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Abstract 

In this paper, we give necessary and sufficient conditions for the exis­
tence of equitable partial 4-cycle and 5-cycle systems. Furthermore, we 
construct equitable partial 4-cycle and 6-cycle systems of Kn,n' 

1 Introduction 

A (partial) m-cycle system of order n is an ordered pair (V, C), where V is a set 
of n vertices and C is a collection of m-cycles defined on V such that every pair of 
vertices in V is adjacent in exactly (at most) one m-cycle of C. In graph theoretical 
terms, a (partial) m-cycle system is a decomposition of (a subset of) the edges of 
Kn into m-cycles. We define a (partial) bipartite m-cycle system of order n to be a 
partition of (a subset of) the edges of Ka,n-a into m-cycles. 

Let c(i) denote the number of m-cycles which contain a vertex i E V. A partial 
m-cycle system is said to be equitable if Ic{i) - c(j)1 ::; 1, for all i,j E V. 

The leave of an m-cycle system (V, C) of order n is the graph on n vertices which 
contains the edges of Kn that are not found in any m-cycle of C. A maximum 
packing of Kn with m-cycles is a (partial) m-cycle system whose leave contains the 
fewest number of edges possible. Let M(m, n) denote the number of m-cycles in a 
maximum packing of Kn. It has been shown by Schonheim and Bialostocki [7] that 

_{ l~ln21JJ 
M(4,n) - l~ln21JJ-1 

if n =j:. 5 or 7 (mod 8) 
otherwise. 

Furthermore, it has been shown by Rosa and Znam [6] that 
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where 

{ 
(n2 - n - 6n )/10 if n is odd, 

M(5, n) = (n2 _ 2n - 6n )/10 if n is even, 

On = 1 
0 if n == 0,1,2,5 (mod 10), 
4 if n == 6 (mod 10), 
6 if n == 3 (mod 10), 
8 if n == 4,8 (mod 10), 
12 if n == 7,9 (mod 10). 

Andersen, Hilton, and Mendelsohn considered equitable partial Steiner triple 
systems of order n (EPSTS(n)s) [1]. They found that if there exists a PSTS(n) with 
t triples, then there exists an EPSTS(n) with t triples. In particular, EPSTS(n)s 
with t triples exist when 1 ::; t ::; f-l( n), where f-l( n) denotes the number of triples 
in a maximum PSTS(n). This result was crucial in obtaining the smallest known 
embedding for partial Steiner triple systems. Subsequently, Rodger and Stubbs [5] 
generalized the result in [1] for partial triple systems of all indices. They found that 
if there exists a partial triple system of order n and index .\ (or PTS( n, .\)) with t 
triples, then there exists an equitable PTS(n,.\) with t triples. Recently, Raines and 
Rodger [4] found necessary and sufficient conditions for the existence of EPSTS(n)s 
whose leave contains a particular matching. This result was crucial in obtaining 
small embeddings of partial extended triple systems and partial totally symmetric 
quasigroups [2, 3]. In this paper we extend the result in [1] for 4-cycle and 5-cycle 
systems and include results for equitable partial bipartite 4-cycle and 6-cycle systems 
of Kn,n' 

2 Constructions 

We start by generalizing the result in [1] for partial 4-cycle systems. 

Theorem 2.1 Let nand t be positive integers where 1 ::; t ::; M(4, n). If there 
exists a partial 4-cycle system of order n which contains t cycles, then there exists 
an equitable partial 4-cycle system of order n which contains t cycles. 

Proof: Let (V, G) be a partial 4-cycle system of order n which contains t cycles, 
and let c(i) denote the number of 4-cycles which contain a particular vertex i E V. If 
(V, G) is equitable, then there is nothing to prove, so we assume that c(l) ::; c(2) :::; 
... :::; c(n) and c(l) ::; c(n) - 2. Let G f denote the set of 4-cycles of G which do 
not contain both vertices 1 and n. Form a graph G on the vertex set {2, ... , n - I} 
in which: for every cycle of the form 1, Yl, Y2, Y3, 1 E Gf

