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Abstract 

The problem of decomposing the block intersection graph of a Steiner 
triple system into triangles is considered. In the case when the block 
intersection graph has even degree, this is completely solved, while when 
the block intersection graph has odd degree, removal of some spanning 
subgraph of odd degree is necessary before the rest can be decomposed 
into triangles. In this case, some decompositions are presented when the 
original Steiner triple system can be "triangulated", that is, can have its 
triples partitioned into sets of three so that any two of the three intersect 
but so that there is no point common to all three triples. The existence 
of a single parallel class in the Steiner triple system is also assumed for a 
few cases. 

1 Introduction 

A Steiner triple system of order n, STS( n), is a pair (V, B) where V is the vertex 
set of a complete graph Kn of order nand B is a set of triangles, i.e. 3-cycles, which 
partition the edge-set of Kn. We shall refer to the triangles in such a decomposition as 
triples. We shall also reserve the use of the word triple exclusively here for members 
of the block set B of a STS. 

The block intersection graph of a Steiner triple system (V, B), denoted by 
BIG(STS(n)) for short, is a graph with the triples in B being the vertices of the 
graph, and with an edge joining two of its vertices if and only if the corresponding 
triples contain a common point. Since a STS(n) has replication number (n - 1)/2, 
any BIG(STS(n)) is clearly regular of degree 3((n - 1)/2 1), that is, 3(n - 3)/2. 
Moreover, each point in V will correspond to a unique clique in the BIG(STS(n)), 
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and any two of these n cliques will intersect in precisely one vertex. (For graph 
theory terminology used here, such as clique, see for instance Bondy and Murty [1].) 

Henceforth it is only the n cliques arising in this way that we are interested in, 
so we exclude the case n = 7 and also ignore any cliques arising in a BIG from 
subsystems of order 7 in the STS. Of course the BIG of the STS(7) can trivially be 
decomposed into triangles, because BIG(STS(7)) is K7! Note that each of these n 
cliques is of size equal to the replication number of the STS(n), namely (n - 1)/2. 

When the order n of the STS is not important, we shall frequently refer to the 
block intersection graph of a STS(n) as merely the BIG. 

In [2], various partitions of the triples in a STS( n) into small configurations are 
considered. In particular, one such is a "triangulation" of a STS(n), which is a 
partition of the triples into sets of three, any two of the three intersecting, but with 
no point common to all three triples. (And if the STS(n) = (V, B) has IBI not 
divisible by three, then either one or two triples are omitted from the partition, 
depending upon whether IBI is 1 or 2 (mod 3).) Thus three triples of the form 

{a,b,d}, {a,c,e}, {b,c,j} 

form a "triangle" in a possible triangulation, where the points a, band c are each 
in two of the three triples. Henceforth when we use the term "triangle" in quotes, 
we shall always mean such a set of three triples. It is still an open conjecture as to 
whether any STS( n) may be triangulated; certainly there exists a STS( n) for each 
admissible n == 1 or 3 (mod 6) which can be triangulated (see [2, 4]). 

Such a triangulation of a STS (n) will correspond to a parallel class of triangles 
in the BIG(STS(n)). However, any triangle in a BIG(STS(n)) does not necessarily 
correspond to such a "triangle" consisting of three triples (*). For instance, three 
triples of the form 

{a,b,c}, {a,d,e}, {a,j,g} 

will also correspond to a triangle in the BIG(STS( n)), although these three triples 
form a "3-windmill" and not a "triangle", using the terminology in [2]. 

In this paper we consider the problem of decomposing the BIG(STS(n)), for any 

STS(n), into triangles. The case when the BIG has even degree is completely dealt 
with here. When the BIG has odd degree, clearly a spanning subgraph of odd degree 
needs to be removed first. Depending upon the number of edges the BIG contains, 
this spanning subgraph is either a I-factor, or it has one edge more than a I-factor 
(and is usually denoted by T for tripole), or else two edges more than a 1-factor. 
Following standard terminology, we refer to such a minimal set of unused edges in 
our BIG decomposition into triangles as the leave. The leaves other than a I-factor 
are given in the following figures. Note that there are three spanning subgraphs of 
odd degree having two edges more than a I-factor; we denote these by Zl, Z2 and Z3. 
In these cases with nonempty leave, our results depend upon certain properties, such 
that the STS( n) has a partition into "triangles", that is, is able to be triangulated. 
However, we conjecture that such extra requirements are not necessary. 
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The following table lists the expected leave in the BIG in all cases. Note that 

when the BIG is of odd degree, we work modulo 36 in order to take account of the 
clique sizes and the different expected leaves. 

