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Abstract

Let @B, be the set of n x n (n > 8) non-symmetric primitive matrices
with at least one pair of nonzero symmetric entries. For each positive
integer 2 < k < n — 2, we give the kth upper generalized exponent set
for B, by using a graph theoretical method.

1 Introduction

An n x n nonnegative matrix A is called primitive if there exist some positive integer
t such that A® > 0. The least such positive integer ¢ is called the ezponent of A,
denoted by v(A).

In [1], Brualdi and Liu defined the kth upper generalized exponent F(A, k) as
follows.

Definition 1.1 ([1]) Let A be a primitive matriz of ordern and1 < k <n—1. Set
F(A, k) = min{p | no set of k rows of AP has a column of all zeros }.

F(A,k) is called the kth upper generalized exponent of A.

The kth upper generalized exponent is a generalization of the traditional concept
of the exponent. Background can be found in [1].

It is well-known that for each nonnegative matrix A there exists an associ-
ated digraph D(A) whose adjacency matrix has the same zero entries as 4. A
digraph D is primitive iff D is strongly connected and g.c.d(ry,rs,--+,7r2) = 1, where
{r1,79, - +,72} = L(D) is the set of distinct lengths of the directed cycles of D. A is
primitive iff D(A) is primitive.

Definition 1.2 ([1]) Let X be the vertez subset of a primitive digraph D. The
ezponent expp(X) is the smallest positive integer p such that for each vertez y of D,
there exists a walk of length p from at least one vertex in X to y.
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Definition 1.3 ([1]) Let D be a primitive digraph of order n and 1 < k < n — 1.
Set
F(D, k) = max{expp(X) | X CV(D),| X |= k}. (1.1)

F(D, k) is called the kth upper generalized exponent of D.

It is obvious that

F(A, k) = F(D(A), k). (1.2)
Definition 1.4 Let a1,---,ax be positive integers. The Frobenius set S(ay,---,a)
of the numbers ay,- -, ay, is defined as
k
S(ay, -+, a) = {E z;a; | 21, -+, Ty are nonnegative integers }.
i=1

It is well-known, by a lemma of Schur, that if g.c.d(a;, - -, ax) = 1, then
S{ay,---,a,) contains all sufficiently large nonnegative integers. In this case we
define the Frobenius number ¢(ay,---,ax) to be the least integer ¢ such that m €
S(ay,---,ax) for all integers m > ¢.

For the case k = 2, it is well-known that if a and b are relatively prime positive
integers, then the Frobenius number is

$(a,b) = (a - 1)(b—1). ' (1.3)
It is easy to see the following result.

Lemma 1.5 Let X be a set of k vertices of a primitive digraph D of order n and
1<k<n-1 Let R= {ry, -1} C L(D) such that g.c.d(r;,,---,r;,) = 1.
Let dg(i,5) be the length of the shortest walk from vertez i to vertex j in D which

meets at least one cycle of each length ryy,---,r;,. Let dp(X) = max mindg(i, j)
jev(D) i€X
and ¢p = @¢(riy, -+, 75,). Then we have
expp(X) < dr(X) + ¢k (1.4)

Let B, be the set of n X n (n > 8) non~symmetric primitive matrices with at
least one pair of nonzero symmetric entries, @B the set of matrices in QB, with
nonzero trace and QB the set of matrices in Q B, with zero trace. For each positive
integer 1 < k < n —1, let E,; be the set of kth upper generalized exponents of the
matrices in @B, Ef the set of kth upper generalized exponents of the matrices in
QB and E); the set of the kth upper generalized exponents of the matrices in QBY.
In this paper, we give the complete characterizations of E}; and EY,, so that the kth
upper generalized exponent set problem for QB, is settled.

Notice that if k = 1, then F(A,k) = 7(A). In this case, the exponent sets E;
and EJ; have already been determined in [3]. So we will only consider the cases
2<k<n-2.

We will make use of the following notations. Let D be an primitive digraph with
D = (V(D), E(D)). Let C. be a cycle of length r ( called an r—cycle). We denote the
distance from vertex z to vertex y of D by d(z,y). If ¢, j € V(D), then (3, j) denotes
an arc from vertex ¢ to vertex j and [4, j] denotes a edge between two vertices 7 and
7, i.e. a 2—cycle.