, let G contain the 2-path 
Yl, Y2, Y3, and color the edges of this 2-path with color 1; and for every cycle of the 
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form n, Zl, Z2, Z3, n E C', let G contain the 2-path Zl, Z2, Z3, and color the edges of this 
2-path with the color n. Since no cycle in C' contains both vertices 1 and n, there are 
no edges in G corresponding to 4-cycles that contain both vertices 1 and n. Now the 
number of 2-paths colored n exceeds the number colored 1 by at least 2. Therefore, 
there must be at least two trails T1 = ar, 002, ... ,a4k+3 and T2 = /31, /32, ... ,/34m+3 of 
2-paths, alternately colored 1 and n, which start and end with a 2-path whose edges 
are colored n (since Tl and T2 are maximal, it follows that the edges 1001 and 1a4k+3 
occur in no cycle in C'). Notice that the first and last vertices in each 2-path in T1 
and the first and last vertices in each 2-path in T2 are adjacent to an edge colored n. 
Now each vertex ai E Tl and each vertex /3j E T2 is the beginning or end of at most 
one 2-path of each color; otherwise, the edge 1ai or the edge nai would be included 
in more than one 4-cycle. Similarly, we can show that the edges l/3j and n/3j would 
be included in more than one 4-cycle (though it is possible that a vertex can be the 
middle vertex of more than one 2-path). 

The edges 1001 and 1a4k+3 occur in no cycle in G' since 001 and a4k+3 are vertices 
which are the beginning or end of no 2-paths colored 1. However, the possibility 
remains that the edge 1001 is contained in some cycle of C \ C'. If such a cycle exists, 
it must be of the form 1, ab" n, 1, where, is either a middle vertex of some 2-path 
in Tl or not in Tl at all. Vertex, cannot be the beginning vertex of some 2-path in 
Tl since this would mean that the edge n, would appear in more than one 4-cycle 
(recall that each vertex that is the beginning of some 2-path in T1 is adjacent to an 
edge colored n). In addition, there may be any number of cycles in C \ C' of the form 
1, x, n, y, 1, where each vertex x and y will either be a middle vertex of some 2-path 
in Tl or not in T1 at all. Certainly, neither x nor y can be the beginning vertices of 
any 2-path in T1. 

Assume, without loss of generality, that C \ C' contains some cycle 1,001", n, 1. 
We first observe that the edges 1/31 and 1/34m+3 are contained in no 4-cycle of G', 
so now we must show that the edge 1/31 is contained in no 4-cycle of C \ G' (a 
similar argument shows that the edge 1,84m+3 is contained in no 4-cycle of G \ C'). 
If the edge 1/31 is contained in a 4-cycle of G \ C', then this cycle must be of the 
form 1, /31, Z, n, 1 (since the edge n/31 is already contained in some 4-cycle of G'), 
but this implies that /31 = 001 and Z = , since the edge In is contained in at 
most one 4-cycle, namely 1,001", n, 1. However, this implies that T1 = T2 since 
any vertex is the beginning or end of at most one 2-path of a particular color, 
but we have assumed that Tl =I- T2 • Therefore, there is no edge of the form 1,81 
or 1/34m+3 in any cycle of C. Now we define a new partial 4-cycle system (V, G*) in 
which G* = G\ ({ n, ,81, /32, /33, n}U {n, ,84i+1' /34i+2, /34i+3, n}U {I, /34i-1, /34i, ,84i+l, l})U 
({1,,84i+1,/34i+2,/34i+3, I} U {n,/34i-b,84i,,84i+l,n} U {l,/31,,82,/33, 1}), for 1 ::; i::; m. 
Let c* (i) denote the number of cycles in G* which contain a vertex i E V. Certainly, 
c*(l) = c(l) + 1, c*(n) = c(n) - 1, and c*(j) = c(j), for 2 ::; j :::; n - 1. Repetition of 
this process among all pairs of vertices produces the desired equitable partial 4-cycle 
system. 0 

We can also use Theorem 2.1 to prove the following theorems. 

Corollary 2.2 Let nand t be positive integers. An equitable partial 4-cycle system 
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of order n containing t 4-cycles exists if and only if 1 ~ t ~ M(4, n). 

Proof: Certainly, since M (4, n) is the number of 4-cycles in a maximum packing 
of Kn with 4-cycles, there cannot exist an equitable partial4-cycle system with more 
than M (4, n) 4-cycles, so 1 ~ t ~ M (4, n). Furthermore, there exists a partial4-cycle 
system of order n which contains t cycles for all values of t between 1 and M (4, n) 
since we can always start with a partial 4-cycle system with M(4, n) 4-cycles and 
arbitrarily throw out M(4, n) - t of these 4-cycles to form a partia14-cycle system of 
order n which contains t cycles. So by Theorem 2.1 there exists an equitable partial 
4-cycle system of order n which contains t 4-cycles if 1 ~ t ::; M (4, n). 0 

Theorem 2.1 also allows us to obtain a nice construction of equitable partial 
bipartite 4-cycle systems of Kn,n' 

Corollary 2.3 Let nand t be positive integers. If there exists a partial bipartite 
4-cycle system of Kn,n which contains t cycles, then there exists an equitable partial 
bipartite 4-cycle system of Kn,n which contains t cycles. 