order n of the clique size, number of edges in BIG expected 

underlying STS (n-l)/2 or in BIG - F leave in BIG 

3 (mod 12) 1 (mod 6) o (mod 3) 0 
7 (mod 12) 3 (mod 6) o (mod 3) 0 
1 (mod 36) o (mod 6) o (mod 3) F 

9 (mod 36) 4 (mod 6) o (mod 3) F 

13 (mod 36) o (mod 6) 2 (mod 3) Zi 
21 (mod 36) 4 (mod 6) 1 (mod 3) T 

25 (mod 36) o (mod 6) 1 (mod 3) T 

33 (mod 36) 4 (mod 6) 2 (mod 3) Zi 

2 When the BIG has even degree 

Since the BIG(STS(n)) is regular of degree 3(n - 3)/2, and since n == 1 or 3 (mod 
6), the BIG has even degree precisely when n == 3 or 7 (mod 12). In this case we 
have the following easy result: 
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Theorem 1 When n == 3 or 7 (mod 12), the block intersection graph of any STS(n) 
can be decomposed into triangles. 

Proof Note first that the number of edges in the BIG is one half the sum of the 
degrees, that is, 

When n == 3 or 7 (mod 12), this is always a multiple of 3, and so the numerical 
conditions are right for a decomposition of the BIG into triangles. 

Furthermore, the size of each clique is (n - 1)/2, which is 1 or 3 (mod 6) when 
n == 3 or 7 (mod 12). Thus each separate clique is the correct order for a STS to be 
placed on it. Since any two cliques meet in only one point, we may do this, and thus 
obtain a decomposition of the whole BIG into triangles. 0 

3 When the BIG has odd degree 

In this case the order n of the underlying STS is 1 or 9 (mod 12). We work modulo 
36 in order to take account of the different expected leaves and the sizes of the n 
cliques; see the table in the previous section. 

Note that a maximum packing of a complete graph (such as a clique!) of size 0 
(mod 6) with triangles has leave a I-factor, whereas a maximum packing of one of 
size 4 (mod 6) has leave a tripole T (a spanning subgraph of odd degree with one 
edge more than a I-factor). We shall refer to the vertex of degree 3 in a tripole as 
the head of the tripole. 

Lemma 1 If a STS(n) with n == 1 (mod 36) can be triangulated, then its BIG can 
be decomposed into triangles with leave a i-factor. 

Pro of Take a triangulation of the STS. Since n 1 (mod 36), the number of triples 
is 0 (mod 3), and so a triangulation uses all triples in the STS. For each "triangle" 
in the triangulation, such as 

{a,b,d}, {a,c,e}, {b,c,f}, 

place the three edges between the three vertices {a, b, d}, {a, c, e} and {b, c, f} of 
the BIG, forming a triangle in the packing of the BIG. Note that since these three 
triples are in one "triangle" of the assumed triangulation, the resulting triangle in 
the BIG packing has its three edges in three different cliques (namely, the a-clique, 
the b-clique and the c-clique for the "triangle" (*)). 

Note that the triangulation of the STS yields a single parallel class of triangles in 
the BIG, with each triangle having its edges lying in three different cliques. In each 
clique these edges induce a matching, which we extend to a I-factor in each clique. 
The remaining edges of the cliques are then packed by triangles within each clique. 
(Each clique has size 0 (mod 6) so the leave in each clique is a I-factor.) Naturally we 
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do this so that all the edges from the triangulation occur in these clique I-factors; we 
can do this precisely because each triangle arising from the triangulation has its edges 
in three different cliques. Taken together, the n clique I-factors would now produce 
a 3-regular leave (because each vertex of the BIG is in three cliques). However, we 
may reduce this leave from a 3-factor to a I-factor, as required, by including in our 
decomposition the triangles induced by the triangulation of the STS. 0 

Notice that a STS( n) with a triangulation is known to exist for each n == 1 or 3 
(mod 6) [4]. Thus Lemma 1 applies to a non-empty set of STS (as do Lemmata 2 
and 3 which follow). 

