has no neighbor in K. Let t be the last vertex on (v', M, u) that 
sends an edge to some wEe U {v}. Either the path (v, (t, M, v'), y) or the path 
(( v, M, t), w) leads to a contradiction, since no extension of these paths may include 
ai (i = 1 or 2). 

So we may assume that uv E E(G). Recall that u'ai ~ E(G), for i = 1 and 2, 
The path (v, (u, M, v'), y) extends to include ai. Let S (y, ... , z) be a shortest 
path from y to K (with z E V(K)). Consider the path J obtained from the paths 
((u', M, v'), (y, S, z)) and (b I , u, v) by joining them in K with a shortest path between 
bl and z. Because J misses either al or a2, there exists a vertex w E Y n P such that 
u'w E E(G). This proves (3). 

(4) To conclude the proof of Claim I we show that the existence of the vertices 
y, w E Y obtained in (2) and (3) leads to a contradiction. 

Let S = (y, . .. , y', z) be a shortest path from y to K as introduced in (3) above. 
If z = bi (i = 1 or 2), then any extension of (w,(u',M,v'), (y,S,y'), (b i ,K,a2)) 
misses u. Hence we may assume that z = ai (i = 1 or 2). Furthermore, the path 
(w, (u', M, v'), (y, S, y'), (ai, K, b2 )) extends with b2u E E(G). 

Let R (w, ... , w', r) be some path that we start adding when the path (v, u, bI, 
(ai, S, y), (v', M, u'), w) is extended to include all vertices of P U {aI, a2}. In par­
ticular, the extension will include a3-i E K, thus R should enter K. Actually we 
assume that r is the first vertex from K along R. If r = b2 , then any extension 
of (y, (v', M, u'), (w, R, w'), (b2 , K, a2)) would miss u. Hence r = a3-i. From this 
we obtain that the path (w, (u', lvI, v'), (y, S, ai), b2, (a3-i, R, w')) must extend with 
wb i E E(G) to include u. Now any extension of (y, (v', M, u'), w,(b I , K, a2)) misses 
u, a contradiction. This concludes the proof of Claim I. D 
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Claim II: Every maximal path of H with distinct endvertices contains all vertices 
of P. 

Proof. Suppose to the contrary that there exists a maximal path M = (u, ... , v', v) 
of H such that P\ V(M)) #- 0. Assume that M is the longest such path. By Claim I, 
we have u, v E Q. Because M extends in G, and by the symmetry of the endvertices, 
we may assume that ual E E(G). Let Y = V(H) \ V(M). For i = 1 or 2, the path 
((v, Mu), (aI, K, bi)) extends in G. Hence, for every i = 1 and 2, there exists a vertex 
Yi E Y n P with biYi E E(G). 

(1) There is an edge from Y to M. 

First assume that ajz E E(G), for some Z E Y n Q and j = 1 or 2. Any maximal 
extension of the path (YI, (bI, K, aj)' z) has to cover vertices of M, thus there exists 
an edge between Y and M. Assume now that there is no edge from {aI, a2} to Y. If 
YI #- Y2, then the path (YI, bl , all b2, Y2) extends to include a2, hence there is an edge 
from Y to M. So we may suppose that YI = Y2 is the only neighbor of bl and b2 in Y. 
In this case the path ((v, M, u), aI, bI, YI, b2 , a2) is maximal in G. This contradicts 
property (*) and concludes the proof of (1). 

(2) There is a vertex Y E Y n Q such that yv' E E(G). 

By (1), there is an edge between M and Y. Let x be the first vertex along 
the path (v, M, u) which has a neighbor from Y, say xy E E(G), for some Y E Y. 
Suppose to the contrary that x #- Vi. 

If x E P then the path (y, (x, M, u), (aI, K, bi), Vi)' where i = 1 or 2, has no 
extension including v', by the choice of x. Hence x E Q. Moreover, as the path 
above can not exist, Y = YI = Y2 is the only vertex of Y n P adjacent to bi ( i = 1, 
2) and x. 