192




2  The generalized exponent set E;

In this section we will determine the generalized exponent set Ef,.

Theorem 2.1 Let n, k be positive integers with 2 < k <n—2 and A € @QB;". Then
F(D(A),k) <2n—k—2. (2.1)

Proof. Let X be any k-vertex subset of D(A), w a loop of D(A) and [u,v] a edge
of D(A).

Case 1: w € X. Th X) < dw,y) <n—1<2n—Fk—2.
ase l: w € en expp4)( )_ye‘r/r%%)(cA)) (w,y) < n <2n

: cC X. < i <n-—
Case 2: {u,v} C X. Then expp(4(X) < ye%}%%@)) min{d(u,y),d(v,y)} <n-2 <

2n—k—2.
Other cases: Let | = max d(w,y)and h= 1%1}1(1 d(z,w). Then I <n—1 and
T

B < . yeV(D(4))

<n-k
(1)1<n—2orh<n—k—1 Then expp(X) <h+1<2n—k—2
(2)l=n—1and h=n~k. Then expp(X) <n<2n—Fk-2

The proof of the theorem is completed. &
Theorem 2.2 Let n, k be positive integers with 2 < k <n — 2. Then
{k+1,k+2,---,2n—k -2} C B}, (2.2)

Proof. Suppose k+1 < m < n — 1. Firstly, we consider D; = D(A) with ver-
tex set V(Dy) = {1,2,--,n} and arc set E(D;) = {(1,1),[1,2],(2,3),(3,4),---,
(m —1,m), (m,m+1),(m,m+2),---,(m,n),(m+1,1),(m+2,1),---,(n, 1) }.

It is obvious that A € @B;F. Take Xy = {3,4, -,k + 2}. It is not difficult to
verify that there is no walk of length 2m — k — 1 from any vertex of X, to the vertex
m + 1. So we have

F(Dy,k) > expp, (Xo) > 2m — k. (2.3)

On the other hand, let X be any k-vertex subset of D;. If {1,2} N X # @, then
expp,(X) <m+1<2m—k. : (2.4)

If {1,2} N X = 0, letting ¢ be the vertex of X which is closest to 1, then d(i,1) <
m+1—k—2+1=m—kandso

expp, (X) <m—k+m=2m—k. (2.5)

Combining (2.3), (2.4) and (2.5) we have
F(Dy,k) = 2m — k. (2.6)
Next, we consider D, = D(A) with vertex set V(Ds) = {1,2,---,n} and arc set

E(D,;) = {(1,1),(2,2),[1,2],(2,3),(3,4),-- -, (m = 1,m),(m,m+ 1), (m,m+2),- -,
(myn),(m+1,1),(m+2,1),--,(n,1),(m+1,2),(m+2,2),---,(n,2) }.
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It is obvious that A € QB;}. Take Xo = {3,4, -,k + 2}. It is not difficult to
verify that there is no walk of length 2m — k — 2 from any vertex of X, to the vertex
m+1. Then F(Dy, k) > expp,(Xo) > 2m —k — 1.

On the other hand, let X be any k-vertex subset of Dy. If {1,2} N X # (), then
expp,(X) <m < 2m—k—1. If {1,2} N X = @, letting j be the vertex of X which is
closest to 2, then d(5,2) <m+1~k—2+1=m—k and expp, (X) < m—k+m—-1=
2m —k — 1.

So we have

F(Dy,k)=2m—k~1. (2.7)

Notice that & +1 < m < n —1. Combining (2.6) and (2.7) we obtain (2.2). &

Theorem 2.3 Let n,k be positive integers with 2 < k <n - 2. Then
{2,3,--+,k} C E,. (2.8)
Proof. Suppose 2 < m < k. We consider Dy = D(A) in theorem 2.2.

Take Xo = {n,n—1,---,n —k +1}. Then |Xy| = k. Since n — k +1 > 3, it is
not difficult to verify that there is no walk of length m — 1 from any vertex of X; to
the vertex m + 1. Then F(Dy, k) > expp,(Xo) > m.

On the other hand, let X be any k-vertex subset of D,. If 1 € X, then
expp,(X) <m. If1¢ X, then XN{m+1,m+2,---,n} # 0 and so expp,(X) < m.