Lemma 2 If a STS(n) with n == 25 (mod 36) can be triangulated, then its BIG can 
be decomposed into triangles with leave a tripole. 

Proof In this case each clique of the BIG again has size 0 (mod 6). But the number 
of triples in a STS(n) with n == 25 (mod 36) is 1 (mod 3) and so in a supposed 
triangulation of a STS( n), one triple (say {x, y, z}) is unused and does not appear 
in any "triangle". Nevertheless, if we repeat the construction described in Lemma 1 
in the case n == 1 (mod 36), we obtain a suitable packi~g of the BIG with triangles, 
and with leave a tripole T; the head of the tripole is the vertex corresponding to the 
triple {x, y, z} which does not appear in any "triangle" of the triangulation of the 
STS(n). 0 

Lemma 3 If a STS( n) with n == 13 (mod 36) can be triangulated so that the two 
unused triples are disjoint, then its BIG can be decomposed into triangles with leave 
Zl. 

If a STS(n) with n == 13 (mod 36) can be triangulated so that the two unused 
triples share a common point, then its BIG can be decomposed into triangles with 
leave Z2. 

Finally, if a STS(n) with n == 13 (mod 36) can be triangulated so that the two 
unused triples share a common point, and also with the triangulation satisfying a 
certain extra condition (P), then its BIG can be decomposed into triangles with leave 
Z3. 

Proof The clique size of the BIG is 0 (mod 6) and so a packing of a clique 
with triangles has individual leave for that clique being a I-factor. However, a 
triangulation of a STS( n) in this case omits two of the triples, since the number of 
triples in a STS(n) with n == 13 (mod 36) is 2 (mod 3). If the two triples missed 
by the triangulation of the STS contain no common point, (say triples {x, y, z} and 
{u, v, w}), then following the construction described in Lemma 1 above, the vertices 
in the BIG labelled by {x, y, z} and {u, v, w} will remain with degree 3, while every 
other vertex in the BIG will have its degree dropped to one, since every other triple 
of the STS is in some "triangle" of the assumed triangulation of the STS. Thus the 
overall leave in the BIG will be Zl in this case. 

Now suppose that the two triples missed by the triangulation share a point; say 
they are {x,y,z} and {x,u,v}. When packing the x-clique with triangles, provided 
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we choose the edge between vertex {x, y, z} and vertex {x, u, v} to be an edge of the 
I-factor leave for the x-clique packing, the overall leave in the BIG, after including 
the triangles from the triangulation in the BIG packing, will be Z2, with vertices 
{x, y, z} and {x, u, v} each having degree 3, and with these vertices of the BIG being 
joined by an edge in the leave. 

Finally we need to show that the leave Z3 can also be achieved. 
Suppose that the assumed triangulation of the STS has the two triples of the STS 

which do not occur in any "triangle" of the triangulation sharing a common point. 
Let these triples be {x,y,z} and {x,u,v}. Moreover, suppose that the triangulation 
has property (P), that is, assume that one of the following holds: 

• the triple {y, u, *} is in a "triangle" of the triangulation in which y occurs only 
once, and the triple of the form {z, u, *} is in a different "triangle" in which z 
occurs only once; 

• the triple {y, v, *} is in a "triangle" of the triangulation in which y occurs only 
once and the triple of the form {z, v, *} is in a different "triangle" in which z 
occurs only once; 

., the triple {y, u, *} is in a "triangle" of the triangulation in which u occurs only 
once and the triple of the form {y, v, *} is in a different "triangle" in which v 
occurs only once; 

.. the triple {z, u, *} is in a "triangle" of the triangulation in which u occurs only 
once and the triple of the form {z, v, *} is in a different "triangle" in which v 
occurs only once. 

The above four possibilities are all isomorphic, so we only need consider one of 
them. We deal with the first of the above possibilities. 

First suppose that a "triangle" in the triangulation of the STS consists of the 
triples {a,b,c}, {a,d,e} and {b,d,f}. Then we say that the vertex in the BIG 
corresponding to the triple {a, b, c} is not free in the a or b-cliques, but is free in 
the c-clique. This means that we have the freedom to choose which vertex (triple) is 
paired with {a, b, c} in the I-factor within the c-clique, but we have no such choice 
in the a-clique or the b-clique. 