The path ((v, M, u), at, bl , y, b2, a2) extends with a2w E E(G), for some w E YnQ. 
The path ((v, M, u), (aI, K, bd, y) extends at y, thus yz E E(G), for some z E YnQ. 
If z #- w, then the path (z, y, (x, M, u), aI, bl , a2, w) misses Vi. Thus we conclude that 
z = w is the only neighbor of y from Y n Q. 

For i = 1 or 2, the path (w, a2, b3- i, y, (x, M, u), bi) must extend at bi to include 
v'. Thus there is an edge bit E E(G), where t E P is a vertex of (v, M, x). The path 
(w, a2, bi, (t, M, u), aI, b3- i , y) misses v' unless t = v'. Therefore, we may assume 
that biv' E E(G) for i = 1 and 2. The path (y, (x, M, u), aI, bl ; v', b2, a2, w) has no 
extension at y. This contradicts property (*). Therefore, yv' E E (G) follows. 

(3) For j = 1 or 2, there exists a path S = (y, ... , x, bj ) such that V(S) \ {bj} C Y. 

Let C be the connected component of the subgraph of G induced by Y and 
containing y. First we show that there is a vertex x E C that is adjacent to some 
vertex of K. Suppose this is false. In particular, we may assume that the neighbor 
YI E Y n P of bi is not in C. 
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If a2v E E (G), then no extension of (y, (v', M, u), aI, bl , a2, v) contains Yl. Hence 
a2V 1: E(G). Similarly, if alv 1: E(G), then no extension of (y, (v', M, u), aI" v) con­
tains YI' Hence alV 1: E(G). Let t E V(M) be the last vertex on (v', M, u) adjacent 
to v or to some vertex x E C. One of the paths ((v, M, t), x) and (y, (v', M, t), v) 
exists and misses YI, a contradiction. Thus we obtain that some x E C is adjacent 
to some vertex of K. 

The existence of x implies that there is a path 5 = (y, .. . ,x, z), for some z E 
V (K), such that V (5) \ {z} C Y. Now suppose that in every such path 5 we have 
z = ai (i = 1 or 2). In particular, no vertex of C is adjacent to bl or b2. If z = a2, 
then any extension of ((v,M,u),al,bl , (z,S,y)) would miss YI. Hence z = aI, for 
every path 5, and a2 has no neighbor in C. The path ((v, M, u), (z, S, y)) has no 
extension that includes a2, a contradiction. This proves (3). 

(4) For k = 1 or 2, uak, va3-k E E(G). 

Assume that 5 = (y, . .. , x, b1) is a path guaranteed by (3). Let R = (r, ... ,y") 
be a path (possibly empty) such that ((v,M,u), (al,K,b1), (x,5,y), (r,R,y")) is 
maximal in G. The path ((v, M, u), aI, b1, (x, S, y), (r, R, y")) has an extension to 
include a2. Thus either va2 E E(G) which proves (4), or we have y"a2 E E(G). 

Assume that va2 1: E ( G) . Let v" be the neighbor of v' in M different from v. 
The path (v, v', y, (r, R, y"), a2, bI, aI, (u, M, v")) extends with v"w E E(G), for some 
w E V(S) n P. Thus we obtain a path M' = ((u, M, v"), (w, s, y), v', v) which is 
maximal in H and longer than M. By the choice of M, we have P C M', and 
w = x. This implies that R is empty (y = ylf), furthermore, ya2, v"x E E(G), and 
b1x, b2x E E(G). Observe that the path ((u, M, v"), x, (bl , K, a2), y, v', v) is maximal 
in G, hence we have 5 = (y,x, bl ). 

The path (b2, all (u, M, v"), x, y, a2, bI) extends to include v', the only uncovered 
vertex of P; therefore, bjv' E E(G),for j = 1 or 2. The path (v,v',bj ,al,b3_j ,x, 
(v", M, u)) extends to include a2. Thus we have ua2 E E(G) (recall that, by 
assumption, va2 1: E(G)). If val E E(G), then we are done. Assuming that 
val 1: E(G), we obtain that yal, E E(G), by the symmetry of al and a2. For 
i = 1 and 2, the path (v,v',y,x,bl,ai, (U"M,V")) extends with v"a3-i E E(G). 
The path ((u, M, v"), (aI, K, bj ), v', v) is maximal in G and misses x, a contradiction. 
This concludes the proof of (4). 