So we have F'(D,, k) = m. Noticing that 2 < m < k, we obtain (2.8). &

Theorem 2.4 Let n,k be positive integers with 2 <k <n - 2. Then
Er={1,2,3,---,2n— k- 2}. (2.9)

Proof. We consider D = D(A) with vertex set V(D) = {1,2,---,n} and arc set

E(D)={(4) 4,5 =1,2,- i\ {(2,1)}.
It is obvious that A € QB;} and F(D,k) =1. So 1 € E,.
Combining (2.1), (2.2) and (2.8) we obtain (2.9). ¥

3 The generalized exponent set E’,

In this section we will determine the generalized exponent set EZ,.

Lemma 3.1 ([2]) Suppose I' is primitive digraph of order n and s is the length of
the shortest directed cycles of I'. Then

FTe)<(n—k)s+(n—s), (1<k<n-1). (3.1)

Theorem 3.2 Let n,k be positive integers with 2 < k < n — 2.
(1) If n is even, then

{11,12,--.,3n — 2k — 3} C EY,. (3.2)
(2) If n is odd, then
{11,12,---,3n — 2k — 5,3n — 2k — 4,3n — 2k ~ 2} C EJ,. (3.3)
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Proof. Firstly,let 4 < s <m <n-—1and m~s = 0 (mod 2). We consider
D;(m) = D(A) with vertex set V(Di(m)) = {1,2,--+,n} and arc set E(D;(m)) =
{[1) 2]7 (273)’ (2a 4)7 B (25 3_1)5 (3) 5)1 (4, S)a Ty (3—11 S)’ (sa 3+1): (3+17 3+2)a B
(m - 1,m),
(m,m+1),(m,m+2),--~?(m,n),(m+1,1),(m+2,1),~~-,(n, 1}

It is obvious that A € QBY. Let R = {2,m — s + 5}. We consider two cases.

Case 1: k < n—4 and max{4,2k —m+4} <s <k+3 <m < n—1 In this
case, we will prove that

F(Dy(m), k) = 3m — 2k — s + 5. (3.4)

Take Xo = {3,4,---,s — 1,5+ 1,s+3,---,2k — s+ 5}. Then |X,o| = k and
2k — s +5 < m+ 1. It is not difficult to verify that there is no walk of even
length 3m — 2k — s + 4 from any vertex of X, to the vertex m + 1. So we have
F(Dy(m), k) > expp, (m)(Xo) > 3m — 2k — s + 5.

On the other hand, let X be any k—vertex subset of Dy(m). If {1,2} N X # 0,
then by (1.4) we have expp, () (X) < d(1,m+1)+¢(2,m—s+5) < 3m—2k —s5+5.
If there are vertices i,j € X such that (4,7) € E(Di(m)), then expp, n)(X) <

max _ d(j,y) < 3m — 2k — s+ 5. In addition, letting [ be the vertex of X which
yeV(D1(m))

is closest to 1, we have 1 < d([,1) <m+1—-2k+s—-5+1=m+s—2k—3 and
expp, my)(X) <d(l,1) +m —s+4+¢(2,m —s+5) <3m -2k —s+5.

So we obtain (3.4). By hypotheses we also have the following.

(i) If3<k <25, then

{i|iisodd and 3m—3k+2<i<4m—4k+1} C EY, (k+3 <m<2k). (3.5)
(i) If %52 < k < n -4, then

{i|iisodd and 3m—3k+2 <i<4m—dk+1} C %, (k+3<m<n—1). (3.6)
(iii) If 2 < &k < =1, then

{i|iisodd and 3m—3k+2<i<3m—2k+1} CEY), 2k<m<n-1). (3.7)

Case 22m=n—1, % <k<n-2and 4<s<2k~-n+3. In this case, we
will prove that
F(Di(n—1),k)=3n—-2k—s+2. (3.8)

Take Xo = {2,3,4,,2k—n+ 1,2k —n+2,2k —n+4,---,n}. Then [Xo| =k
and it is not difficult to verify that there is no walk of even length 3n—2k—s+1 from
any vertex of Xy to the vertex n. So we have F(Di(n —1),k) > expp,(n_1)(Xo) =
3n—2k—s+2.

