Covering a Bipartite Graph with Cycles Passing through Given Edges

Hong Wang
Department of Mathematics
The University of Idaho
Moscow, Idaho, USA 83844

Abstract

We propose a conjecture: for each integer $k \geq 2$, there exists $N(k)$ such that if $G=\left(V_{1}, V_{2} ; E\right)$ is a bipartite graph with $\left|V_{1}\right|=\left|V_{2}\right|=n \geq N(k)$ and $d(x)+d(y) \geq n+k$ for each pair of non-adjacent vertices x and y of G with $x \in V_{1}$ and $y \in V_{2}$, then for any k independent edges e_{1}, \ldots, e_{k} of G, there exist k vertex-disjoint cycles C_{1}, \ldots, C_{k} in G such that $e_{i} \in E\left(C_{i}\right)$ for all $i \in\{1, \ldots, k\}$ and $V\left(C_{1} \cup \cdots \cup C_{k}\right)=V(G)$. If this conjecture is true, the condition on the degrees of G is sharp. We prove this conjecture for the case $k=2$ in the paper.

1 Introduction

Let k be a positive integer and let $G=\left(V_{1}, V_{2} ; E\right)$ be a bipartite graph with $\left|V_{1}\right|=$ $\left|V_{2}\right|=n \geq 2$. It is well known [1,3] that if $d(x)+d(y) \geq n+1+k$ for each pair of non-adjacent vertices x and y of G with $x \in V_{1}$ and $y \in V_{2}$, then for any forest F with at most k edges and consisting of vertex-disjoint paths of G, G has a hamiltonian cycle passing through all the edges of F. We propose the following conjecture.

Conjecture A For each integer $k \geq 2$, there exists $N(k)$ such that if $G=\left(V_{1}, V_{2} ; E\right)$ is a bipartite graph with $\left|V_{1}\right|=\left|V_{2}\right|=n \geq N(k)$ and $d(x)+d(y) \geq n+k$ for each pair of non-adjacent vertices x and y of G with $x \in V_{1}$ and $y \in V_{2}$, then for any k independent edges e_{1}, \ldots, e_{k} of G, there exist k vertex-disjoint cycles C_{1}, \ldots, C_{k} in G such that $e_{i} \in E\left(C_{i}\right)$ for all $i \in\{1, \ldots, k\}$ and $V\left(C_{1} \cup \cdots \cup C_{k}\right)=V(G)$.

If this conjecture is true, the condition on the degrees of G is sharp. To see this, let $G=(X, Y ; E)$ be a bipartite graph obtained from the complete bipartite graph $K_{n-1, n}$ by adding a new vertex x_{0} to $K_{n-1, n}$ such that $N_{G}\left(x_{0}\right)=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ where $x_{1}, x_{2}, \ldots, x_{k}$ are k vertices of $K_{n-1, n}$ whose degrees in $K_{n-1, n}$ are $n-1$. Then for each pair of non-adjacent vertices x and y of G with $x \in X$ and $y \in Y$, we have $x_{0} \in\{x, y\}$ and $d(x)+d(y)=n+k-1$. Let e_{1}, \ldots, e_{k} be k independent edges in G such that e_{i} is incident with x_{i} for all $i \in\{1, \ldots, k\}$ and $e_{1}=x_{0} x_{1}$. Clearly,
every cycle passing through e_{1} must contain at least three vertices in $\left\{x_{0}, x_{1}, \ldots, x_{k}\right\}$. Therefore G does not possess k vertex-disjoint cycles satisfying the requirement.

In this paper, we prove the conjecture for the case $k=2$. To state the result, let F be a graph obtained from $K_{4,4}$ by removing three independent edges from $K_{4,4}$. We prove the following:
Theorem B Let $G=\left(V_{1}, V_{2} ; E\right)$ be a bipartite graph with $\left|V_{1}\right|=\left|V_{2}\right|=n \geq 4$. Suppose $d(x)+d(y) \geq n+2$ for each pair of non-adjacent vertices x and y of G with $x \in V_{1}$ and $y \in V_{2}$. Then for any two independent edges e_{0} and e_{1} of G, G has two vertex-disjoint cycles C_{0} and C_{1} such that $e_{i} \in E\left(C_{i}\right)$ for each $i \in\{0,1\}$ and $V\left(C_{0} \cup C_{1}\right)=V(G)$, unless G is isomorphic to F.