In the next step we use 5 = (y, . .. , x, bj ), j = 1 or 2, a path guaranteed by (3), 
together with further paths similar to those in the proof of (4). 

(5) P \ V(M) = {x}, xbi E E(G), for i = 1,2, and there exists z E Y n Q such 
that zal, zx E E(G). 

By (4), and by the symmetry of al and a2, we may assume that va2 E E(G). Also 
assume that 5 = (y, ... ,x,b2). The path N = (v, (a2,K,b2), (x,5,y), (v',M,u)) is 
maximal, hence (P \ V(M)) c V(5). Observe that N has no chord induced by two 
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non-consecutive vertices of S; for otherwise, a shorter maximal path of G would 
result by using that chord to skip over some vertex of V(S) n P. The same argument 
shows that if blYI E E(G), for some YI E Y n P, then YI = x follows. Thus we have 
blx E E(G). 

The path (aI, bl , x, b2, a2, (v, M, u)) extends with alz E E(G), for some z E 

Y n Q. Note that z tj. V(S), because otherwise, the maximal path ((u, M, v'), 
(y, S, z), aI, bl , a2, v) would miss x. We show next that zx E E(G). Every extension 
of (z, aI, bl , a2, (v, M, u)) contains x, thus z E C, where C is the connected compo­
nent containing y in the sub graph of H induced by Y. This implies that zz' E E(G), 
for some z' E V(S) n P. The maximal path ((u, M, v'), (y, s, z'), z, aI, bl , a2, v) con­
tains x, thus z' = x. Observe that the path ((u, M, v), a2, bl , aI, z, x, b2) must contain 
V(S) n P, on the other hand S has no chord from b2 . Therefore, S = (y, x, b2 ) which 
concludes the proof of (5). 

(6) P {v',x}, Q = {u,v,y,z}, and v'z tj. E(G). 

The path (z, x, bl , aI, (u, M, v'), y) extends to include a2. Hence we have ei­
ther ya2 E E(G) or za2 E E(G). Suppose first that ya2 E E(G). The path 
(v, v', y, a2, bI , aI, (u, M, v")) extends to include x, thus v" x E E( G). The path 
(z, aI, (u, M, v"), x, bI, a2, b2) extends to include v'. Hence we have either v'b2 E E(G) 
or v'z E E(G). None of them is possible, because in the first case ((u, M, v'), 
(b2, K, a2), v), and in the second case ((u, M, v'), z, all b2, a2, v) is a maximal path 
of G missing x. Therefore, we may assume that ya2 tj. E(G) and za2 E E(G), that 
is y and z are not interchangeable. If zv' E E(G), then y and z are interchangable 
with respect to v'. Thus we may also assume that zv' tj. E(G), 

We show that v" = u. Suppose that this is false, that is u' i= Vi, where u' 
is the neighbor of u in M. The path (y, v', v, (a2' K, b2), x, z) extends to include 
uncovered vertices of V(M) n P. Let w be the last vertex on (v", M, u) adjacent 
to y or z. In the first case. (y, (w,M,v),(a2,K,b2),x,z) and in the second case 
(z, (w,M,v), (a2,K,b2),x,y) is a maximal path, therefore, w = u' must hold. Ob­
serve that u' z tj. E ( G), for otherwise, the maximal path ((v, M, u' ), z, a2, bl , aI, u) in 
G would miss x. Hence we have u'y E E(G). 

The path ((v",M,u'),y,v',v,a2,bl ,al,u) extends with v"x E E(G). The path 
(z,aI,(u,M,v"), x,b l ,a2,b2) extends with b2v' E E(G). Thus we obtain that 
((u, M, v'), (b2 , K, a2), v) is a maximal path of G missing x, a contradiction. There­
fore, u' =. v' and (6) follows. 