On the other hand, let X be any k—vertex subset of D;{n — 1). There are ad-
jacent vertices of Di(n — 1) in X. Let ! = min{d(j,1) | j € X and there exist i €
X such that (4,7) € E(Dy(n — 1))}, which implies that [ < 2n — 2k — 1. Then
eXpp,n-1)(X) <l+n—-s+3<3n—2k—s+2.
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We obtain (3.8). Noticing that 4 < s < 2k — n + 3, we also have

1
{i]iisodd and dn—dk—1<i<3n—2k—2} C E°,, ("F

<k<n-2). (3.9

Next, let 4 < s <m <n—1and m—s =1 (mod 2). We consider Dy(m) = D(A)
with vertex set V'(Dy(m)) = {1,2,---,n} and arc set E(Dy(m)) = {[1, 2], (2,3), (2,4),
(2,5 = 1),(3,8),(4,8), -, (s — 1,8), (5,8 + 1), (s + 1,5 + 2), -+, (m — 1,m),
(m,m+1),(m,m+2),---, (m,n), (m+1,2),(m+2,2),--+,(n, 2), (m,1)}.

It is obvious that A € @BY. Let R = {2,m — s + 4}. We consider two cases.

Case 1: k < n—5and max{4,2k —m+5} < s <k+3 <m < n—1. In this
case, we will prove that

F(Dy(m), k) = 3m — 2k — s + 3. (3.10)

Take Xo = {3,4,---,s = 1,s+1,5+3,---,2k — s + 5}. Then |Xy| = k and
2k —s+5 < m. It is not difficult to verify that there is no walk of odd length
3m—2k—s+2 from any vertex of Xy to the vertex m+1. So we have F(Dy(m), k) >
eXPp,(m)(Xo) = 3m — 2k — s + 3.

On the other hand, let X be any k-vertex subset of Dy(m). If {1,2} N X # 0,
then by (1.4) we have expp, ) (X) < d(1,m+1)+¢(2,m—s+5) < 3m —2k —s+3.
If there are vertices i,j € X such that (i,j) € E(Dy(m)), then eXPp,(m) (X) <

E%lg)(c ) d(j,y) < 3m — 2k — s + 3. In addition, letting [ be the vertex of X which
Y 2{m

is closest to 2, we have 1 < d(,2) <m+1-2k+s—5+1=m+s— 2k — 3 and
expp,my(X) < d(,2)+m—s+3+¢(2,m—s+4) <3m -2k — s+ 3.

So we obtain (3.10). By hypotheses we also have the following.

(i) 3 <k <22 then

{i|iiseven and 3m—3k <i<4m—4k-2} CEY, (k+4<m < 2k+1). (3.11)
(ii)IfﬂngkSn—& then

{iliiseven and 3m—3k <i<4m—4k-2} CEY, (k+4<m<n—1). (3.12)
(iii) If 2 < k < 252, then

{iliis even and 3m—3k <i<3m—-2k—1} C B, (2k+1 <m <n—1). (3.13)

Case22m=n~1,2<k<n-2and4<s<2k—n+4. In this case, we will
prove that
F(Dy(n—1),k) =3n—~2k —s. (3.14)
Take Xo = {2,3,4,--+,2k—n+2,2k—n+3,2k—n-+5,---,n—1}. Then | Xo| =k
and it is not difficult to verify that there is no walk of odd length 3n — 2k — s —1 from
any vertex of Xp to the vertex n. So we have F(Dy(n — 1),k) > €XPp,(n-1)(Xo) >
3n—2k—s. :
On the other hand, let X be any k-vertex subset of Dy(n — 1). There are ad-
jacent vertices of Dy(n — 1) in X. Let | = min{d(5,2) | 7 € X and there exist i €

196




X such that (,7) € E(Dg(n — 1))}, which implies that [ < 2n — 2k — 2. Then
eXpp,n-1)(X) Sl+n—-5+2<3n—2k—s.
So we obtain (3.14). Noticing that 4 < s < 2k —n + 4 we also have

{i|iiseven and 4n—4k—4<i<3n—2%—4} CEY, (5 <k<n-2). (3.15)
The theorem now follows from (3.5)—(3.7), (3.9) and (3.11)-(3.13), (3.15). &
Theorem 3.3 Letn be odd and 2 < k < n—2. Then
3n—2k—3 € EY,. (3.16)