Now consider the y-clique. When picking the I-factor leave in here, the triple 
{y, u, *} is free to be paired with any other triple containing y that is free in the 
y-clique. Similarly, in the z-clique, the triple {z, u, *} can be paired with any other 
free triple in the z-clique when we choose the I-factor leave in the z-clique. 

Moreover, note that the triples {x,y,z} and {x,u,v} are totally free in all three 
of their cliques, since they are not in any "triangles" of the assumed triangulation. 
So, in the x-clique, we pair {x, y, z} with {x, u, v}, in the y-clique we pair {x, y, z} 
with {y, u, *}, and in the z-clique we pair {x, y, z} with {z, u, *}. 

If we now proceed as described above, we would obtain a Z2 leave with {x, y, z} 
and {x,u,v} being the vertices of degree 3, joined to each other, and with {x,y,z} 
also joined to {y, u, *} and {z, u, *} (see Figure 1). But note that the triples {y, u, *}, 
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{z, u, *} and {x, u, v} all lie in the u-clique, and so might form a triangle in that 
clique, in which case we could trade the edges of this triangle with some of the edges 
of the Z2 leave and obtain a Z3 leave with vertex (triple) {x, u, v} of degree 5. (See 
Figures 2 and 3.) 

.411l1li 

Figure 1 

l1li l1li l1li 

Figure 2 

81 .. .. 

Figure 3 
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We now consider when the triples {y,u,*}, {z,u,*} and {x,u,v} can indeed 
form a triangle, which would thus permit the trade used to obtain the Z3 leave. The 
triple {x, u, v} is free in the u-clique, while {y, u, * } and {z, u, *} appear in different 
"triangles" of the triangulation. So these three triples can be paired, in the I-factor 
leave within the u-clique, with three other triples. When we pack the u-clique with 
triangles, we are free to choose the first triangle in the packing, provided the three 
triples forming this triangle are on distinct edges of the I-factor. With the triples 
{y, u, *}, {z, u, *} and {x, u, v} being on separate edges of the I-factor, we may choose 
the first triangle of the packing so that it contains these three triples. 

Thus the trade from Z2 to Z3 is indeed possible when the triangulation possesses 
property (P). 0 

Example We now present an example which shows that each of the three possible 
leaves can indeed be achieved. Consider the cyclic STS(13) formed by the starter 
set {{O, 1,4}, {a, 2, 7}}. One possible triangulation of this STS is yielded by the 
following "triangles": 

{{O,1,4},{1,2,5},{11,O,5}} 
{{5,7,12},{6,7,lO},{lO,12,4}} 

{{2,3,6},{3,4,7},{0,2,7}} 
{{6,8,0},{8,9,12},{9,10,0}} 

{{1,3,8},{3,5,lO},{4,5,8}} 
{{7,8,11},{7,9,1},{9,11,3}} 
{{2,4,9},{4,6,11},{5,6,9}} 

{{12,1,6},{10,11,1},{11,12,2}} 

The unused triples in the above triangulation are {12, 0, 3} and {8, 10, 2}, and so this 
triangulation will yield a Zl leave. 

A second possible triangulation is yielded by the following "triangles": 

{{O,1,4},{1,2,5},{11,0,5}} 
{{5,7,12},{6,7,10},{10,12,4}} 

{{2,3,6},{3,4,7},{0,2,7}} 
{{6,8,0},{8,9,12},{9,10,0}} 

{{1,3,8},{3,5,lO},{4,5,8}} 
{{7,8,11},{7,9,1},{9,11,3}} 
{{2,4,9},{4,6,11},{5,6,9}} 

{{8,10,2},{10,11,1},{11,12,2}} 

The unused triples in the above triangulation are {12, 0, 3} and {12, 1, 6}. Since the 
two unused triples have a point in common, we obtain a Z2 leave when the edge 
between these two triples comprises part of the I-factor leave obtained by extending 
the matching induced in the 12-clique. 

This second triangulation we now use to also obtain a Z3 leave. Notice that the 
triple {I, 3, 8} is in a "triangle" in which the point 1 occurs exactly once and that the 
triple {2, 3, 6} is in a "triangle" in which the point 6 occurs exactly once. Hence the 
first condition listed for property P is satisfied, where u = 3, v = 0, x = 12, Y = 1 
and z = 6, and thus we can obtain a Z3 in which the triple {12, 3, O} has degree 5. 