To conclude the proof of Claim II we show that G ~ G5• By (5) and (6), G is a 
4 x 6 bipartite graph such that its edges determined so far (explicitly or by symmetry) 
induce a G5• It is easy to check that including any of the four edges ua2, val, or v'bi , 

i = 1,2, would result in a non-scenic graph containing a maximal path of length less 
than 8. Therefore, G ~ G5 follows, contradicting the assumption of the theorem. 0 
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Claim II implies that H has at most one non-trivial connected component, and 
this component is scenic. If H is connected, then it is non-traceable, because q 2: 
p + 2. If H is disconnected, then it has exactly one trivial component (Le., isolated 
vertex). Indeed, in case of two isolated vertices u, u' E V(H), one would easily find a 
path M c K + { u, u'} which is maximal in G and misses all vertices in the non-trivial 
component of H. This contradicts (*) and concludes the proof of Theorem 4.2. 0 

5 K22-extension , 

In this section we consider ways that a K 2,2 can be "added" to non-traceable scenic 
graphs so that the property of being scenic is preserved. If G is a non-traceable scenic 
graph containing a copy K ~ K 2,2, then we say that G is a scenic K2,2-extension of 
H = G - V(K). 

We use the following notations throughout this section. We assume that G is 
scenic non-traceable K2,rextension of H = G - V(K). The vertices of K are 
aI, a2, bl , and b2, the partite sets of Hare P and Q with IPI ~ IQI 2, and the 
partite sets of G are P U {aI, a2} and Q U {bl' b2}. In the figures accompanying the 
proofs, black circles indicate vertices in the smaller partite set of G. Let (ai, K, bj ) 

denote the Hamiltonian path of K from ai to bj (1 ~ i, j ~ 2) . For H' ~ Hand 
u, v E V(H'), we denote by (u, H', v) a path of H' between u and v spanning as 
many vertices of V(H') n P as possible. 

By Theorem 4.2, one may assume that H is either a non-traceable scenic graph 
or a (traceable or non-traceable) scenic graph plus an isolated vertex. We need the 
following easy corollaries of Theorem 2.2. 

Lemma 5.1 Let G be a scenic K2,2-extension of H. 
(i) If there is a maximal path of H between y, y' E Q, then there is an edge from 
{y, y'} to {all a2}. 
(ii) If at least two vertices of Q are adjacent to {all a2}, then there exist two 
independent edges YI aI, Y2 a2 E E (G), for some Yl, Y2 E Q. 

Proof. Because G is scenic, every maximal extension of the path between Y and Y' 
contains al and a2 which proves (i). The maximum path length in G is 21PI + 2, 
thus no maximal extensions of the path (aI, K, b2) or (a2' K, b2) may start at al or 
at a2. Therefore, both al and a2 are adjacent to Q. This observation together with 
the condition in (ii) imply that the edges between Q and {aI, a2} can not be covered 
with one vertex. Hence there exist two independent edges, and (ii) follows. 0 

Proposition 5.2 The equi-subdivided star Kl r (r 2: 3, s > 1 ) and the graphs 
Gl, ... , G6 have no scenic K2,2-extensions. ' 
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Proof. Suppose on the contrary that G is a scenic K2,2-extension of H, where H is 
one of the seven graphs in the proposition. 

Figure 2: 

Case 1: H = Kf r (r 2: 3, s 2:: 1). Because IPI ::; IQI- 2, the center of H is a ver­
tex Xo E P, and allle'aves of H are in Q. Let YI, Y2, Y3 E Q be distinct leaves of H. By 
Lemma 5.1 (i), one may assume that Ylal E E(G). The path ((Y2, H, YI), (aI, K, bl)) 
is not maximal, thus b1Xl E E(G) holds, for some Xl E (xo, H, Y3) (see Fig. 2). 
If Y4 E Q is an arbitrary vertex on (xo, H, Xl)' then no extension of the path 
((Y4, H, YI), (aI, K, bl)' (Xl, H, Y3)) contains the vertices of P on the path (xo, H, Y2), 
a contradiction. 

Case 2: H = G l , G2 or G3 . Let Y, y' E Q be any pair of vertices such that their 
removal does not disconnect H (note that all pairs satisfy this in H = G2 or G3 , and 
just one pair fails it in H = GI ). It is easy to check that between Y and Y' there 
exists a maximal path in H (actually, covering all vertices in P). Hence, by Lemma 
5.1 (i) and (ii), there exist Yiall Y2a2 E E(G), with distinct YI, Y2 E Q. Consider 
a maximal path (bI, all (YI, H - Xl, Y2), a2, b2) in H which does not cover a vertex 
Xl E P. This path has an extension blXI E E(G) to include Xl' Fig. 3 (a) shows a 
particular case, where H = GI . The argument works for any other choice of H, and 
for other positions of YI and Y2, as well. Thus we always have x1b l E E(G), for some 
vertex Xl E P. 