Proof. We consider D = D(A) with vertex set V(D) = {1,2,---,n} and arc set
E(D) ={[1,2],2,3],(3,4), (4,5),-- -, (n — 1,m),- -, (n,1)}.
Tt is obvious that A € QBY. Let R = {2,n}. We will prove that

F(D, k) =3n— 2k — 3. (3.17)

Case 1: 2 <k < 25l Take Xy = {4,6,---,2k + 2} (if & = 25, then X, =
{4,6,-+-,n —1,1}). Then |X,| = k and there is no walk of odd length 3n — 2k — 4
from any vertex of Xg to the vertex n. So F(D, k) > 3n — 2k — 3.

On the other hand, let X be any k—vertex subset of D. If {1,2,3} N X 5 (), then
by (1.4) we have expp(X) <n—-1+n-1<3n-2k-3. If {1,2,3}NX =0 and
there are adjacent vertices of D in X, then expp(X) <n—-5+n<3n—2k—3. If
{1,2,3} N X =0 and there are not adjacent vertices of D in X, then & < "7‘3 By
(1.4) we have expp(X)<n—2k—2+n+n—1=3n—-2k—3.

So we obtain (3.17) for 2 < k < 251

Case2: ™! <k <n-2. Take Xp={1,3,4,5, --,2k—n+3,2k—n+5,---,n—1}.
Then | Xo| = k and there is no walk of odd length 3n — 2k — 4 from any vertex of X,
to the vertex n. So F(D,k) > 3n — 2k — 3.

On the other hand, let X be any k—vertex subset of D. There are adjacent vertices
of Din X. Let I = min{d(j,1) | j € X and there exist ¢ € X such that (3,5) €
E(D)}, which implies that [ < 2n—-2k —2. Then expp(X) <l+n—-1<3n—-2k—s.

So we obtain (3.17) for 22 <k <n-—2.

Now it is straight forward to obtain (3.16) from Case 1 and Case 2. &

Lemma 3.4 ([4]) Let digraph D' be the digraph with the same vertex set as D in
which there is an arc from z to y iff there is a walk of length t from x to y in D. If
D is a primitive digraph, then for any positive integer t, D is a primitive digraph.

Theorem 3.5 Let n be even.
(1) If 22 <k <n-—2, then

3n — 2k — 2 € EY,. (3.18)
(2) If 2 <k < %2 and A € QBY, then
F(Ak) < 3n— 2k — 3. (3.19)
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Proof. (1) 2#* < k < n—2. We consider D = D(A) with vertex set V(D) =
{1,2,--+,n} and arc set E(D) = {(n - 2,n — 1),(n — 1,n),(n,n — 4),(n — 3,
n- 4)) (n —4,n— 5)’ ) (47 3)’ (3> 2): (37n - 2)7 [2’ 1]’ (Ln - 3)}

It is obvious that A € QB). Take Xo = V(D)\{2,4,--,2(n—k)}. Then | Xo| =k
and it is not difficult to verify that there is no walk of length 3n — 2k — 3 from any
vertex of X to the vertex n. By (3.1) we have F(D, k) = 3n — 2k — 2. This implies
that 3n — 2k — 2 € EY,.

(2) 2 <k < ™2 and A € @BS. Let D be the associated digraph of A4 whose
shortest odd cycle length is r (3 < r < n—1) and Cy = [u,v] the 2—cycle of D. Let
X be any k-vertex subset of D and y any vertex of D. In the following we only need
to prove that there is a vertex z € X and a walk of length 3n — 2k — 3 from z to .

Let ¢ = min{d(u,y),d(v,y)}. If ¢ < n—3, then we can take a vertex v of C, such
that there is a walk of length n — 3 from v to y. Consider that digraph D?. Since
v is a loop of D2, there is a vertex z in X such that there exists a walk of length
n —k from z to v in D?. Hence there is a walk of length 2(n — k) from « to v in D.
According to above arguments, there is a walk of length 2(n—k)+n—3 = 3n—2k—3
from z to y.

If g=n— 2. Let d(v,y) = n — 2. We consider two cases.