We discuss only finite simple graphs and use standard terminology and notation from [2] except as indicated. Let G be a graph. For a vertex $u \in V(G)$ and a subgraph H of $G, N(u, H)$ is the set of neighbors of u contained in H, i.e., $N(u, H)=N_{G}(u) \cap$ $V(H)$. We let $d(u, H)=|N(u, H)|$. Thus $d(u, G)$ is the degree of u in G. For a subset U of $V(G), G[U]$ denotes the subgraph of G induced by U. Let e be an edge of G. An e-subgraph of G is a subgraph H of G such that $e \in E(H)$. If P is an e-path, we define $\sigma(e, P)=\min \left(\left|E\left(P^{\prime}\right)\right|,\left|E\left(P^{\prime \prime}\right)\right|\right)$ where P^{\prime} and $P^{\prime \prime}$ are two components of $P-e$. If $\sigma(e, P)=0$, we say e is an endedge of P. We use $l(C)$ and $l(P)$ to denote the length of a cycle C and the length of a path P, respectively. For a path P of an odd length, say $P=x_{1} x_{2} \ldots x_{2 q}$, we define $E_{0}(P)=\left\{x_{1} x_{2}, x_{2 q-1} x_{2 q}\right\} \cup\left\{x_{i} x_{i+1} \mid i=2,4, \ldots, 2 q-2\right\}$ and $E_{1}(P)=\left\{x_{j} x_{j+1} \mid j=3,5, \ldots, 2 q-3\right\}$, and moreover, let $r(e, P)=0$ if $e \in E_{0}(P)$ and $r(e, P)=1$ if $e \in E_{1}(P)$.

2 Lemmas

The following lemmas are Ore-type lemmas in bipartite graphs. The proofs of them can be found in or easily deduced from $[1,3,4]$. Let $G=\left(V_{1}, V_{2} ; E\right)$ be a given bipartite graph in the following.
Lemma 2.1 Let e be an edge and $P=x_{1} x_{2} \ldots x_{2 q}$ an e-path in G. Let $y \in V(G)-$ $V(P)$ such that $\left\{x_{2 q}, y\right\} \nsubseteq V_{i}$ for every $i \in\{1,2\}$. If $d\left(x_{2 q}, P\right)+d(y, P) \geq q+$ $1+r(e, P)$, then G has an e-path P^{\prime} such that $V\left(P^{\prime}\right)=V(P) \cup\{y\}$. Moreover, if $e \neq x_{1} x_{2}$, then P^{\prime} is a path from y to x_{1}.
Proof. Clearly, the lemma holds if $y x_{2 q} \in E$. So we may assume $y x_{2 q} \notin E$. As $d(y, P)>0$, it is also easy to see that if $e=x_{1} x_{2}$ and $x_{1} x_{2 q} \in E$, then the lemma holds. Hence we may assume that if $e=x_{1} x_{2}$, then $x_{1} x_{2 q} \notin E$. Let $I=\left\{x_{i+1} \mid x_{i} x_{2 q} \in\right.$ $E\}$. Then $|N(y, P) \cap I|=|N(y, P)|+|I|-|N(y, P) \cup I| \geq q+1+r(e, P)-q=$ $1+r(e, P)$. If $r(e, P)=0$ then there exists $x_{i+1} \in N(y, P) \cap I$. Clearly, $x_{i} x_{i+1} \neq e$. On the other hand if $r(e, P)=1$ then there exist i and j with $i \neq j$ such that $\left\{x_{i+1}, x_{j+1}\right\} \subseteq N(y, P) \cap I$. We may assume w.l.o.g. that $x_{i} x_{i+1} \neq e$. In either case, $P^{\prime}=y x_{i+1} x_{i+2} \ldots x_{2 q} x_{i} x_{i-1} \ldots x_{1}$ is the desired path.

Lemma 2.2 Let e be an edge and $P=x_{1} x_{2} \ldots x_{2 q}$ an e-path with $q \geq 2$ in G. If $d\left(x_{1}, P\right)+d\left(x_{2 q}, P\right) \geq q+1+r(e, P)$, then G has an e-cycle C with $V(C)=V(P)$.