Let X2 and X3 be the other two vertices in P. If X2 and X3 have two common 
neighbors in H, then, by Lemma 5.1 (i), one of them is adjacent to K, say Y2a2 E 

E(G). The maximal path (Yl,XI,(b1 ,K,a2),Y2,X3,Y3) shown in Fig. 3 (b) missesx2, 
a contradiction. Assume now that the previous argument does not apply (even if we 
relabel the vertices of P), because there is no edge from {X2' X3, Y2} to K. In this 
case any path of H between X2 and Y2 not containing edge X2Y2 is maximal in G and 
misses K, a contradiction. 
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Y2 
(a) (b) 

Figure 3: 

Case 3: H = G4. Since G is connected, either x1b€ E E(G) or YlaE E E(G) 
holds, for some Xl E P or Yl E Q, and E = 1 or 2. Assume that Yl al E E (G) 
and let Xl be a neighbor of YI' The path ((b l , K, al), (Yr, H - Xl, Y3)) extends to 
include Xl (see Fig. 4 (a)). Thus Xl bi E E (G) follows. Because there is a path 
of H between Y2 and Y3 that covers all vertices of P, say Y2a2 E E(G). The path 
(Yb XI, (bI, K, a2), (Y2, H - {XIX4}, Y4)) in Fig. 4 (b) is maximal and misses X4, a 
contradiction. 

X3 X4 

(a) 
(b) 

Figure 4: 

Case 4: H = Gs. It is easy to verify that between any pair Y, y' E Q there exists 
a maximal path in H. Hence by Lemma 5.1, Ylal, Y2a2 E E(G), for some Yl, Y2 E Q. 
The path (bI, at, (Yll H - Xl, Y2), a2, b2) as shown in Fig. 5 (a) extends to include Xl' 

Thus one may assume that xlb1 E E(G), so (YI,XI, (b1,K,a2), (Y2,H - {Xl,X4},Y4)) 
in Fig. 5 (b) is a maximal path missing X4, a contradiction. 
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Case 5: H = G6• Label the vertices of H as shown in Fig. 6. An easy argument 
using Lemma 5.1 shows the existence of xlbl , Y2a2 E E(G). The maximal path 
(Y3, X3, YI, Xl, (bl , K, a2), Y2, X2, Y4) misses X4, a contradiction. 

This concludes the proof of the proposition. o 

X4 

(a) 
(b) 

Figure 5: 

The following technical lemma will be used when proving that a K2,2-extension 
of a generic graph is generic. We note in advance that the only exception will be 
the generic graph K 2,4 - 2K2 which has a non-generic K2,2-extension, namely G6• 

Recall that a p x q generic graph has the form Kp,q - F, where the partite sets P 
and Q contain p 2: 2 and q 2: p + 2 vertices, respectively, and F is a star forest with 
its star components centered in Q. 

X3 a2 

Figure 6: 
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Lemma 5.3 Let H be a p x q generic graph with partite sets P and Q. If H =I 
K 2,4 - 2K2, then 
(A) H has a maximal path between any two non-isolated vertices y, y' E Q; 
(B) for every x E P and for every y, y' E Q which are distinct non-isolated vertices 
of H - x, there is a path in H - x between y and y' that contains all vertices in 
P \ {x}. 

Proof. (A) Let M = (y, x, ... , x', y') be a maximum length path of H from y to y'. 
We shall prove that M contains P. Suppose on the contrary that Xl E P \ V (M). 
First assume that there are vertices YI, Y2, Y3 . E Q \ V (M). Because H is generic, 
Xl is adjacent to y or y', say XIY' E E(H). Moreover, by the pigeon hole principle, 
some Yi is adjacent to both x' and Xl, for i = 1,2 or 3. The path ((y, M, x'), Yi, XI, Y') 
would be longer than M, a contradiction. 