Case 1: There are not adjacent vertices of D in X. Let z, be the vertex of X which
is closest to v. Then for each positive integer p with p > d(zo,v) + n — 2 + ¢(2,7),
there exists a walk of length p from z; to y.

Subcase 1: {u,v}NX % @. If u € X, then for each positive odd integer p > n—1,
there is a walk of length p from u to y. This implies that there is a walk of length
3n—2k—3fromutoy. If v € X, noticing that n—2+¢(2,7r) < n—2+2(n—k)-2 =
3n — 2k — 4, then there is a walk of length 3n — 2k — 3 from v to y.

Subcase 2: {u,v} N X = @ and there exists C, such that V(C,) N X = @. Then
r <n—k. Since d(zo,v) +n—2+¢(2,r) <n—k+n—2+n—k—1=3n—-2k -3,
there is a walk of length 3n — 2k — 3 from x4 to .

Subcase 3: {u,v} N X = () and there exists C, such that V(C,) N X # 0. Let
V(C,)NnX|=m (2 <m < k). Then d(zo,v) <n~—k—(m—1). When m < k we
haven -k — (r—m) > k—m ~ 1, namely, r <n — 2k + 2m + 1.

Ifm < k—2, then d(zo, v)+n—2+0(2,r) < 3n—3k+m—1 < 3n—2k—3. If m =k,
then d(zo, v)+n—2+6(2,7) < n—k—(k—1)+n—2+n—2 = 3n—2k—3. If m = k—1,
noticing r # n —1, then d(zo,v) +n—2+¢(2,r) <n—k—(k—-2)+n—-24+n—4 <
3n — 2k — 3. Hence, there is a walk of length 3n — 2k — 3 from z; to y.

Case 2: There are adjacent vertices of D in X. Let | = min{d(j,v) | j € X and
there exist 4 € X such that (4, 7) € E(D)}.

Subcase 1: I < 2(n — k) — 1. Since v € V(C,), there is a vertex z in X such that
there exists a walk of length 2(n — k) — 1 from z to v. Therefore there is a walk of
length 3n — 2k — 3 from z to y.

Subcase 2: I = 2(n—k) and r < 2(n—k) — 1. Then v € X and there is a walk of
length p from v to y for each positive integer p with p > n — 2 + ¢(2, 7). Therefore
there is a walk of length 3n — 2k — 3 from v to y.

Subcase 3: I =2(n— k) andr > 2(n—k)+ 1. Thenve X,u ¢ X, k=22 7 =
n—1and 3n — 2k — 3 = 2n — 5. It is obvious that at least one of w and v is on
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C,,_1 for each odd cycle C,_;. If there exists a vertex z in X such that d(z,y) is
even and 2 < d(z,y) < n — 4, since z is in V(Cp—1), then there is a walk of length
p from z to y for each positive odd integer p > d(z,y) + n — 1. This implies that
there is a walk of length 2n — 5 from z to y. Otherwise, it is obvious that y € X and
X = V(D)\{u,i| d(i,y) is even and 2 < d(i,y) < n —4}. We consider two cases.

(a) If there exists Cp—1, such that y € V(Cy-1). Noticing that y € X, there is a
walk of length p from y to y for each positive odd integer p > n — 1. Therefore there
is a walk of length 2n — 5 from y to y.

(b) If y & V(Cp-1) for each odd cycle Cp—;. Since D is a strongly connected
digraph, there exists Cy, (4 < m < n), such that y € V(Cy,). If m = n, letting = be
vertex such that d(z,y) = n— 5, then £ € X and there is a walk of length 2n — 5
from z to y. If m = n — 2, letting z be vertex such that d(z,y) =n -3, then z € X
and there is a walk of length 2n — 5 from z to y. If m < n — 4, then there is a walk
of length p from y to y for each positive odd integer p > m + n — 1. Therefore there
is a walk of length 2n — 5 from y to y.

