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Abstract 

A variety of relationships between graph parameters involving packings, 
perfect neighbourhood, irredundant and R-annihilated sets is obtained. 
Some of the inequalities are improvements of existing bounds for the lower 
irredundance number, and others are motivated by the conjecture (re­
cently disproved) that for any graph the smallest cardinality of a perfect 
neighbourhood set is at most the lower irredundance number. 

1. Introduction 

This work is concerned with properties of four kinds of vertex subsets X of 
a simple graph G, namely packing, perfect-neighbourhood, irredundant and R­
annihilated sets. The first task is their definition and to observe that each may be 
characterized in terms of a certain partition of the vertex set V of G induced by 
X. We denote by N(X) (N[X]) the open (closed) neighbourhood of the set X. As 
usual N( {x}) and N[{x}] will be abbreviated to N(x) and N[x]. For A, B ~ V, we 
say that A dominates B, written A >- B, (or B is dominated by A) if B ~ N[A]. 
The private neighbourhood pn(x, X) of x in X is defined by 

pn(x,X) = N[xJ - N[X - {x}]. 

An element u of pn(x, X) is called a private neighbour of x relative to X and is one 
of two types. Either u is an isolate of G[X], in which case u = x, or u E V - X 
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and is adjacent to precisely one vertex of X. The latter type is called an external 
private neighbour (epn) of x. The concept of private neighbourhood enables us to 
define from X, a partition P(X) = Zx UYx UEx UFx uCx URx (disjoint union) 
of V, where: 

Zx = {x EX! x is isolated in G[X]} , 

Yx = X Zx, 

Ex = {v E V - X I v is an epn of some y E Y x} , 

Fx = {v E V - X I v is an epn of some z E Zx}, 

Cx = {v E V - X IIN(v) n X! 2:: 2} 

and Rx V - N[X]. 

When the basic subset X is clear from the context, we will omit the subscripts 
X. Many familiar properties .of vertex subsets X may be defined in terms of the 
partition P(X). For example, X is independent if Y 0, dominating if R = 0 
and total dominating if R U Z = 0. We now define the first three of our principal 
concepts. The set X is a packing set (or simply a packing) if N[Xl] n N[X2] = 0 
for all distinct Xl,X2 E X, an irredundant set if for all x E X, pn(x, X) f=. ° and 
a perfect neighbourhood set (abbreviated to PN-set) if ¢(X) = U pn(x, X) >- V. 

xEX 
Observe that each of these three types of sets may be characterized in terms of 
the partition P(X), since a set X is a packing, an irredundant set or a PN-set 
if and only if C U Y = 0, E n N(y) f=. 0 for each y E Y and Z U E U F >- V 
(respectively). In order to motivate the definition of the fourth principal property, 
we first state a condition given in [5] for an irredundant set to be maximal. We need 
one additional concept about private neighbourhoods. For x E X and u E V - X, 
u annihilates x (or x is annihilated by u) if 0 f=. pn(x, X) ~ N[u]. Observe that 
if u annihilates x, then pn (x, X U {u}) = 0, i. e. (informally) addition of u to X 
destroys (or annihilates) the private neighbourhood of x. Let 

Ax = {u E V - X I u annihilates some x E X}. 

We write A for Ax, if the basic subset X is clear. For U ~ V - X define X to be 
U-annihilated if U ~ A. We can now state a condition for an irredundant set X to 
be maximal in terms of the partition P(X). 

Theorem 1 [5]. The set X is maximal irredundant if and only if X is irredundant 
and N[R]-annihilated. 

We observe that the class of N[R]-annihilated sets (such sets have also been 
called external redundant sets ([5,6])) is contained in the larger class of R-annihil­
ated sets (abbreviated to Ra-sets), which is the fourth class of sets of principal 
interest in this work. We will also consider sets which are both R-annihilated 
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and irredundant (abbreviated to Rai-sets) which were first introduced by Favaron 
and Puech [11] (who called them semi-maximal irredundant sets). Notice that 
for each z E Z and r E R, Z E pn(z, X) - N[r] and so z is not annihilated by 
r. Thus any vertex of X which is annihilated by r E R, is necessarily in Y. 
The main parameters considered are fJ(G), fJi(G), ra(G), rai(G), ir(G) which are 
the smallest cardinalities of PN-sets, independent PN-sets, Ra-sets, Rai-sets and 
maximal irredundant sets respectively, and P L (G) (p( G)) which is the smallest 
(largest) cardinality of a maximal packing. Observe that a maximal packing is 
an independent PN-set. We will also mention er(G), ,(G), ,t(G), IC(G), i.e. 
the smallest cardinalities of external redundant, dominating, total dominating and 
connected dominating sets respectively and ,2 (G) which is the smallest cardinality 
of X such that each vertex of V-X is within distance two of X. We abbreviate ,(G) 
to ,etc. when the graph G involved is clear. Further, for example, a dominating 
set (maximal irredundant set) of minimum cardinality ,(G) (ir(G)) will be called 
a ,-set (an ir-set). The following inequalities are immediately implied by the 
definitions, Theorem 1, the well-known inequality ir ::; " and the fact that for any 
two distinct vertices x and y of a packing X, the sets N[x] and N[y] are disjoint, 
while every dominating set must contain at least one vertex in N[x] for each x E X. 

