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Abstract 

In this paper, we prove that every odd primitive graph must contain two 
vertex disjoint odd cycles. We also characterize a family of odd primitive 
graphs whose exponent achieves the upper bound. 

We follow the notation and terminology of Bondy and Murty [1], unless otherwise 
stated. A digraph D is said to be primitive if there exists a positive integer k such 
that for each ordered pair of vertices u, v there is a directed walk of length k from 
vertex u to vertex v in D. The smallest such integer k is called the exponent of D, 
denoted by 1(D). A primitive digraph is said to be odd primitive if its exponent is 
odd. It is well known that a digraph is primitive if and only if it is strongly connected 
and the greatest common divisor of the lengths of all its directed cycles is one. 

In this paper, we consider only symmetric digraphs without multiple edges, which 
we will call graphs. Let G be a graph. The odd girth of G is the length of a shortest 
odd cycle in G and is denoted by go(G). For two vertices u, v of G, we let 1CU, v) 
denote the smallest positive integer k such that there is a walk of length t from u to 
v in G for all t ;::: k. Obviously, if G is primitive, then 1CG) = maXu,vEV(G)'"Y(U, v). 
The basic properties of a primitive graph and its exponent given in the following 
propositions are well known. 

Proposition 1 [3]. A graph is primitive if and only if it is connected and contains 
an odd cycle. 
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Proposition 2 [2]. Let G be a primitive graph. If there are two walks from vertex 
u to vertex v with odd length kl and even length k2 respectively, then 

The following theorem on primitive graphs is due to J.Z. Wang and D.J. Wang 
[4]. 

Theorem 3 [4]. The set of exponents of all primitive graphs with order n and all 
odd girth go is 

{go - 1, go, ... , 2n - go 1} - S 

where S is the set of zero and all odd integers s with n go + 1 ::; s ::; 2n - go - 1. 

Our objective in this paper is to study the structural properties of odd primitive 
graphs. For convenience, we give some further definitions and notation. The carte­
sian product X x Y of two graphs is the graph which has vertex-set V(X) x V(Y) 
and two vertices (Xl, Yl), (X2' Y2) of X x Y adjacent whenever either Xl = X2 and 
YIY2 E E(Y) or Yl = Y2 and XIX2 E E(X). A v v'-lollipop is the graph obtained 
by taking the union of a cycle C and a v - v' path P such that C n P = {v'}. Clearly, 
PuC uP is a walk from v to v. For a walk W, we will denote its length by l(W). 
Our main results are the following theorems. 

Theorem 4. Let G be an odd primitive graph. Then G contains two vertex disj.oint 
odd cycles. 

Proof. Assume that G is an odd primitive graph. Then there exists a pair of vertices 
u, v such that ')'( G) = ')'( u, v) and thus there are no walks of length ')'( G) -1 from u to 
v in G. Let Wu and Wv be walks of the shortest odd lengths from vertex u to vertex u 
and from vertex v to vertex v, respectively. Then the lengths of Wu and Wv are both 
not greater that ')'( G). Since any walk of odd length from a vertex of G to itself must 
contain an odd cycle, we can assume that Wu = Pu U Cu U Pu is an u - u' -lollipop 
and Wv Pv U Cv U Pv is a v - v'-lollipop. Since both l(Wu) and l(Wv) are odd, 
Cu and Cv are two odd cycles in G. Next, we show that Cu n Cv = 0. Otherwise, 
let x E Cu n Cv. If Cu and Cv are the same cycle, then u' and v' divide Cu into two 
parts, C~ and C~ say (possibly, u' = v') and so Pu U C~ U Pv and Pu U C~ U Pv are two 
walks from vertex u to v whose lengths have different parity. We apply Proposition 
2 to obtain that 

')'( u, v) < max{l(Pu U C~ U Pv), l(Pu U C; U Pv)} - 1 

< l(Pu U Cu U Pv) - 1 

< I(Wu ) + l(Wv) _ 1 
2 

< ')'(G) - 1, 

contradicting the assumption. Hence Cu =f. Cv' Then x and u' divide Cu into two 
parts C~ and C~, x and v' divide Cv into two parts C~ and C~. It is seen easily that 
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either Pu U C~ u C~ U Pv and Pu U C~ u C~ U Pv are both even or Pu U C~ U C~ U Pv 
and Pu U C~ U C~ U Pv are both even. Since 

we have 
min{l(Pu U C~ U C~ U Pv), l(Pu U C~ U C~ U pvn :::; ,(0), 

and similarly, 

Therefore, one of the four walks from u to v has even length at most ,(0) - 1 and 
hence there is a walk of length ,(0) - 1 from u to v in 0, a contradiction. Thus 
Cu n Cv = 0. This completes the proof of the theorem". 0 

Corollary 5. Let G be an odd primitive graph of order n. Then go(O) ~ [~]. 

Corollary 6. Let G be a primitive graph. If G contains an unique odd cycle, then 
,( 0) is even. 