This completes the proof of the theorem. &

Theorem 3.6 Let n, k be positive integers with 2 < k < n—2. Then
{4,5,-++,2n — k — 2} C EY,. (3.20)

Proof. Suppose 4 < m < n. Let D3(m),Ds(m) be the digraphs of order n
with vertex sets V(Ds(m)) = V(Dy(m)) = {1,2,---,n} and arc sets E(D3(m)) =
{[17 2]7 {1y3]’ {29 3}7 (31 4)7 (4) 5)7 R (m—' lam)> Ty (m$m+1)7 (m7m+2)7 Y (m7 n))
(m +1, 1)’ (m +2, 1)? ] (n? 1)}?E(D4(m)) - {[1’ 2]7 [L 3]7 [273}: (37 4)’ (4: 5)7 T
(m—1,m),---,(m,m+1),(mym+2),---, (m,n),(m+1,1),(m+2,1),-- -, (n, 1),
(m+1,3),(m+2,3),---,(n,3)}.

It is obvious that the adjacency matrices of D3(m) and Dy(m) belong to QBJ.

(1) Firstly, we will prove that if 4 < m < k + 2 then

F(Ds(m), k) = m. (3.21)

Take Xo = {3,4,5,++,k+2}. Then | Xo| = & and it is not difficult to verify that
there is no walk of length m — 1 from any vertex of X, to the vertex n. So we have
F(Ds(m), k) > m.

On the other hand, let X be any k—vertex subset of D3(m). If {1,2,3} N X s 0,
then expp, () (X) < m. If {1,2,3}N X = 0, then {m+1,m+2,---,n}NX # 0 and
€XP py(m)(X) < m.

Hence (3.21) holds.

(2) Secondly, we will prove that if ¥ <n —3 and k+3 < m < n then

F(Ds(m), k) = 2m — k ~ 2. (3.22)

Take Xg = {4,5,--+,k + 3}. Then |X,| = k and it is not difficult to verify that
there is no walk of length 2m — k — 3 from any vertex of X to the vertex n. So we
have F(D3(m), k) > 2m — k — 2.
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On the other hand, let X be any k-vertex subset of D3(m). If {1,2,3}N X # 0,
then expp, () (X) < m. If{1,2,3}NX = 0, then expp, ) (X) < m+1-k—3+m =
2m —k — 2.

So (3.22) holds.

(3) Thirdly, we will prove that if k <n—3 and k+ 3 < m < n then

F(Dy(m), k) =2m — k — 3. (3.23)

Take Xo = {4,5,--+,k + 3}. Then |X,| = k and it is not difficult to verify that
there is no walk of length 2m — k — 4 from any vertex of X, to the vertex n. So we
have F(Dys(m), k) > 2m — k — 3.

On the other hand, let X be any k-vertex subset of Dy(m). If {1,2,3} N X # 0,
then expp, (my (X) < m. If {1,2,3}NX = 0, then expp, ) (X) < m+1—k—3+m—1=
2m ~ k — 3.

So (3.23) holds.

The theorem now follows from (3.21), (3.22) and (3.23). &

Theorem 3.7 Ifk =2, then {2,3} C E},. If3<k <n—2, then {1,2,3} C EY,.

Proof. (1) Suppose 2 < k < n—2. Let D(A) be the digraph of order n with vertex
set V(D(A4)) = {1,2,---,n} and arc set E(D(4)) = {[1,2],[2,3],[2,4],"-,[2,7n],
3, 1), (47 1)7 T (nv 1)}

It is obvious that A € QBY and F(D(A),k) =2. So 2 € EY,.

(2) Suppose 2 < k < n — 2. Let D(A) be the digraph of order n with vertex set
V(D(A)) = {1,2,---,n} and arc set E(D(A)) = {[1,2],(2,3), (2,4),- -, (2,n),[3,1],
[41 1]’ I [n’ 1]}

It is obvious that A € QB) and F(D(A), k) =3. So 3 € EY,.

(3) Suppose 3 < k < n — 2. Let D(A) be the digraph of order n with vertex
set V(D(A)) = {1,2,---,n} and arc set E(D(A)) = {(5,5) | 3,5 = 1,2,---,n and
i# {21}

It is obvious that A € QBY and F(D(A),k)=1. So 1 € ES,.

This completes the proof of the theorem. &

Theorem 3.8 Let n, k be positive integers with 2 < k <n — 2.
(1) If n is even and 2 < k < 282, then

EY = {1,2,-+-,3n — 2k — 3}\S. (3.24)
(2) If n is even and 22 < k <n—2 orn is odd, then
Epe ={1,2,---,3n - 2k — 2}\S. (3.25)

where S = {1} when k =2, otherwise S = 0. &
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