Proof. Clearly, the lemma holds if $x_{1} x_{2 q} \in E$. So we may assume $x_{1} x_{2 q} \notin E$. As in the proof of Lemma 2.1, the condition implies that there exist x_{i} and x_{j} for some $\{i, j\} \subseteq\{1,3, \ldots, 2 q-1\}$ such that $\left\{x_{1} x_{i+1}, x_{2 q} x_{i}, x_{1} x_{j+1}, x_{2 q} x_{j}\right\} \subseteq E$ with $i \neq j$ if $r(e, P)=1$. As $x_{1} x_{2 q} \notin E$, we see that $e \notin\left\{x_{i} x_{i+1}, x_{j} x_{j+1}\right\}$ if $r(e, P)=0$. We may assume w.l.o.g. that $e \neq x_{i} x_{i+1}$ if $i \neq j$. Then $C^{\prime}=x_{1} x_{2} \ldots x_{i} x_{2 q} x_{2 q-1} \ldots x_{i+1} x_{1}$ is the desired cycle.

Lemma 2.3 Let e be an edge and C an e-cycle in G. Let $y \in V(G)-V(C)$. If $d(y, C) \geq 2$, then $G[V(C) \cup\{y\}]$ contains an e-cycle C^{\prime} such that $l\left(C^{\prime}\right)<l(C)$, unless $d(y, C)=2, N(y, C)=\left\{x^{\prime}, x^{\prime \prime}\right\}$ and C has a subpath $x^{\prime} z x^{\prime \prime}$ with z not incident with e.

Proof. Say $C=x_{1} x_{2} \ldots x_{2 q} x_{1}$ with $e=x_{1} x_{2 q}$. Let $\left\{x_{i}, x_{j}\right\} \subseteq N(y, C)$ such that $1 \leq i<j \leq 2 q$ and $x y \notin E$ for all $x \in V(C)-\left\{x_{i}, x_{i+1}, \ldots, x_{j}\right\}$. Clearly, $C^{\prime}=$ $x_{1} \ldots x_{i} y x_{j} \ldots x_{2 q} x_{1}$ is an e-cycle. If $l\left(C^{\prime}\right) \nless l(C)$, then $j=i+2$. This proves the lemma.

Lemma 2.4 Let e be an edge, C an e-cycle and P a path with two endvertices $u \in V_{1}$ and $v \in V_{2}$ in G such that $V(C) \cap V(P)=\emptyset$. Let $l(C)=2 q$. If $d(u, C)+d(v, C) \geq$ $q+1$, then G has an e-cycle C^{\prime} with $V\left(C^{\prime}\right)=V(C \cup P)$.

Proof. Let $C=x_{1} x_{2} \ldots x_{2 q} x_{1}$ with $e=x_{1} x_{2 q}$ and $x_{1} \in V_{1}$. The condition implies that $\left\{x_{i} v, x_{i+1} u\right\} \subseteq E$ for some $i \in\{1,3, \ldots, 2 q-1\}$. Then $x_{1} x_{2 q} x_{2 q-1} \ldots x_{i+1} u P v x_{i}$ $x_{i-1} \ldots x_{1}$ is the desired cycle.

3 Proof of the Theorem

Let $G=\left(V_{1}, V_{2} ; E\right)$ be a bipartite graph with $\left|V_{1}\right|=\left|V_{2}\right|=n \geq 4$ such that $d(x)+$ $d(y) \geq n+2$ for each pair of non-adjacent vertices x and y of G with $x \in V_{1}$ and $y \in V_{2}$. Suppose that there exist two independent edges e_{0} and e_{1} of G such that G does not have two vertex-disjoint cycles C_{0} and C_{1} with $e_{i} \in E\left(C_{i}\right)$ for each $i \in\{0,1\}$ and $V\left(C_{0} \cup C_{1}\right)=V(G)$. Then we shall prove that G is isomorphic to F.