Thus we may assume that Q\ V(M) = {YI,Y2}, P\ V(M) = {xd. Furthermore, 
Xl is non-adjacent to one of YI and Y2, say XIY2 1:. E( G). We have XIYll XIY', XIY E 

E ( G), and by the argument above, XYI, x' YI 1:. E ( G). Hence XY2, x' Y2 E E ( G). Also 
H =I K 2,4 - 2K2 , thus p 2:: 3. In particular, x =I x', and M = (y, x, ... , y", x', y'). We 
shall prove by induction on p that in the particular generic graph H described above 
there exists a path from Y to Y' that covers P. This will contradict our assumption 
and will prove ( A). 

For p = 3, the path (y,X,Y2,X',y",XI,Y') covers P. Thus (A) is true for p = 3. 
Assume that p 2:: 4 and (A) is true for p - 1. Because our graph H is generic, 
x is adjacent to every vertex of Q \ {YI} and Xl is adjacent to every vertex of 
Q \ {Y2}' Hence Y and y" are not isolated vertices in H' = H - {x', y'}. By the 
induction hypothesis, H' has a path M' = (y, ... , Y") that contains P \ {x'}. The 
path ((y, M', y"), x', Y' ) covers P, a contradiction. Thus (A) follows. 

(B) If H or H' = H - x has an isolated vertex u E Q, then H - {x, u} is a 
complete bipartite graph and (B) obviously holds. Assume that Hand H' are both 
connected, in particular, H' =I K 2,4 - 2K2 • Now (B) follows by applying (A) for the 
generic graph H'. D 

Proposition 5.4 If H is the union of an isolated vertex and one of the following 
graphs: Gll ... ,G6, an equi-subdivided star Ktr (r 2:: 2, s 2:: 1 ), or a connected p x q 
generic graph (p 2:: 2, q 2:: p + 2) different from a complete bipartite graph, then H 
has no scenic K 2,2- extension. 

Proof. Let u be the isolated vertex of H and let H' = H - u be one of the graphs 
in the proposition. Suppose on the contrary that G is a scenic K2,2-extension of 
H. Observe that u E Q, for otherwise, G would have a path (u, (bI, K, ar)) and 
a maximal extension of it with a black end vertex u E P. One may assume that 
ual E E(G). The path S = (u, (all K, b2)) extends in G with an edge b2z, for some 
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Z E V(H')np. All maximal extensions of S are obtained by concatenating a maximal 
path of H' starting at z. Hence all maximal paths of H' starting at z have the same 
length. This is obviously not true, for any black vertex z of H', if H' is one of the 
graphs G l , ... ,G6 in Fig. 1 or an equi-subdivided star Ki,T with r ~ 2, s ~ 1. 

Now suppose that H' is a connected generic graph different from a complete 
bipartite graph. The previous argument shows that H' #- K2,4 - 2K2 · Let xy rf: 
E(H'), for some x E P and y E Q\ {u}. By the connectivity of H', y is non-isolated 
in H' - x. In addition, because H' #- K 2,4 2K2 , we may choose x and y such that 
every y' E Q \ {u} is a non-isolated vertex of H' x. 

By Lemma 5.3 (A), there is a maximal path Sl of H' between any two distinct 
vertices y', y" E Q \ { u, y}. This path covers P and extends in G, say from end vertex 
y' with an edge to {al,a2}' If y'a2 E E(G), then Ml ((y",Sl,y'),a2,bl ,al,u) is 
a maximal path of G. If y'a2, y"a2 rf: E(G), then one may assume that y'al, ua2 E 

E(G), and hence M2 = ((y", s}, y'), aI, bl , a2, u) is a maximal path of G. 

By Lemma 5.3 (B), H' - x has a pathS2 between y' and y covering all vertices in 
P\{x}. By a similar argument as above, we obtain that either M{ = ((y, S2, y'), a2, bl , 

all u) or M~ = ((y, S2, y'), aI, bI, a2, u) exists and is a maximal path of G. The lengths 
of the maximal paths Mi and MI are different, for i = 1 or 2, hence G is not scenic. 
This contradiction concludes the proof of the proposition. 0 

Proposition 5.5 If G is a scenic K 2,2- extension of a p x q generic graph then 
either G ~ G6 or G is generic. 

