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Abstract 

The super line graph of index r of a graph G has the r-sets of edges as 
its vertices, with two being adjacent if one has an edge that is adjacent to 
an edge in the other. In this paper, we continue our investigation of this 
graph by establishing two results, the first on the independence number 
of super line graphs of arbitrary index and the second on pancyclicity in 
the index-2 case. 

1 Introduction 

The super line graph of index r, denoted by Lr (G) is defined for any graph G with at 
least r edges. Its vertices are the sets of r edges of G, and two such sets are adjacent 
if an edge of one is adjacent to an edge of the other. 

If r = 1, then this is the ordinary line graph, so the super line graph is another 
among the line graph generalizations that have been studied. (For a discussion of 
many of these, see [5]). Index-r super line graphs were introduced by the authors 
in [1], and we have since investigated various of their properties [2, 3]. The index-2 
case has been studied in greater detail [4]. 

In this paper, we continue our study with two further results. The first is on the 
independence number of super line graphs of arbitrary index, and the second on 
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cycles in the index-2 case. 

One convention that we adopt in this paper is to ignore isolated vertices in the base 
graph G since they have no effect on super line graphs. 

2 The Independence Number 

Let M be a set of independent edges in a graph G. If A and Bare r-sets of M, 
then clearly they contain no adjacent edges, and so in .cr(G), A and B cannot be 
adjacent. However, not all pairs of nonadjacent vertices arise in this way. It is also 
the case that two r-sets of edges of G are nonadjacent in .cr(G) if they generate 
vertex-disjoint subgraphs. What we show is that, when one considers a set of inde­
pendent vertices in .cr (G) of maximum order, then with a few exceptional families 
of graphs, it is produced by a maximum independent set of edges of G. 

We denote the vertex-independence number and the edge-independence number of 
G by a( G) and at (G) respectively, and the set of all r-sets of a set X by (~). 

Theorem 2.1 Let G be a graph with at least r edges. Then the independence number 
of .cr(G) is 

a(C,(G)) = (a'~G)) 

Furthermore, if S is a maximum independent set of vertices in Lr(G), then either 

(i) S = (!) for some maximum independent set X of edges of G, or 

(ii) S consists of r + 1 disjoint stars KI,n or 

(iii) r = 3 and the vertices in S are K I ,3 's or K3 'so 

Proof If X is a maximum independent set of edges of G, then clearly, r-sets of X 
are independent vertices in .cr(G). Thus, 

To prove the reverse inequality, let VI, 112, "'j Vk be r-sets of E(G) which are inde­
pendent vertices in .cr (G). Also, let 

m = number of these sets which are matchings in G, 
f number of these sets which are not matchings in G, 
h = number of edges of G in the union of the m matchings. 

Clearly, m ~ (~). Let U = VI U 112 U .,. U Vk • We observe that if two edges of U are 
adjacent in G, they must belong to the same Vi and each such pair is in only one Vi. 
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Thus, we form an independent set of edges in G by taking the h edges mentioned 
above, and one of the nonindependent edges of each of the f non-matchings. Hence, 
£ + h :::; a' (G) = a', and therefore, 

(1) 

from which we have the desired inequality. 

To prove the second part, let S = {Vi, V2 , ... , Vd be a maximum independent set in 
£r(G) with k = (~'). It follows from (1) that 

If f = 0, then k = m = G) = (~') so that S satisfies (i). If r 1, then again all 
Vi's are matchings so that f = O. Thus we assume that f > 0 and r > 1. In this 
case f + G) (l~h) implies that h = 0 and f r + 1. Consequently, a' = r + l. 
Moreover, it follows that m = 0, so that no Vi is a matching. If any Vi is not a star, 
then it has two independent edges or it is a K 3 . In the first case, one gets r + 2 
independent edges in G, a contradiction. In the second case, it follows that r = 3 so 
that each Vi is a K3 or a K 1,3. 0 

The above-theorem characterizes the maximum independent sets in £r(G). We 
observe that more can be said about the structure of G in cases (ii) and (iii), namely, 
that each additional edge in G must join the center of one star to some vertex in 
another component. 