Say $e_{1}=u v$. Clearly, $d(x, G-u-v)+d(y, G-u-v) \geq n+2-2=(n-1)+1$ for each pair of non-adjacent vertices x and y of $G-u-v$. Thus by Lemma 2.2, $G-u-v$ is hamiltonian. Hence $G-u-v$ has an e_{0}-cycle C. Choose an e_{0}-cycle C in $G-u-v$ such that

$$
\begin{equation*}
l(C) \text { is minimal. } \tag{1}
\end{equation*}
$$

Subject to (1), we choose C such that
The length of a longest path of $G-V(C)$ containing e_{1} is maximal.
Let P be a longest e_{1}-path in H. Subject to (1) and (2), we further choose C and P such that

$$
\begin{equation*}
\sigma\left(e_{1}, P\right) \text { is minimal. } \tag{3}
\end{equation*}
$$

Note that C does not have a chord by (1). Let $C=x_{1} x_{2} \ldots x_{2 s} x_{1}$ with $x_{1} \in V_{1}$ and $e_{0}=x_{1} x_{2 s}$, and $H=G-V(C)$. By our assumption on G, H does not have a hamiltonian cycle passing through e_{1}. Let $P=y_{1} y_{2} \ldots y_{m}$. W.l.o.g., say $y_{1} \in V_{1}$. We claim
Claim 1. $V(P)=V(H)$, i.e., $m=2 n-2 s$.
Suppose $m<2 n-2 s$. We distinguish two cases: m is even or m is odd.
Case a : m is even, say $m=2 t$.
Choose a vertex y_{0} from $H-V(P)$ such that $y_{0} \in V_{1}$. By Lemma 2.1 and (2), $d\left(y_{0}, P\right)+d\left(y_{2 t}, P\right) \leq t+r\left(e_{1}, P\right)$. Then we have $d\left(y_{0}, H\right)+d\left(y_{2 t}, H\right) \leq \frac{1}{2}|V(H)|+$ $r\left(e_{1}, P\right)$. It follows that $d\left(y_{0}, C\right)+d\left(y_{2 t}, C\right) \geq s+2-r\left(e_{1}, P\right)$. Suppose first that $d\left(y_{0}, C\right)+d\left(y_{2 t}, C\right) \geq s+2$. Then we have $d\left(y_{0}, C\right) \geq 2$. By Lemma 2.3 and (1), we must have $d\left(y_{0}, C\right)=2$, and consequently, $d\left(y_{2 t}, C\right)=s$. Furthermore, $N\left(y_{0}, C\right)=$ $\left\{x_{i}, x_{i+2}\right\}$ for some $i \in\{2,4, \ldots, 2 s-2\}$. Then $C^{\prime}=C-x_{i+1}+y_{0} x_{i}+y_{0} x_{i+2}$ is an e_{0}-cycle with $l\left(C^{\prime}\right)=l(C)$ and $P^{\prime}=P+y_{2 t} x_{i+1}$ is an e_{1}-path with $l\left(P^{\prime}\right)=l(P)+1$, contradicting (2). Hence we must have $r\left(e_{1}, P\right)=1$ and $d\left(y_{0}, C\right)+d\left(y_{2 t}, C\right)=s+1$. It follows that $t \geq 3$ and $d\left(y_{0}, P\right)+d\left(y_{2 t}, P\right)=t+1$. In particular, $d\left(y_{0}, P\right)>$ 0 . If G has an e_{1}-cycle C^{\prime} with $V\left(C^{\prime}\right)=V(C)$, then $C^{\prime}+y_{0}$ has an e_{1}-path P^{\prime} with $V\left(P^{\prime}\right)=V(P) \cup\left\{y_{0}\right\}$, contradicting (2). Therefore by Lemm 2.2, we have $d\left(y_{1}, P\right)+d\left(y_{2 t}, P\right) \leq t+1$. It follows that $d\left(y_{1}, C\right)+d\left(y_{2 t}, C\right) \geq n+2-t-1 \geq$ $s+2$. By Lemma 2.3 and (1), $d\left(y_{1}, C\right) \leq 2$ and $d\left(y_{2 t}, C\right) \leq 2$. We conclude that $d\left(y_{1}, C\right)=d\left(y_{2 t}, C\right)=s=2$. W.l.o.g., say $\left|V\left(P_{1}\right)\right| \leq\left|V\left(P_{2}\right)\right|$ where P_{1} and P_{2} are two components of $P-e_{1}$. Then $C^{\prime \prime}=C-x_{3}+y_{1}$ is an e_{0}-cycle with $l\left(C^{\prime \prime}\right)=l(C)$ and $P^{\prime \prime}=P-y_{1}+y_{2 t} x_{3}$ is an e_{1}-path with $l\left(P^{\prime \prime}\right)=l(P)$ and $\sigma\left(e_{1}, P^{\prime \prime}\right)=\sigma\left(e_{1}, P\right)-1$, contradicting (3).