Proof: Let (V, G) be a partial 4-cycle system of order 2n with t cycles on Kn,n, 
and again let c( i) denote the number of 4-cycles which contain a particular vertex i E 
V. We assume that (V, G) is not equitable. Suppose that the sets X = {I, ... , n} and 
Y = {n + 1, ... , 2n} form the partition of the vertices of Kn,n' Apply the technique 
in the proof of Theorem 2.1 separately to vertices in X until Ic(i) - c(j)1 ~ 1, for all 
i, j EX. Then apply the same technique to vertices in Y until I c( i) - c(j) I ~ 1, for 
all i, j E Y. Clearly, this gives an equitable partial bipartite 4-cycle system of Kn,n 
which contains t cycles. 0 

Now that we have constructed equitable partial 4-cycle systems and equitable 
partial bipartite 4-cycle systems, we proceed by considering equitable partial 5-cycle 
systems and equitable partial bipartite 6-cycle systems. We have the following the­
orem regarding equitable partial 5-cycle systems. 

Theorem 2.4 Let nand t be positive integers. If there exists a partial 5-cycle system 
oj order n which contains t cycles, then there exists an equitable partial 5-cycle system 
oj order n which contains t cycles. 

Proof: Let (V, G) be a partial 5-cycle system of order n which contains t cycles, 
and let c(i) denote the number of 5-cycles of G which contain vertex i E V. We 
suppose, without loss of generality, that c(l) ::; c(2) ::; .. , ~ c(n). If c(n) - c(l) ~ 1, 
then there is nothing to prove, so we assume that c(n) ~ c(l) + 2. 

The first goal is to form a partial 5-cycle system (V, G') which contains t cycles 
and in which Ic'(n) - c'(l)1 ~ 1 (where c'(i) denotes the number of 5-cycles in Of 
which contain vertex i E V). We do this by first forming a multigraph G with vertex 
set V(G) = V \ {I, n}. For each 5-cycle of the form 1, Xl, X2, X3, X4, 1, where Xl =/- n 
and X4 =/- n, we form the edge XIX4 in G and color it with the color 1. For each 
5-cycle of the form n, Yll Y2, Y3, Y4, n, where Yl =I- 1 and Y4 =/-1, we form the edge YIY4 

in G and color it with the color n. So in G, a particular pair i and j of vertices is 
joined by at most one edge colored 1 and by at most one edge colored n because the 
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2-paths i, 1, j and i, n, j occur in at most one 5-cycle of C. Furthermore, since the 
edge 1 i (resp. ni) occurs in at most one cycle of G, it follows that there is at most 
one edge colored 1 (resp. colored n) incident with each vertex i in G. Therefore, each 
vertex in G has degree at most 2, and the edges of G are properly 2-edge-colored. 
Now C may contain a cycle which contains the edge In, say 1, n, Zl, Z2, Z3, 1. If such 
a cycle exists, then there can be no edge in G colored 1 that is incident with Z3, and 
there can be no edge in G colored n that is incident with Zl. Otherwise, G would 
contain at least one of the edges nZl and 1z3 in more than one cycle .. 

Consider the components of G. Each vertex of G has degree at most 2, and G is 
properly 2-edge-colored, so each component must either be a doubled edge, an even 
cycle, or a path. Since c(n) 2:: c(l) + 2, the number of edges colored n exceeds the 
number of edges colored 1 by at least 2. Therefore, G must contain at least two 
paths of odd length which start and end with edges colored n. Suppose G contains 
the cycle 1, n, Zl, Z2, Z3, 1. Then one of the paths of odd length may contain Z3 as an 
endpoint, but at least one path does not. Notice also that any path which starts and 
ends with an edge colored n and which does not contain Z3 as an endpoint does not 
contain Zl, for each vertex along the path is incident with an edge colored n. Select 
such a path P = 0:'1, 0:'2, ... , 0:'2k. Switch colors along the edges of P so that it now 
starts and ends with an edge colored 1. We use this new coloring of G to define a 
new partial 5-cycle system which contains t cycles. 

We trace back the edges of the path P to the cycles of G from which they came. 
We form a new partial 5-cycle system (V, G') from (V, C) by modifying the cycles 
from which we produce the path P. On each of these cycles we perform a cycle 
switch by replacing 1 with nand n with 1 (see Figure 1). Notice that if nand 1 both 
appear in some cycle, say 1, a, n, b, c, 1, then a is adjacent to both band c in G, so if 
a is in the recolored path, then so are band c. Hence our coloring does not duplicate 
vertices in any cycle. We replace the cycle 1, a, n, b, c, 1 with the cycle n, a, 1, b, c, n 
(see Figure 2). After having performed the necessary cycle switches, the number of 
cycles containing vertex 1 will increase by one, and the number of cycles containing 
n will decrease by one. Each other vertex is contained in exactly the same number 
of cycles. 