Proposition 2. For any connected graph G, 

{ 
< {rai} <. } ,2::; ra - er - 'l,r ::; , ::; ,t ::; 'c, 

fJ ::; fJ i :::; P L :::; P 

where the last inequality holds only if ~ (G) < 1 V ( G) 1 - 1. 

The motivation for this paper is threefold. Firstly, in [12] the authors con­
jectured that for any graph, fJ ::; ir. This conjecture was proved to be false by 
Favaron and Puech [11] who constucted counterexamples, the smallest of which 
has roughly two million vertices. However, the inequality has been established for 
several classes of graphs. For example, Cockayne et al. [9] showed that fJ :::; ir 
for any tree. The second motivation for this work is the observation by Favaron 
and Puech [11] that the proof in [9] used only R-annihilation rather than N[R]­
annihilation and independent PN-sets rather than PN-sets, and hence the same 
proof establishes the following stronger result. 

Theorem 3 [9]. For any tree, fJi :::; rai. 

Thirdly, the concept of irredundance has not yet been very well understood 
and remains difficult to work with. By studying the partition P(X) induced by an 
irredundant set X and the various ways in which x E X can be annihilated, we 
hope to gain a more thorough understanding of this fascinating concept. 

Note that in many graphs rai < ir. For example, the graph consisting of two 
copies of C4 joined by an edge has rai = 2 and ir = 3. Puech [15] has established 
the stronger inequality fJi ::; rai for other classes of graphs. Let T be the tree 
consisting of disjoint copies of P3 and K 3 joined by a matching. 
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Theorem 4 [15]. If G has no induced subgraph isomorphic to T, then e = ei ::; rai. 

Theorem 5 [15]. If G is chordal or if G contains at most one cycle oj length 
different from 3,4,7,8,9,13,14,19, then ()i ::; rai. 

In Section 2 we indicate some other known results about ir which may be 
strengthened to results concerning R-annihilated sets. Section 3 gives various new 
degree conditions on G which will ensure ei ::; rai and also in two cases, conditions 
which imply the stronger inequality PL ::; rai. The fact that the latter inequality 
holds for trees will be established in [3]. The final result relates P and ra for 
any graph G. Extremal graphs for the inequalities considered in this paper will 
be discussed in forthcoming work. References to further work on domination, 
irredundance and packing may be found in the comprehensive bibliography of the 
book by Haynes, Hedetniemi and Slater [13]. Perfect neighbourhood sets were 
introduced and studied in [12]. Other properties of Raj-sets were discussed by 
Puech [15]. In particular he showed that for any graph G, 

()i 3 
0<-. <-. 

rat - 2 

This result will be improved in Section 3. 

2. Strengthening of Existing Results 

In this section we use the fact that proofs of several existing results about ir 
only require the R-annihilation property and do not require N[R]-annihilation or 
irredundance. Hence the same arguments establish stronger results. Since these 
proofs are already in the literature, we omit them here. 

Theorem 6 [1]. 
(i) If the subgraph induced by an ir-set has k « ir) isolated vertices, then F ::; 

2ir - (k + 1). 
(ii) For any connected graph, Ft ::; 2ir. 

The same methods establish: 

Theorem 7. 
(i) IJ the subgraph induced by an ra-set has k isolated vertices, then F ::; 2ra - k. 
(ii) For any connected graph, Ft ::; 2ra. 

The following relationship was proved by Favaron and Kratsch. 

Theorem 8 [10]. If G is connected, then FC ::; 3ir - 2. 

The same proof in fact shows 

Theorem 9. If G is connected, then FC ::; 3ra - 2. 