Case b : m is odd, say $m=2 t+1$.
We have $y_{2 t+1} \in V_{1}$. Then either $e_{1}=y_{2 i-1} y_{2 i}$ or $e_{1}=y_{2 i+1} y_{2 i}$ for some $i \in$ $\{1,2, \ldots, t\}$. W.l.o.g., say the former holds. Then $r\left(e_{1}, P-y_{1}\right)=0$ and $\sigma\left(e_{1}, P-\right.$ $\left.y_{1}\right)>0$ if e_{1} is on $P-y_{1}$. Choose y_{0} from $H-V(P)$ such that $y_{0} \in V_{2}$. By Lemma 2.1 and (2), if $d\left(y_{0}, P-y_{1}\right)+d\left(y_{2 t+1}, P-y_{1}\right) \geq t+1$, then G has a path P^{\prime} from y_{0} to y_{2} such that $V\left(P^{\prime}\right)=V\left(P-y_{1}\right) \cup\left\{y_{0}\right\}$, and moreover, P^{\prime} is an e_{1}-path when e_{1} is on $P-y_{1}$. Thus $P^{\prime}+y_{2} y_{1}$ is an e_{1}-path, contradicting (2). Hence $d\left(y_{0}, P\right)+d\left(y_{2 t+1}, P\right)=d\left(y_{0}, P-y_{1}\right)+d\left(y_{2 t+1}, P-y_{1}\right) \leq t$. It follows that $d\left(y_{0}, C\right)+d\left(y_{2 t+1}, C\right) \geq n+2-t-d\left(y_{0}, H-V(P)\right) \geq s+3$. Thus $d\left(y_{0}, C\right) \geq 3$. By Lemma 2.3, this is in contradiction with (1). So the claim is true.

Let $t=n-s$. Then $m=2 t$ by Claim 1. We divide our proof into the following two cases: $r\left(e_{1}, P\right)=0$ or $r\left(e_{1}, P\right)=1$.
Case 1: $r\left(e_{1}, P\right)=0$.
By Lemma 2.2, we have $d\left(y_{1}, P\right)+d\left(y_{2 t}, P\right) \leq t$. Hence

$$
\begin{equation*}
d\left(y_{1}, C\right)+d\left(y_{2 t}, C\right) \geq s+2 \tag{4}
\end{equation*}
$$

If $e_{1} \neq y_{1} y_{2}$ and $e_{1} \neq y_{2 t-1} y_{2 t}$, then by Lemma 2.3 and (1), $d\left(y_{1}, C\right) \leq 2$ and $d\left(y_{2 t}, C\right) \leq 2$, and consequently, we obtain $d\left(y_{1}, C\right)=d\left(y_{2 t}, C\right)=s=2$ by (4).

Then we may assume w.l.o.g. that $\left|V\left(P_{1}\right)\right| \leq\left|V\left(P_{2}\right)\right|$ where P_{1} and P_{2} are two components of $P-e_{1}$. Replacing C and P by $C-x_{3}+y_{1}$ and $P-y_{1}+y_{2 t} x_{3}$, we obtain a contradiction with (3). Hence either $e_{1}=y_{1} y_{2}$ or $e_{1}=y_{2 t-1} y_{2 t}$. W.l.o.g., say $e_{1}=y_{2 t-1} y_{2 t}$.

If $t=1$, then $s \geq 3$ as $n \geq 4$. Clearly, for any two vertices $x \in V(C) \cap V_{1}$ and $y \in V(C) \cap V_{2}$ with $x y \notin E$, we have $n+2 \leq d(x)+d(y) \leq 6$, and consequently, this implies that $s=3$ and $\left\{x y_{2}, y y_{1}\right\} \subseteq E$. Thus G is isomorphic to F. Hence we may assume that $t \geq 2$.