Proof. By definition, G is generic if and only if at most one edge is missing at any 
vertex of P U {aI, a2}. 

Case 1: H is connected and different from K2,4 -2K2 . Suppose that xy rf: E(G), 
for some x E P and y E Q. By Lemma 5.3 (A), there is a maximal path of H between 
any two distinct vertices Yb Y2 E Q \ {y}. This path extends in G, say Yl ai E E ( G) 
(i = 1 or 2). Obviously, y and Yl are non-isolated vertices in H - x, thus by Lemma 
5.3 (B), there is a path S = (y, ... , Yl) in H - x containing P \ {x}. The path 
((y, S, yr), (ai, K, bj)) extends, hence bjx E E(G) holds, for j 1 and 2. 

Let x E P be a vertex such that xbi rf: E(G), i = 1 or 2. We shall prove that 
xb3- i E E(G). By the argument above, xy E E(G), for every y E Q. Lemmas 5.3 
(A) and 5.1 imply the existence of independent edges yal, y'a2 E E(G), y, y' E Q. If 
y and y' are non-isolated in H - x, then by Lemma 5.3 (B), H - x has a path S 
between y and y' which contains P \ {x}. The path (bi , all (y, S, y'), a2, b3- i ) extends 
with b3- i X E E(G). 

We show that the previous argument applies even if one of y and y', say y', is 
an isolated vertex of H - x. Note that no y" E Q \ {y'} is isolated in H - x. Thus 
if we can not replace y' with some y" E Q \ {y, y'}, and proceed as above, this is 
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because y" a2 1- E( G), for every Y" E Q \ {y}. We prove that this can not happen. 
Because y'x' 1- E(G) holds for each x' E P \ {x}, there exists ux' E E(G) with 
x' E P \ {x} and u E Q \ {y'} such that H - {x', u} is a connected generic graph. 
By Lemma 5.3 (A), the generic graph H - {x',u} has a path S between any two 
vertices YI, Y2 E Q \ {u, y'} which contains P \ {x'}. We know that there is an edge 
between {Yl, Y2} and {al, a2}' By our assumption, YI or Y2 is adjacent to aI, say 
alYI E E(G). Thus the path (u,x',b1,al, (YI,S,Y2)) misses a2, a contradiction. We 
conclude that at every x E P at most one edge is missing in G. 

N ext assume that aiYI, aiY2 1- E ( G), for some YI, Y2 E Q and i = 1 or 2. By 
Lemma 5.3 (A), H has a path S = (Yl, x, . .. , Y2) containing P. Furthermore, we 
know that one of Yl and Y2 sends an edge to K, say Yl a3-i E E ( G). The path 
(Yb a3-i, bI, (x, S, Y2)) is maximal in G and misses ai, a contradiction. Therefore G 
is scenic. 

Case 2: H is disconnected. By Proposition 5.4, H = H' + u, where u E Q is 
an isolated vertex of H, and HI is a complete bipartite graph. We may assume that 
uaj E E(G) (j = 1 or 2). For every i = 1,2, the path (u, (aj, K, bi)) extends with an 
edge, say biXi E E(G), where Xi E P. 

First we show that ya3-j E E(G), for some Y E Q \ {u}. This is obvious if 
Ua3_j 1- E(G), because the path (u, aj, b1 , (XI, H', y)) extends with ya3-j E E(G). If 
Ua3-j E E(G), then any maximal path (y, ... , Y') of H' extends with an edge, say 
yak E E(G). Now the claim follows by choosing j = 3 - k, because uaj E E(G) 
holds for every i = 1,2, by assumption. 

Our next claim is that bix E E(G), for every i = 1,2 and x E P. For any x E P, 
H'-x is a complete bipartite graph, hence it has a path S (Xi, . .. , y) containing all 
verticesinP\{x}. The path (u,aj,b3- i ,a3-j,(y,S,Xi),bi) extends with bix E E(G). 

