A counterexample to a conjecture of Jackson and Wormald

Aung Kyaw
Department of Mathematics
University of Yangon
Yangon
Myanmar

Abstract

A counterexample is presented to the following conjecture of Jackson and Wormald: If $j \geq 1, k \geq 2$ and a graph is connected, locally j connected and $K_{1,(j+1)(k-1)+2}$-free then it has a k-tree.

Preliminaries

All graphs considered here are finite and without loops or multiple edges. As usual, we let $V(G)$ and $E(G)$ denote respectively the vertex set and the edge set of the graph G. The cardinality of the set S is denoted by $|S|$. A $K_{1, k}$-free graph is a graph containing no copy of $K_{1, k}$ as an induced subgraph. Also, a graph is locally j-connected if every subgraph induced by the set of neighbours of a vertex v is j-connected. A k-tree of a graph is a spanning tree with maximum degree at most k.

The join of two disjoint graphs G_{1} and G_{2}, denoted by $G_{1}+G_{2}$, is obtained by joining each vertex of G_{1} to each vertex of G_{2}. The union of m disjoint copies of the same graph G is denoted by $m G$.

In [1], Bill Jackson and Nicholas C. Wormald made the following conjecture: If $j \geq 1, k \geq 2$ and a graph is connected, locally j-connected and $K_{1,(j+1)(k-1)+2}$-free then it has a k-tree.

A counterexample

For any integers $\delta \geq 2$ and $k \geq 2$, first we construct the graph $G_{1}+G_{2}$, where $G_{1}=K_{\delta}$ and $G_{2}=\{\delta(k-1)+1\} K_{\delta}$. Then join a $\bar{K}_{\delta(k-1)}$ to each copy of K_{δ} in G_{2}; the graph is depicted in Figure 1.

Figure 1
It is easily seen that the graph G_{1} shown in Figure 1 is connected, locally $(\delta-1)$-connected and $K_{1, \delta(k-1)+2}$-free.

Next, we show it does not have a k-tree. Suppose, for a contradiction, that G does have a k-tree, T. Denote $A=E(T) \cap E\left(G_{1}\right)$ and $B=E(T) \cap E\left(G_{2}\right)$. Since every edge in $E(T)-A$ is incident with at least one vertex of G_{2},

$$
\begin{gathered}
|E(T)|-|A| \leq k \delta\{\delta(k-1)+1\}-|B| \\
|V(T)|-1-|A| \leq k \delta\{\delta(k-1)+1\}-|B| \\
\delta+k \delta\{\delta(k-1)+1\}-1-|A| \leq k \delta\{\delta(k-1)+1\}-|B| \\
\delta-1 \leq|A|-|B| .
\end{gathered}
$$

But $|A| \leq \delta-1$, so $|A|=\delta-1$ and $|B|=0$. So the degree-sum of the vertices of G_{1} in T is at least $\delta(k-1)+1+2|A|=k \delta+\delta-1$ which contradicts the fact that the degree-sum of the vertices of G_{1} in $|T|$ is at most $k \delta$.

But I feel that Jackson and Wormald's conjecture can be changed as follows:
Conjecture: If $j \geq 1, k \geq 2$ and a graph is connected, locally j-connected and $K_{1,(j+1)(k-1)+1}$-free then it has a k-tree.

If true, this conjecture is sharp, in view of the graph shown in Figure 1.

Reference

[1] Bill Jackson and Nicholas C. Wormald, k-walks of graphs, Australasian Journal of Combinatorics 2 (1990), 135-146.