We claim that $s=2$. If this is not true, i.e., $s \geq 3$, then $d\left(y_{1}, C\right)=2$ and $d\left(y_{2 t}, C\right)=s$ by (1), (4) and Lemma 2.3. Moreover, $N\left(y_{1}, C\right)=\left\{x_{i}, x_{i+2}\right\}$ for some $i \in\{2,4, \ldots, 2 s-2\}$. Then $C^{\prime}=C-x_{i+1}+y_{1} x_{i}+y_{1} x_{i+2}$ is an e_{0}-cycle with $l\left(C^{\prime}\right)=l(C)$ and $P^{\prime}=y_{2} y_{3} \ldots y_{2 t} x_{i+1}$ is an e_{1}-path with $r\left(e_{1}, P^{\prime}\right)=0$. Thus $y_{2} x_{i+1} \notin E$. By Lemma 2.3 and (1), $d\left(y_{2}, C^{\prime}\right) \leq 2$ and $d\left(x_{i+1}, C^{\prime}\right) \leq 2$. It follows that $d\left(y_{2}, P^{\prime}\right)+d\left(x_{i+1}, P^{\prime}\right) \geq t+1$. By Lemma $2.2, G\left[V\left(P^{\prime}\right)\right]$ has an e_{1}-cycle containing all the vertices of P^{\prime}, a contradiction. This shows $s=2$.

By (4), we have $d\left(y_{1}, C\right)=2$ and $d\left(y_{2 t}, C\right)=2$. Clearly, the theorem holds if $x_{3} y_{2} \in E$. Hence we may assume $x_{3} y_{2} \notin E$. If $x_{1} y_{2} \notin E$, then we obtain $d\left(y_{2}, P^{\prime}\right)+$ $d\left(x_{3}, P^{\prime}\right) \geq t+1$ with $P^{\prime}=y_{2} y_{3} \ldots y_{2 t} x_{3}$ and $r\left(e_{1}, P^{\prime}\right)=0$, and by Lemma 2.2, a contradiction follows. Hence we have $x_{1} y_{2} \in E$.

Let $2 a-1$ be the greatest integer in $\{1,3, \ldots, 2 t-3\}$ such that $G\left[\left\{y_{1}, y_{2}, \ldots, y_{2 a}\right\}\right]$ is isomorphic to $K_{a, a}, N\left(y_{i}, C\right)=\left\{x_{2}, x_{4}\right\}$ and $N\left(y_{i+1}, C\right)=\left\{x_{1}\right\}$ for all $i \in$ $\{1,3, \ldots, 2 a-1\}$. The above argument shows that $a \geq 1$. We claim $a=t-$ 1. On the contrary, assume $a<t-1$. Let $L=y_{2 a+1} y_{2 a+2} \ldots y_{2 t}$. Clearly, $x_{1} y_{2 i} y_{2 i-1} \ldots y_{2} y_{1} x_{2} x_{3} x_{4} x_{1}$ is an e_{0}-cycle in G for all $i \in\{1,2, \ldots, a\}$. Therefore $y_{2 t} y_{2 i-1} \notin E$ for all $i \in\{1,2, \ldots, a+1\}$. In particular, $G[V(L)]$ does not have a hamiltonian cycle passing through e_{1}. By Lemma $2.2, d\left(y_{2 a+1}, L\right)+d\left(y_{2 t}, L\right) \leq t-a$. As $d\left(y_{2 a+1}\right)+d\left(y_{2 t}\right) \geq t+4$, we see that $N\left(y_{2 a+1}, C\right) \supseteq\left\{x_{2}, x_{4}\right\} \cup\left\{y_{2}, y_{4}, \ldots, y_{2 a+2}\right\}$. Clearly, $C^{\prime \prime}=x_{1} x_{2} y_{1} \ldots y_{2 a+1} x_{4} x_{1}$ is an e_{0}-cycle in G. Let $P^{\prime \prime}=y_{2 a+2} y_{2 a+3} \ldots y_{2 t} x_{3}$. Then $G\left[V\left(P^{\prime \prime}\right)\right]$ does not have a hamiltonian cycle passing through e_{1}. In particular, $x_{3} y_{2 a+2} \notin E$. Since $r\left(e_{1}, P^{\prime \prime}\right)=0$, we obtain $d\left(y_{2 a+2}, P^{\prime \prime}\right)+d\left(x_{3}, P^{\prime \prime}\right) \leq t-a$ by Lemma 2.2. As $x_{3} y_{2 i} \notin E$ for all $i \in\{1,2, \ldots, a\}$, we see that $d\left(y_{2 a+2}, P\right)+d\left(x_{3}, P\right) \leq$ $t+1$, and consequently, $d\left(x_{3}, C\right)+d\left(y_{2 a+2}, C\right) \geq 3$. However, it is clear that $d\left(x_{3}, C\right)+d\left(y_{2 a+2}, C\right) \leq 3$. It follows that $d\left(y_{2 a+2}, P\right)+d\left(x_{3}, P\right)=t+1$ and $d\left(x_{3}, C\right)+d\left(y_{2 a+2}, C\right)=3$, and consequently, $N\left(y_{2 a+2}\right) \supseteq\left\{x_{1}, y_{1}, y_{3}, \ldots, y_{2 a+1}\right\}$. This is a contradiction to the maximality of a. This shows that $a=t-1$. If $t \geq 3$, then $x_{1} x_{4} y_{1} y_{2} x_{1}$ and $x_{3} x_{2} y_{3} y_{4} \ldots y_{2 t} x_{3}$ are the two desired cyles. Hence $t=2$. Clearly, we have two desired cycles if $x_{2} y_{3} \in E$. So $x_{2} y_{3} \notin E$. As $d\left(x_{2}\right)+d\left(y_{3}\right) \geq 6$, we see that $x_{4} y_{3} \in E$ and therefore G is isomorphic to F.
Case 2: $r\left(e_{1}, P\right)=1$.
Say $e_{1}=y_{2 a+1} y_{2 a+2}$ for some $2 a+1 \in\{3,5, \ldots, 2 t-3\}$. Then either $\sigma\left(e_{1}, P\right)=$ $2 a$ or $\sigma\left(e_{1}, P\right)=2 t-2 a-2$. W.l.o.g., say $\sigma\left(e_{1}, P\right)=2 t-2 a-2$. Let $C^{\prime}=$ $y_{2 a+1} y_{2 a+2} \ldots y_{2 t} y_{2 a+1}$ and $H^{\prime}=H-V\left(C^{\prime}\right)$. Then $G\left[V\left(C \cup H^{\prime}\right)\right]$ does not have a hamiltonian cycle passing through e_{0}. It is also easy to see that for every endvertex u of a hamiltonian path of H^{\prime}, u is not adjacent to a vertex of $C^{\prime}-\left\{y_{2 a+1}, y_{2 a+2}\right\}$ for
otherwise we would have an e_{1}-path Q with $V(P)=V(Q)$ and $\sigma\left(e_{1}, Q\right)<\sigma\left(e_{1}, P\right)$, contradicting (3).