For 2 ::; i ::; n 1, c'(i) = c(i), c'(I) = c(i) + 1 and c'(n) = c(n) - 1. Repetition 
of this process yields a partial 5-cycle system (V, G*) with t cycles in which Ic*(I)­
c* (n) I ::; 1 and in which c* (i) = c( i) for 2 ::; i ::; n - 1 (where c* (i) denotes the 
number of 5-cycles in C* which contain vertex v E V). Furthermore, repetition of 
the process on each other pair of vertices in V produces an equitable partial 5-cycle 
system which contains t 5-cycles. 0 

Corollary 2.5 Let nand t be positive integers. There exists an equitable partial 
5-cycle system of order n which contains t cycles if and only if 1 ::; t ::; M(5, n). 

Proof: Since M(5, n) is the number of 5-cycles in a maximum packing of Kn 
with 5-cycles, there cannot exist an equitable partial 5-cycle system with more than 
M(5, n) 5-cycles, so 1 ::; t ::; M(5, n). Furthermore, there exists a partial 5-cycle 
system of order n which contains t cycles for all values of t between 1 and M(5, n) 
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n n 

x y x y 

Figure 1: A cycle switch when the cycle contains exactly one of the vertices 1 and n 

n n 

b b 

c 1 c 1 

Figure 2: A cycle switch when the cycle contains both vertices 1 and n 

since we can always start with a partial 5-cycle system with M(5, n) 5-cycles and 
arbitrarily discard M(5, n) - t of these 5-cycles to form a partial 5-cycle system of 
order n which contains t cycles. So by Theorem 2.4 there exists an equitable partial 
5-cycle system of order n which contains t 5-cycles if 1 ~ t ~ M(5, n). 0 

Finally, we present a result concerning equitable partial bipartite 6-cycle systems. 

Theorem 2.6 Let nand t be positive integers. If there exists a partial bipartite 
6-cycle system of Kn,n which contains t cycles) then there exists an equitable partial 
bipartite 6-cycle system of Kn,n which contains t cycles. 

Proof: Let (V, C) be a partial bipartite 6-cycle system of Kn,n which contains 
t 6-cycles. We assume that (X = {I, 2, ... , n}, Y = {n + 1, n + 2, ... , 2n}) forms 
the bipartition of the vertex set of Kn,n' Let c( i) denote the number of 6-cycles 
in C which contain vertex i E V. We can assume without loss of generality that 
c(1) ~ c(2) :::; ... :::; c(n), that c(n + 1) ~ c(n + 2) :::; ... :::; c(2n), and that 
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c(l) ~ c(n) + 2. The goal is to form a partial bipartite 6-cycle system of Kn,n such 
that Ic(i) - c(j)1 ~ 1 for each i,j E V. 

We begin by forming a partial bipartite 6-cycle system in which Ic(i) - c(j)1 ~ 1 
for each i, j E X. Consider the vertices 1 and n. Now c(n) - c(l) 2: 2. Form a 
multigraph G with vertex set V(G) = Y. Place an edge ab in G if and only if a, 1, b 
or a, n, b is a 2-path contained in a cycle of O. If a, 1, b is contained in a 6-cycle in 0, 
then color the edge ab in G with the color 1, and if a, n, b is contained in a 6-cycle, 
then color the edge ab in G with the color n. Observe that neither a nor b can be 1 
or n, since both 1 and n occur in X. So, in particular, the distance between vertices 
1 and n will never be 3 in any cycle. So this graph G will have the same properties 
as the graph obtained when forming equitable partial 5-cycle systems. That is, edges 
in G which are formed from cycles containing both vertices 1 and n will be adjacent 
to each other on some path. Furthermore, the number of paths of odd length in G 
which begin and end with edges colored 1 will be at least 2 less than the number of 
paths of odd length which begin and end with edges colored n. As before, we choose 
one of these paths which begin and end with an edge colored n and switch the colors. 
Subsequently, we perform the appropriate cycle switches. Repetition of this process 
on all pairs of vertices in X and then on all pairs of vertices in Y gives the desired 
partial bipartite 6-cycle system. 

3 Open Questions 

It would be interesting to know if equitable cycle systems exist whenever non­
equitable systems exist. In particular, is there a method other than construction 
to show the existence of equitable cycle systems with cycle length 6 or more? An af­
firmative answer for this question could also settle the existence of equitable bipartite 
systems, but it is possible that their existence could be shown independently. 
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