For the remaining cases, in which n == 9, 21, 33 (mod 36), we note that n == ° (mod 
3) and so parallel classes of triples might exist for the STS in question. (However, it 
is known that for instance a parallel-class-free STS of order 21 exists [3].) We obtain 
decompositions of the BIG of those STS which have both a single parallel class of 
triples and also an accompanying set T of "triangles" which satisfy the following 
criteria: 
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• when n == 9 (mod 36), each triple not in the parallel class is contained in exactly 
one "triangle" of T; 

• when n == 21 (mod 36), all but one triple not in the parallel class are contained 
in exactly one "triangle" of T; 

• when n == 33 (mod 36), all but two triples not in the parallel class are contained 
in exactly one "triangle" of T; and 

.. each triple in the parallel class is contained in exactly four "triangles" of T, in 
such a way that among the four corresponding triangles in the BIG, the eight 
edges incident with the triple of the parallel class are partitioned such that 
three are in one of the triple's three cliques, three are in a second clique and 
two are in the third clique. 

We call such a parallel class and accompanying set of "triangles" a pseudo-triangu
lation. 

Claim If a STS( n) possesses a pseudo-triangulation, then n ?: 21. 

Proof Since the STS has a parallel class, necessarily n == 0 (mod 3). The number 
of triples in the STS is n(n - 1)/6, of which n/3 are in the assumed parallel class of 
the pseudo-triangulation. Each of these n/3 triples of the parallel class forms four 
"triangles" with eight other triples, for a total of 3n triples. It is thus necessary that 
3n ~ n(n - 1)/6, which can be easily solved to show that either n ~ 0 or n ?: 19. 
We may ignore values of n ~ 0, and so we have n ?: 19. However, noting that n == 0 
(mod 3), we conclude that n ?: 21. 0 

So, for the remaining cases in which n == 9, 21, 33 (mod 36), only the case n = 9 
is too small to permit a pseudo-triangulation. We thus present a decomposition of 
the BIG of the STS(9) into triangles, with leave a I-factor, in the Appendix. 

Lemma 4 If a STS( n) with n == 9 (mod 36) possesses a pseudo-triangulation, then 
its BIG can be decomposed into triangles with leave a I-factor. 

Proof Each clique has size 4 (mod 6), and a packing of any complete graph of 
order 4 (mod 6) has leave a tripole. Thus naively packing each clique of the BIG 
with triangles will result in a leave having several more edges than the required 
I-factor. 

Consider, however, the edges in the BIG which are contained within the triangles 
induced by the "triangles" of the pseudo-triangulation of the STS. In each clique 
of the BIG, these edges appear as a matching plus either one copy of [{I,3 or one 
copy of [{1,2. We now choose additional edges in each clique in order to extend these 
edges into a tripole. (It will be these added edges which will form the final leave in 
the BIG.) The non-tripole edges in each clique correspond to the edges of a triangle 
packing within each clique; we begin our triangle decomposition of the BIG with the 
triangles in these clique packings. 
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Our goal now is to combine several of the edges of the tripoles into triangles, so 
that the only remaining edges in the BIG constitute a I-factor. To do this, we first 
observe that each triple of the parallel class of the pseudo-triangulation corresponds 
to a vertex in the BIG which is the head of the tripole in each of its three cliques. 
We also observe that each "triangle" of the pseudo-triangulation induces a triangle 
in the BIG, and that the edges of these triangles have not yet been used by any 
triangles of our decomposition. So we now add to our decomposition the triangles 
induced by the "triangles" of the pseudo-triangulation. 

Each triple of the parallel class, being contained in exactly four "triangles", will 
thus have its corresponding vertex go from degree 9 to degree 1 in the BIG. Likewise, 
each triple not in the parallel class, being contained in exactly 1 "triangle" will have 
its corresponding vertex go from degree 3 to degree 1 in the BIG. We thus have a 
triangle decomposition with a I-factor leave. 0 

Example To illustrate that Lemma 4 applies to a non-empty set of STS, we now 
present a pseudo-triangulation of a STS( 45). 