Let $L=y_{1} y_{2} \ldots y_{2 a}$. We have $d\left(y_{1}, C^{\prime}\right) \leq 1$ and $d\left(y_{2 a}, C^{\prime}\right) \leq 1$. By Lemma 2.4, we have $d\left(y_{1}, C\right)+d\left(y_{2 a}, C\right) \leq s$. We claim that H^{\prime} is hamiltonian. This is obvious if $y_{1} y_{2 a} \in E$. If $y_{1} y_{2 a} \notin E$, then $d\left(y_{1}, L\right)+d\left(y_{2 a}, L\right) \geq t+s+2-s-2=$ t, and therefore by Lemma 2.2, H^{\prime} is hamiltonian. So the claim is true. Thus $d\left(y, H^{\prime}\right)=0$ for all $y \in V\left(C^{\prime}\right)-\left\{y_{2 a+1}, y_{2 a+2}\right\}$. If $d\left(y_{1}, L\right)+d\left(y_{2 t}, L\right) \geq a+1$, then there exists $i \in\{1,3, \ldots, 2 a-1\}$ such that $\left\{y_{1} y_{i+1}, y_{i} y_{2 t}\right\} \subseteq E$, and consequently, $P^{\prime}=y_{2 a} y_{2 a-1} \ldots y_{i+1} y_{1} y_{2} \ldots y_{i} y_{2 t} y_{2 t-1} \ldots y_{2 a+2} y_{2 a+1}$ is an e_{1}-path with $V\left(P^{\prime}\right)=V(P)$ and $0=\sigma\left(e_{1}, P^{\prime}\right)<\sigma\left(e_{1}, P\right)$, a contradiction. This shows $d\left(y_{1}, L\right)+d\left(y_{2 t}, L\right) \leq a$. It follows that $d\left(y_{1}, P\right)+d\left(y_{2 t}, P\right) \leq t+1$, and consequently, $d\left(y_{1}, C\right)+d\left(y_{2 t}, C\right) \geq s+1$. Similarly, we can show that $d\left(y_{2 a}, P\right)+d\left(y_{2 t-1}, P\right) \leq t+1$ and $d\left(y_{2 a}, C\right)+d\left(y_{2 t-1}, C\right) \geq$ $s+1$. In particular, we have obtained $d\left(y_{1}, C\right)>0$ and $d\left(y_{2 a}, C\right)>0$. By Lemma 2.3 and (1), $d\left(y_{2 t-1}, C\right)+d\left(y_{2 t}, C\right) \leq 4$. We obtain