3 A Pancyclic Property 

In [4], we proved that if G is connected, then £2 (G) is pan cyclic, meaning that there 
are cycles of all lengths from 3 to the order of the graph. We now extend that result 
in two ways: to more graphs and to more cycles. We show that if G has no isolated 
edges, then every vertex of £2( G) is on a cycle of each possible length, a property 
known as vertex-pancyclic. In order to prove our theorem, we require a considerable 
number of preliminary results. We begin with the following general result on short 
cycles. 

Lemma 3.1 If G has at least four edges, then every vertex of £2 (G) that is not an 
isolated vertex is on cycles of lengths 3, 4, and 5. 

Proof: Let e and f be edges of G. We consider two cases. 

Case 1: e and f are adjacent in G. Let e and d be two other edges of G. Then the 
subgraph induced by ee, ej, de, df, and ef contains the wheel W 1,4 (with ef as its 
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center), so ej lies on a 3-cycle, a 4-cycle, and a 5-cycle. 

Case 2: e and j are not adjacent in G. Since vertex ej is not isolated in L2(G), 
there is an edge 9 incident with one of them, say with j. Let d be any other edge 
of G. Then, as in Case 1, the subgraph induced by the five vertices dj, dg, ej, eg, 
and jg contains W I ,4 (here jg is the center vertex), so again ej lies on a 3-cycle, a 
4-cycle, and a 5-cycle. 0 

One family of graphs requires special treatment, and we consider that next. This 
is the set of graphs r P4, consisting of r disjoint paths of length 3. Consider a pair 
of P4's in rP4. Each of them gives rise to a triangle in L2(rP4 ); we call these pure 
triangles. We call the subgraph induced by the nine vertices arising from edges from 
both P4's a mixed piece. We note that a mixed piece contains a spanning wheel W I ,8, 

and the subgraph induced by a mixed piece and one of its associated pure triangles 
contains W1,1l. This is shown in Figure 1 where (a) gives a labeling of the edges of 
2P4 , and (b) and (c) give wheels in L2(2P4 ). 

ac 

• a • b • c • 
cd ae cd ae 

• d • e • f • ce af ce af 

cf hf cf bf 

(a) (b) (c) 

Figure 1 

• a • b • c • 

ad bi 

• d • e • f • 
bd 

ai 

• g • h • • ce ag ah 

(a) (b) 

Figure 2 

We now let r > 2 and look at some of the adjacencies between two mixed pieces that 
have one contributing P4 in common. We observe that some of the rim edges from 
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one piece lie on a 4-cycle with rim edges from the other. One such pair, the edges 
[bf, cf] and [bg, cg], is shown in Figure 2. We note that each wheel has four such 
edges. 

Lemma 3.2 For all r, the graph [,2 (rP4) is vertex-pancyclic. 

Proof: The result is clearly true for r = 1. It can be seen by an appropriate addi­
tion of the three vertices de, df, and ef to the graph in Figure l(c) that [,2(2P4) 

is spanned by the wheel W1,14. Since every wheel is vertex-pancyclic, we have the 
result for r = 2. 

The general case can be proved by induction, but for simplicity we present only the 
case r = 3 here. Assign each pure triangle to a different associated mixed piece (as 
in Figure l(c). Obviously, by symmetry in the pieces, it is enough to show that each 
vertex in one of these augmented pieces lies on a cycle of each length f = 3, 4, .. " 36. 
For f ~ 12, this is true within the augmented piece itself. For 13 ~ f ~ 24, we get 
the desired cycle by bridging an 11- or 12-cycle from the wheel of the first piece into 
the wheel of the second (the 11-cycle is needed for f = 13); and then for 25 ~ £ ~ 36 
by bridging into the third piece. There are clearly enough bridging edges available 
for this to be done. 