Consider the cyclic STS( 45) formed with starter set {{O, 1, 3}, {O, 4, 9}, {O, 6, 17}, 
{O, 7, 25}, {O, 8, 24}, {O, 10, 23}, {a, 12, 26}, {O, 15, 30}}. One possible pseudo-trian
gulation of this STS is yielded by the parallel class induced by the triple {a, 15, 30} 
and the following "triangles": 

a i {{18,19,21},{19,20,22},{20,21,23}} 

a i {{0,6,17},{7,17,30},{0,15,30}} 
a i {{30,36,2},{37,2,15},{0,15,30}} 

a i {{0,4,9},{38,0,18},{30,38,9}} 
a i {{33,34,36},{8,15,33},{34,1,15}} 

a i{{15,21,32},{22,32,0},{0,15,30}} 
a i {{30,34,39},{15,23,39},{0,15,30}} 

a i{{15,19,24},{0,8,24},{19,31,0}} 
a i{{3,4,6},{23,30,3},{4,16,30}} 

where a represents the permutation (0,1, ... ,44), for i E {O, 1, ... ,14} and for 
j E {0,3,6,9,12}. 

Lemma 5 If a STS(n) with n == 21 (mod 36) possesses a pseudo-triangulation) then 
its BIG can be decomposed into triangles with leave a tripole. 

Proof This case is exactly the same as Lemma 4 above, except that one triple of 
the STS( n) does not occur in any "triangle" of the assumed pseudo-triangulation. 
Thus in the BIG, the degree qf this triple (vertex) remains at 3, and it becomes the 
head of the tripole leave in the BIG. 0 

Example To illustrate that Lemma 5 applies to a non-empty set of STS, we now 
present a pseudo-triangulation of a STS(21). 

Consider the cyclic STS(21) formed with starter set {{O, 1, 10}, {a, 3, 8}, {a, 2, 6}, 
{O, 7, 14}}. One possible pseudo-triangulation of this STS is yielded by the parallel 
class induced by the triple {a, 7, 14} and the following "triangles": 

60 



{{15,17,0},{17,19,2},{19,0,4}} 
{{16,18,1},{18,20,3},{20,1,5}} 

~i{{0,3,8},{1,3, 7},{0, 7, 14}} 
~i{{0,1,10},{8,10, 14},{0,7,14}} 

a i{{14,15,3},{7,10,15},{0,7,14}} 
~i{{7,8,17},{14,17,1},{0,7,14}} 

where ~ represents the permutation (0,1, ... ,20), for i E {a, 1, ... ,6}. The unused 
triple in this pseudo-triangulation is {a, 2, 6}. 

Lemma 6 If a STS( n) with n == 33 (mod 36) possesses a pseudo-triangulation in 
which the two unused triples are disjoint, then its BIG can be decomposed into tri
angles with leave Zl. 

If a STS( n) with n == 33 (mod 36) possesses a pseudo-triangulation in which 
the two unused triples share a common point, then its BIG can be decomposed into 
triangles with leave Z2. 

Finally, if a STS( n) with n == 33 (mod 36) possesses a pseudo-triangulation 
in which the two unused triples share a common point, and if also the pseudo
triangulation satisfies a certain extra condition (PI), then its BIG can be decomposed 
into triangles with leave Z3. 

Proof The clique size of the BIG is 4 (mod 6) and so a packing of a clique with 
triangles has individual leave for that clique being a tripole. However, a pseudo
triangulation of a STS( n) in this case omits two of the triples. If the two triples 
missed by the pseudo-triangulation of the STS contain no common point, (say triples 
{x, y, z} and {u, v, w}), then following the construction described in Lemma 4 above, 
the vertices in the BIG labelled by {x,y,z} and {u,v,w} will remain with degree 3, 
while every other vertex in the BIG will have its degree dropped to one, since every 
other triple of the STS is in some "triangle" of the assumed pseudo-triangulation of 
the STS. Thus the overall leave in the BIG will be Zl in this case. 

Now suppose that the two triples missed by the pseudo-triangulation share a 
point; say they are {x, y, z} and {x, u, v}. When packing the x-clique with triangles, 
provided we choose the edge between vertex {x, y, z} and vertex {x, u, v} to be an 
edge of the tripole leave for the x-clique packing, the overall leave in the BIG, after 
including the triangles from the pseudo-triangulation in the BIG packing, will be Z2, 
with vertices {x,y,z} and {x,u,v} each having degree 3, and with these vertices of 
the BIG being joined by an edge in the leave. 