Suppose now that uai, yai 1- E( G), for some Y E Q \ {u} and i = 1 or 2. Let 
S = (Xl, ... , y) be a path of H' containing P. The path (u, a3-i, bl, (Xl, S, y)) is 
maximal in G and misses ai, a contradiction. Therefore, it remains to show that 
if yai 1- E(G), for some Y E Q \ {u} and i = 1 or 2, then y'ai E E(G), for every 
Y' E Q \ {u,y}. Let x,x' E P, and let S = (x', ... ,y') be a path of H' - {x,y} 
covering all vertices in P\ {x}. The path (y,x,b1 ,a3-i,b2,(x',S,y')) extends with 
Y' ai E E (G). This proves that G is generic and concludes the proof of the proposition. 

Case 3: H = K 2,4 - 2K2 • We show that if G is not generic, then G ~ G6 • 

Let P {XI, X2}, Q = {YI,"" Y4}, and assume that the two missing edges are 
XlY3, X2Y4 1- E(H). Suppose that G ~ K 4,q - F, and G is not generic. 

First we assume that one of Xl or X2 has degree more than 1 in F, say X2 b2 1-
E(G). If Yiaj E E(G) holds, for some 1 ~ i,j ::; 2, then the maximal path 
((b2 , K, aj), Yi, Xl, Y4) would miss X2. Hence there are no edges between the sets 
{al,a2} and {YI,Y2}' This observation together with Lemma 5.1 imply the exis­
tence of two independent edges between the sets {aI, a2} and {Y3, Y4}. Assume that 
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a1Y3, a2Y4 E E(G). We shall verify that there are no further edges between Hand 
K. 

If X2bI E E(G), then the maximal path (YI, Xl, Y4, a2, bl , X2, Y2) misses aI, a contra­
diction. If xlbj E E(G) (j = 1 or 2), then the maximal path (Yb Xl, bj , aI, Y3, X2, Y2) 
misses a2, a contradiction. Assume now that one of alY4 and a2Y3 is an edge, say 
alY4 E E(G). The maximal path (YI, Xl, Y4, all Y3, X2, Y2) misses a2, a contradiction. 
Thus we obtain that G ~ G6 • 

Second we assume that one of al and a2 has degree more than one in F. Because 
G is not generic, and {Xl, Yl, X2, Y2} induces a K2,2 in G, we have G-{XI' X2, VI, Y2} ~ 
G - {al,a2,bl ,b2} ~ K 2,4 - 2K2 . By the symmetry of the sets {XI,X2} and {aI,a2} 
in G, the previous argument applies, and G ~ G6 follows. 0 

Proof of Theorem 1.2. Let G be a scenic non-traceable graph. If G has no cycle, 
then it is an equi-subdivided star by Proposition 2.1. Otherwise, by Theorem 2.2, 
G is a p x q bipartite graph with p ~ 2 and q ~ p + 2. If p = 2 or 3 then, by 
Propositions 3.2 and 3.1, G is either G I , G2 , G3 , or a connected generic graph. 

From now on assume that p ~ 4. If G =1= G4 then, by Proposition 4.1, there exists 
a subgraph K ~ K 2,2 of G, so that G is a scenic K2,2-extension of H = G - V(K). 
If G -::J. G5 , then by Theorem 4.2, either H is a scenic non-traceable graph or H is 
disconnected. 

If H is a scenic non-traceable graph, then H must be generic. This follows by 
Proposition 3.1, for p = 4, and by Proposition 5.2, for p > 4. If H is disconnected, 
then by Theorem 4.2, H = H' + u, where H' is scenic and u is an isolated vertex. 
If H' is traceable, then H' ~ Kp,p+b by Theorem 1.1. If H' is non-traceable, then 
by definition, H' E Qp-2,q-3. By Proposition 5.4, H' + u might have a scenic K 2,2-

extension only if H' is a complete bipartite graph. In these cases H is a disconnected 
(p - 2) x (q - 2) generic graph. 

The previous paragraph shows that, whether or not H is connected, it must be 
generic. Proposition 5.5 implies that G is a connected generic graph or G ~ G6 . 

Consequently, every G E Q4,q is either G4 , G5 , G6 , or a connected generic graph. 
Furthermore, each graph in Q5,q and Q6,q is generic. Proposition 5.5 implies that the 
same is true for every Qp,q , p ~ 7. This concludes the proof of Theorem 1.2. 
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