We shall next give a characterization of the primitive graphs of order n and odd 
girth ~ whose exponent is ~. It follows from Theorem 3 that ~ is the maximum value 
possible for the girth of such a graph. 

Theorem 7. Let 0 be an odd primitive graph of order nand go(O) =~. Then 
,( G) = ~ if and only if 

V(O) = V(C~ +e+C~) = V(C~ x Pd and E(C~ +e+C~) ~ E(O) ~ E(C~ x PI)' 

Proof. Assume that 0 is an odd primitive graph of order nand go( 0) = ~ and 
,(0) = ~. So n == 2 (mod 4). Since 0 is connected, it follows from Theorem 4 that 
o contains a spanning subgraph isomorphic to C~ +e+C~,the graph obtained from 
two vertex disjoint cycles C~ and C~ by adding an edge e with one end in C~ and 
one end in C~. Since go(O) = ~, each cycle of length ~ contains no chord edge. Let 
C1 = C~ and C2 = C~. We denote by [C1 , C2 ] the set of edges with one end in C1 

and the other in C2. For two vertices u, v of Ci, 1 ~ i ~ 2, we denote by dCi (u, v) 
-the distance between" u and v in Ci . 

Claim 1. ,(C~ + e + C~) =~. 
Let e = C1C2 with Ci E Ci, i = 1,2. By the definition, it is easy to check that 

,(C1, C2) = ~. Hence in order to show this claim, it suffices to prove that 

,(Cl, C2) = max{,(u, v)lu, v E V(C~ + e + C~)}. 

Let u, v E V(O). If u and v are either both in C1 or both in C 2 , then we see easily 
that there are two paths from u to v whose lengths have different parity and are both 
not exceeding ~. Thus we apply Proposition 2 to obtain that ,(u, v) < ~ = ,(Cl, C2). 
Assume that u E C1 and v E C2 • Then u and C1 divide C1 into two parts C~ and Cf, 
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v and C2 divide C2 into two parts C~ and C~. Without loss of generality, suppose 
that 

l(C~) = min{I(CD, I(C~/), I(C~), I(C;)}. 

Notice that C~ U C~ + e and C~ U C~ + e are two walks from U to v whose lengths 
have different parity. Hence it follows from Proposition 2 that 

'Y(u,v):::; max{I(C~UC~+e),I(C~UC~+e)}-l:::; I(C~UC;+e)-l:::; i:::; 'Y(CI, C2)' 

This establishes the claim. 

Claim 2. For any two edges el = UlVl, e2 = U2V2 E [Cl, C2], we have dCl (Ul' U2) = 
dC2 ( VI, V2) . 

Suppose on the contrary, that dCl (Ul' U2) =/:- dC2 (Vl, V2)' Then we shall prove the 
contradiction that 'Y( G) < ~. Let u, v be any two vertices of G. If U and v are 
either both in C l or both in C2 , then we see easily that there are two paths from 
U to v whose lengths have different parity and both are not exceeding ~. Thus we 
apply Proposition 2 to obtain that ')'(u, v) < ~. Next, assume that U E C l and 
v E C2. Since dCl (Ul,U2) =/:- dC2 (Vl,V2), either we have dC1(u,Ul) =/:- dC2 (V,Vl) 
or dCl (u, U2) :/= dC2 (v, V2)' Thus we may assume without loss of generality that 
dCl (u, Ul) < dC2 (v, vd. Then it is easy to see that there exist two walks from vertex U 
to vertex v with lengths dCl (U, ul)+dc2 (v, vl)+l and dCl (U, ur)+I(C2)-dc2 (v, vl)+l, 
respectively. Since 1(C2) is odd, dCl (u, Ul) + dC2 (V, VI) + 1 and dCl (u, Ul) + l(C2) -
dC2 (v, VI) + 1 have different parity and hence, by Proposition 2 we obtain 

'Y(u,v) < max{dCl(u,Ul) +dC2 (v,Vl) + 1,dcl (U,Ul) + l(C2) - dC2 (V, VI) + 1}-1 

< dCl (U, Ul) + I(C2) - dcz(v, vr) 
n 

< l(C2) = 2' 

Thus it follows that ')'(G) :::; maxu,VEV(G) {')'(u, v)} < ~. Therefore, we have the desired 
contradiction. This proves Claim 2. 

Since G contains a spanning subgraph isomorphic to C ~ + e + C~, by Claims 1 
and 2, it follows that 

V(G) = V(C]' +e+C~) = V(C~ x PI) and E(C]' +e+C~) ~ E(G) ~ E(C]' x PI)' 

Conversely, suppose that G satisfies the hypothesis of the theorem. Then we see 
easily that 

')'(C]' x PI) :::; ')'(G) :::; ')'(C]' + e + C~). 
It is easy to show that ')'(C~ xPd = ~,and then by Claim 1, it follows that ')'(G) = ~. 
The proof of the theorem is complete. 0 
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