The general case follows similarly except that not all of the mixed pieces will be 
augmented when r 2: 4. 0 

In order to prove our main theorem of this section, we require one additional concept. 
A graph G of order p is path-comprehensive if every pair of vertices are joined by paths 
of all lengths 2,3"" ,p - l(but not necessarily length 1). Clearly, every wheel has 
this property. We observe also that every path-comprehensive graph has diameter 2, 
is Hamilton-connected (that is, every pair of vertices are connected by a Hamiltonian 
path), and is vertex-pancyclic. For reasons that will become clear, we are especially 
interested in complete multipartite graphs, and the next two results provide what 
we will need. 

Lemma 3.3 If f ~ m ~ n, the complete tripartite graph Ke,m,n is path-comprehensive 
if and only if f + m > n. 

Proof: If n 2: £ + m, then there can be no Hamiltonian path joining two vertices in 
the third partite set, so the inequality is clearly necessary. To prove the sufficiency 
we first consider the case f = 1. The condition f + m > n then gives m = n. Since 
K1,n,n contains a wheel, we are done. For the case when f > 1, we proceed by in­
duction on the total number of vertices. The result is clearly true when there are 
six or fewer vertices, since the only eligible graph is K 2,2,2. Assume it holds when 
there are p vertices (p 2: 6) and let K = Ke,m,n be a complete tripartite graph with 
£ ~ m ~ n, n < f + m, and £ + m + n = p + 1. Let h satisfy 2 ~ h ~ p. Let v and 
w be any two vertices in K, and let u be a vertex other than v and w in a partite 
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set of maximum order. If h ::; p - 1, then by the induction hypothesis, K - u, and 
hence K, contains a v - w path of length h. Therefore, we need consider only the 
case h = p. Let P be a v - w path of length p - 1 in K - u. It is not difficult to 
show that for some edge xy in P, the vertices u, x, and yare all in different partite 
sets in K. Replacing the edge xy in P by the path xuy yields the requisite v - w 
path of length p in K. The result follows. 0 

Our next result is a consequence of Lemma 3.3. 

Corollary 3.4 For r ~ 3, the complete r-partite graph Knl>n2, ... ,nr with nl ::; n2 ::; 

... ::; nr and p = Er=l ni is path-comprehensive if and only if 2nr < p. 

With those preliminaries out of the way, we turn to proving our main result, which 
we do first for forests. Let F be a forest without isolated edges. We consider a vertex 
v which is not an end vertex, and which has at most one neighbor that is not an end 
vertex. Let S denote the set of edges at v (as well as the star generated by those 
edges), and let R denote the set of remaining edges (and the subgraph generated by 
them). We let (~), (D, and RS denote the sets of pairs of edges, where both are 
from R, both are from S, and one is from each of Rand S, respectively. 

Lemma 3.5 With F, R, and S as above, the subgraph of C2 (F) induced by RSu (~) 
is path-comprehensive. 

Proof: By definition, I S I ~ 2. If R = 1>, then F is a star, and the result holds. 
Hence, we assume that R =f. 1>. Let R = {el' e2, "', er} and S = {iI, 12, "', fs}· 
Further, for j = 1,2"", s, let Vj = {edj : i = 1,2,"" r}. Then RS = Uj=l Vj, 
and in C2(F), any two vertices in different Vj's are adjacent. Thus, the subgraph 
induced by RS contains the complete s-partite graph Kr,r, ... ,Tl and so the subgraph 

induced by RS U (~) contains the join Kr,r, ... ,r * K(D' Since s ~ 2, the property of 

path-comprehensiveness follows from Corollary 3.4. 0 

Lemma 3.6 If F is a forest with no isolated edges, then £2 (F) is vertex-pancyclic. 