Finally we need to show that the leave Z3 can also be achieved. 
Suppose that the assumed pseudo-triangulation of the STS has the two triples of 

the STS which do not occur in any "triangle" of the pseudo-triangulation sharing a 
common point. Let these triples be {x,y,z} and {x,u,v}. Moreover, suppose that 
the pseudo-triangulation has property (PI), that is, assume that one of the following 
holds: 

.. the triple {y, u, *} is in a "triangle" of the pseudo-triangulation in which y 
occurs only once, and the triple of the form {z, u, * } is in a different "triangle" 
in which z occurs only once, and neither {y, u, *} nor {z, u, *} is in the parallel 
class of the pseudo-triangulation; 
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., the triple {y, v, *} is in a "triangle" of the pseudo-triangulation in which y 
occurs only once and the triple of the form {z, v, *} is in a different "triangle" 
in which z occurs only once, and neither {y, v, *} nor {z, v, *} is in the parallel 
class of the pseudo-triangulation; 

., the triple {y, u, *} is in a "triangle" of the pseudo-triangulation in which u 
occurs only once and the triple of the form {y, v, * } is in a different "triangle" 
in which v occurs only once, and neither {y, u, *} nor {y, v, *} is in the parallel 
class of the pseudo-triangulation; 

., the triple {z, u, *} is in a "triangle" of the pseudo-triangulation in which u 
occurs only once and the triple of the form {z, v, *} is in a different "triangle" 
in which v occurs only once, and neither {z, u, *} nor {z, v, *} is in the parallel 
class of the pseudo-triangulation. 

The above four possibilities are all isomorphic, so we only need consider one of 
them. We deal with the first of the above possibilities. 

Now consider the y-clique. When picking the tripole leave in here, the triple 
{y, u, *} is free to be paired with any other triple containing y that is free in the 
y-clique. Similarly, in the z-clique, the triple {z, u, *} can be paired with any other 
free triple in the z-clique when we choose the tripole leave in the z-clique. 

Moreover, note that the triples {x, y, z} and {x, u, v} are totally free in all 
three of their cliques, since they are not in any "triangles" of the assumed pseudo
triangulation. So, in the x-clique, we pair {x, y, z} with {x, u, v}, in the y-clique we 
pair {x,y,z} with {y,u,*}, and in the z-clique we pair {x,y,z} with {z,u,*}. 

If we now proceed as described above, we would obtain a Z2 leave with {x,y,z} 
and {x,u,v} being the vertices of degree 3, joined to each other, and with {x,y,z} 
also joined to {y, u, *} and {z, u, *} (see Figure 1). But note that the triples {y, u, *}, 
{z, u, *} and {x, u, v} all lie in the u-clique, and so might form a triangle in that 
clique, in which case we could trade the edges of this triangle with some of the edges 
of the Z2 leave and obtain a Z3 leave with vertex (triple) {x, u, v} of degree 5. (See 
Figures 2 and 3.) 

We now consider when the triples {y,u,*}, {z,u,*} and {x,u,v} can indeed 
form a triangle, which would thus permit the trade used to obtain the Z3 leave. The 
triple {x, u, v} is free in the u-clique, while {y, u, *} and {z, u, *} appear in different 
"triangles" of the pseudo-triangulation. So these three triples can be paired, in the 
tripole leave within the u-clique, with three other triples to form three edges of the 
matching portion of the tripole. When we pack the u-clique with triangles, we are 
free to choose the first triangle in the packing, provided the three triples forming this 
triangle are on distinct edges of the matching portion of the tripole. With the triples 
{y, u, * }, {z, u, *} and {x, u, v} being on separate edges of the matching portion of 
the tripole, we may choose the first triangle of the packing so that it contains these 
three triples. 

Thus the trade from Z2 to Z3 is indeed possible when the pseudo-triangulation 
possesses property (PI). 0 
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Example To illustrate that Lemma 6 applies to a non-empty set of STS, we now 
present a pseudo-triangulation of a STS(33). Moreover, we show that each of the 
three possible leaves can indeed be achieved. 