$$
\begin{aligned}
2 a & \geq d\left(y_{1}, H^{\prime}\right)+d\left(y_{2 a}, H^{\prime}\right) \\
& \geq 2(s+t+2)-\left[d\left(y_{2 t-1}\right)+d\left(y_{2 t}\right)\right]-\left[d\left(y_{1}, C \cup C^{\prime}\right)+d\left(y_{2 a}, C \cup C^{\prime}\right)\right] \\
& \geq 2(s+t+2)-(2(t-a)+4)-(s+2) \\
& =2 a+s-2 .
\end{aligned}
$$

It follows that $s=2, d\left(y_{2 t-1}, C\right)+d\left(y_{2 t}, C\right)=4$ and $d\left(y_{1}, C\right)+d\left(y_{2 a}, C\right)=2$. Since $d\left(y_{1}, C\right)>0$ and $d\left(y_{2 a}, C\right)>0$, it is clear that if $y_{1} x_{4} \notin E$ or $y_{2 a} x_{1} \notin E$, then $G\left[V(C \cup L)\right.$ has a hamiltonian cycle containing e_{0}, a contradiction. If $\left\{y_{1} x_{4}, y_{2 a} x_{1}\right\} \subseteq$ E, then $x_{1} x_{4} y_{1} L y_{2 a} x_{1}$ and $C^{\prime}-y_{2 t-1} y_{2 t}+x_{3} y_{2 t}+x_{2} y_{2 t-1}$ are the two desired cycles. This proves the theorem.

Remarks. The following example shows $N(3) \geq 7$ if $N(3)$ exists. Let G be a bipartite graph obtained from $K_{6,6}$ with a bipartition $\left(\left\{x_{1}, \ldots, x_{6}\right\},\left\{y_{1}, \ldots, y_{6}\right\}\right)$ by removing $x_{3} y_{5}, x_{3} y_{6}, y_{3} x_{5}, y_{3} x_{6}$ and $x_{4} y_{4}$ from $K_{6,6}$. Clearly, $d(x)+d(y) \geq 9$ for each pair of non-adjacent vertices x and y of G with $x \in\left\{x_{1}, \ldots, x_{6}\right\}$ and $y \in\left\{y_{1}, \ldots, y_{6}\right\}$. But G does not contain three vertex-disjoint cycles passing through $x_{1} y_{1}, x_{2} y_{2}$ and $x_{3} y_{3}$, respectively. Hence $N(3) \geq 7$.

As for general finite simple graphs, we proposed a conjecture in [5] and proved it for the case $k=2$.

Conjecture C [5] For each integer $k \geq 2$, there exists $N(k)$ such that if G is a graph of order $n \geq N(k)$ and $d(x)+d(y) \geq n+2 k-2$ for each pair of non-adjacent vertices x and y of G, then for any k independent edges e_{1}, \ldots, e_{k} of G, there exist k vertex-disjoint cycles C_{1}, \ldots, C_{k} in G such that $e_{i} \in E\left(C_{i}\right)$ for all $i \in\{1, \ldots, k\}$ and $V\left(C_{1} \cup \cdots \cup C_{k}\right)=V(G)$.

Moreover, we know that if this conjecture is true, then the condition on the degrees of G is sharp.

Note added in the proof. Conjectures A and C were verified recently for $k=3$. However, the verification is more tedious than the above proof.

4 References

[1] C. Berge, Graphs, Elsevier Science Publishers B.V., Amsterdam (1985), 200-217. [2] B. Bollobás, Extremal Graph Theory, Academic Press, London(1978).
[3] J.A. Bondy and V. Chvátal, A method in graph theory, Discrete Mathematics, 15(1976), 111-135.
[4] O. Ore, Note on Hamilton circuits, Amer. Math. Monthly, 67(1960), 55.
[5] H. Wang, Covering a graph with cycles passing through given edges, Journal of Graph Theory, 26(1997), 105-109.