Proof: The proof is by induction on the number of edges in F. It is easily seen to 
hold for forests with two or three edges. Assume that it is true for forests with fewer 
than q edges, and let F be a forest with q edges, none of which is isolated. If every 
component of F is P4 , then C2 (F) is vertex-pancyclic by Lemma 3.2, and if F is just 
a star, the result is obvious. Therefore, we assume that F has a vertex v having at 
most one neighbor that is not an end vertex and for which F - v has no isolated 
edges. As before, let S be the set of edges at v and R the set of edges of F - v, and 
let 1 R 1= rand 1 S 1= s. Consider a pair of edges e and f in F. We know from 
Lemma 3.1 that the vertex ef lies on cycles of lengths 3, 4, and 5 in £2(F). For 
lengths greater than 5, we consider three cases. 
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Case 1. e, fER. By the induction hypothesis, L2(F v) is vertex-pancyclic, so ef 
lies on cycles of length 3, 4, ... , (;) within this subgraph. Let C be such a cycle, and 
let gh be one of the neighbors of ef on C. Without loss of generality, we assume that 
f and 9 are adjacent in F. Let d be any edge in S, the star at v. Then df and dg are 
in RS, and so in L2(F) we have ef '" dg '" df '" gh. By Lemma 3.5, there is within 
(RS U (~)) a path of each possible length between df and dg. Thus, if the length of 

Cis £, this procedure generates cycles of lengths £ + 2, £ + 3, "', £ + rs + G). Since 

£ can equal 3, 4, . ", (;), and since ef is on a cycle of length 4, this case is complete. 

Case 2. e E R, f E S (say). The argument is quite similar to Case 1. We know 

that ef is on cycles of lengths 3, 4, "', rs + G) in (RS U (~)). To get a cycle of 

length £ > r s + (;), we choose numbers i and j with i + j £, 3 ::; i ::; (;) and 

3 ::; j ::; r s + (;). Let d be another edge of R, let C be a cycle of length i containing 
de, and let be be a neighbor of de on C. Let a denote one of d or e that is adjacent 
to b or e, and let 9 be another edge of S. By Lemma 3.5, there is a path P oflength 
j - 1 in (RS U (D) joining ag and ef. The union of this path, the edge joining ef 
and de, the path of length i-I joining de and be (from C), and the edge joining be 
and ag gives the desired cycle. 

Case 3. e, f E S. Let v = ef in L2(F). The argument just given must apply to 
L2(F)-v since (RSU (D - {v}) still has the path-comprehensive property. Hence, 
L2(F)-v is vertex-pancyclic, and since v is adjacent to all of the other vertices of 
RS U (D, v will be on cycles of all possible lengths. This completes the proof. 0 

The proof of the extension of this result to graphs in general follows one given in [4]; 
we include it here for completeness. 

Theorem 3.7 If G is a graph with no isolated edges, then the index-2 super line 
graph L2(G) is vertex-pancyclic. 

Proof: The proof is by induction on the number of cycles. By Lemma 3.6, the result 
holds for graphs with no cycles. Assume that it holds for graphs with fewer than n 
cycles and let G be a graph with n cycles and no isolated edges. Replace an edge 
uv on a cycle of G by an edge uw, where w is a new vertex. The resulting graph 
G' has fewer cycles than G (and no isolated edges), so by the induction hypothesis 
L2(G') is vertex-pancyclic. Since L2(G') is isomorphic to a subgraph of L2(G), the 
latter is also vertex-pancyclic. The theorem follows by the Principle of Mathematical 
Induction. D 

While it may be possible to extend this theorem to some graphs having isolated 
edges, it cannot be done for all graphs, even to their nontrivial components. For 
example, let G be the disjoint union P4 U 2K2 .Then the nontrivial component of 
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£'2(G) is the complete multipartite graph K1,1,2,S, which clearly is not Hamiltonian, 
and thus is not pancyclic. However, we believe that, for a graph G with at most one 
isolated edge, £'2(G) is pancyclic, and that it may even be vertex-pancyclic. 

Further problems along these lines suggest themselves: Find conditions on Gunder 
which £'2(G) has isolated vertices but the nontrivial component is Hamiltonian, pan­
cyclic, or vertex-pancyclic. Another open problem is to study £'2(G) in relation to 
Hamiltonian-connectedness and panconnectedness. 
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