Consider the cyclic STS(33) formed with starter set {{O, 2, 6}, {a, 5, 15}, {a, 1, 9}, 
{a, 3, 16}, {a, 7, 19}, {a, 11, 22}}. One possible pseudo-triangulation of this STS is 
yielded by the parallel class induced by the triple {a, 11, 22} and the following "tri
angles" : 

{{20,22,26}, {22,24,28}, {,24,26,30}} 
{{23,25,29},{25,27,31},{27,29,0}} 
{{26,28,32},{28,30,1},{30,32,3}} 

~i{{0,11,22},{0,1,9},{6,9,22}} 
~i{{0,11,22},{22,23,31},{28,31,11}} 

a i{{31,0,4},{18,23,0},{4,11,23}} 

a i {{0,11,22},{11,12,20},{17,20,0}} 
a i {{0,11,22},{7,12,22},{0,7,19}} 
a i{{9,11,15},{29,1,11},{15,22,1}} 

where ~ represents the permutation (0, 1,. " ,32), for i E {a, 1, ... ,10}. The unused 
triples in this pseudo-triangulation are {21, 23, 27} and {29, 31, 2} and thus a Zl 
leave is obtained. 

A second pseudo-triangulation can be formed from the above pseudo-triangulation 
by replacing the "triangle" {{23,25,29}, {25,27,31}, {27,29,0}} with the "trian
gle" {{21,23,27}, {23,25,29}, {25,27,31}}. As a result, the unused triples now are 
{27, 29, O} and {29, 31, 2}. Since these two unused triples have a point in common, 
we obtain a Z2 leave when the edge between these two triples comprises part of the 
I-factor leave obtained by extending the matching induced in the 29-clique. 

This second triangulation we now use to also obtain a Z3 leave. Notice that the 
triple {27, 2, 26} is in a "triangle" in which the point 27 occurs exactly once and that 
the triple {a, 2, 6} is in a "triangle" in which the point ° occurs exactly once. Hence 
the first condition listed for property pI is satisfied, where u =2, v = 31, x = 29, 
y = 27 and z = 0, and thus we can obtain a Z3 in which the triple {29, 31, 2} has 
degree 5. 

We summarise our results with the following theorem. 

Theorem 2 If n == 3 or 7 (mod 12), then the block-intersection graph of any STS(n) 
can be decomposed into triangles 

If n == 1, 13, or 25 (mod 36), then we obtain a BIG decomposition whenever the 
STS possesses a triangulation (with a leave of either a i-factor, a tripole, Zl, Z2, or, 
when property P is satisfied, Z3). 

If n == 9, 21, or 33 (mod 36), then we obtain a BIG decomposition whenever the 
STS possesses a pseudo-triangulation (with a leave of either a i-factor, a tripole, Zl, 
Z2, or, when property pI is satisfied, Z3)' 

To possess a pseudo-triangulation, a STS necessarily must possess a parallel class 
of triples. For n == 9, 21, or 33 (mod 36), we note that not all STS(n) have such a 
parallel class [3]. We therefore conjecture that some other method of decomposition 
exists, in which the existence of a parallel class is not necessary. 

63 



4 Appendix 

Here we present a decomposition of BIG(STS(9)), with leave a I-factor. Let the 
vertices of the BIG be labelled {A, B, C, D, E, F, G, H,I, J, K, L} where each vertex 
corresponds to a triple of the STS(9) as indicated below: 

A 
B 
C 

{1,2,3} 
{4,5,6} 
{7,8,9} 

D 
E 
F 

{1,4,7} 
{2,5,8} 
{3,6,9} 

G 
H 
I 

{1,5,9} 
{2,6,7} 
{3,4,8} 

J 
K 
L 

Then the triangles in a decomposition of the BIG are as follows. 

{B, F, L}, 
{C,E,K}, 
{F, G, J}, 
{A, I, L}, 

{C,F,H}, 
{B, I, J}, 
{C, D,I}, 
{A, H, K}, 

{E,H,L}, 
{C,G,L}, 
{B, D, K}, 
{A,E,J}, 

The resulting leave in the BIG is the I-factor 

{F,I,K}, 
{B,E,G}, 
{D,H,J}, 
{A, D, G}. 

{A,F}, {B,H}, {C,J}, {D,L}, {E,I}, {G,K}. 

{1,6,8} 
{2,4,9} 
{3,5,7} 

It is interesting to note that cliques 1, 2, 4 and 5 contain no edges of the leave, while 
cliques 3, 6, 7 and 9 contain one edge each, and clique 8 contains two edges. 
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