The rest of this section concerns lower bounds for parameters in terms of 
the number of vertices n and the maximum degree~. Bollobas and Cockayne 
established 
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Theorem 10 [2]. For any graph G, ir :2: 2iln_ 1 . 

Extremal graphs for this inequality were characterized by Laskar and Pfaff [14]. 
The proof of Theorem 10 also shows 

n 
Theorem 11. For any graph G, ra :2: 2il- l' 

In [8], Cockayne and Mynhardt improved the bound of Theorem 10. 

Theorem 12 [8]. For any graph G, ir :2: :~. 
The extremal graphs for this inequality were also characterized. The proof of 

Theorem 12 does not use irredundance, but does require N[R]n(RUE)-annihilation 
(obser:ved in [5]). If 'fJ = 'fJ(G) is the minimum cardinality of an N[R] n (R U E)­
annihilated set of G, then (from the definition) ra ::; 'fJ ::; er ::; ir. The proof of 
Theorem 12 also establishes the stronger result: 

2n 
Theorem 13. For any graph G, 'fJ :2: 3il' 

3. Degree Conditions, ei , PL, P and rai 

For the work of this section up to and including Theorem 22, X will denote 
an Rai-set (sometimes of minimum cardinality rai). We need extra notation. For 
the vertex u and vertex subset U of G, du (u) denotes the number of edges of G 
from u to U. Define B = E U F and for x E X let Bx = N(x) n B. By Dk, Dt, 
we denote the sets of vertices with degree equal to k and at least k, respectively. 
Further, define 

S = {y E Y I dc(y) :2: I}, 

T = {y E Y - S I ds(y) :2: 2} 

and T=TnDt. 

It is not difficult to prove (see Cockayne, Favaron, Mynhardt and Puech [4]) that 
if Dt is independent, then ,(G) = i(G). We show here that if Dt is independent, 
then ei (G) ::; rai( G). We begin with a lemma. 

Lemma 14. If Dt is independent, then each component ofG[SUT] is isomorphic 
to Kl,n (n:2: 0) with central vertex in Dt or a copy of Kl or K2 in S - Dt. 

Proof: For any s E S, dc(s) :2: 1 (definition of S), dB(s) :2: 1 (since s E S ~ Y 
has an epn) and dx(s) :2: 1 (since s E Y). If deg(s) = 3, then it follows that 
dc(s) = dB(S) = dx(s) = 1. Hence 

for each s E S, deg(s):2: 3 and if deg(s) = 3, then dx(s) = 1. (1) 

Let 0 be a component of G[ S U T]. Firstly, suppose that 0 contains Yo. E Dt. The 
independence of Dt implies that if w E N(yn) nO, then w E S and has degree at 
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most three. By (1), deg(w) = 3 and Yn is the only neighbour of w in n. Thus n 
is isomorphic to KI,n (n 2: 0) centred at Yn E Dt. Otherwise n is contained in 
S - Dt and by (1), n is isomorphic to KI or K 2 • I 

Theorem 15. If Dt is independent, then ()i ~ rai. 

Proof: Let X be an rai-set and recall Lemma 14. If the component n of 
G[S U T] is a star, let Yn be its centre. Otherwise n is KI with vertex yn. The 
independent set 

A = {yn I n is a component of G[S U T]}, 

is a packing of G* = G[V CAl. Definitions show that CA ~ C u (Y - (S U T)). 
Embed A in a maximal packing A of G*. Since A ~ 4>(A) and A >- C A, A is an 
independent PN-set of G and An C A = 0. Also note that no vertex of C A has two 
or more X -pns in A. The definitions of A and S imply that each vertex of CnN(Y) 
is at distance at most two from A and so is not in A. Hence CnA ~ N(Z). Further, 
since X is an Raj-set, each r E R annihilates at least one y E Y. It follows that we 
may define a function f : A -+ X by: 

f(a) = I
an arbitrary vertex of N(a) n Z 

a 

the unique x E X such that a E Bx 

an arbitrary vertex in Y annihilated by a 

if a E C 

if a E X 

if a E B 

if a E R. 

We now show that f is injective. Suppose to the contrary that there exist a, b E A 
with 

Y = f(a) = feb). (2) 

Since A is a packing of G*, Y E CA. Since C A ~ C U (Y - (S U T) ), the definition 
of f implies that Y E CAn Y. This fact and An C A = 0, together with the packing 
property of A and the definition of f, imply that neither a nor b is in C U X and 
hence {a, b} ~ RUB. If both a and b are in R, (2) implies that each annihilates y. 
If a E Rand b E B, (2) implies that ab is an edge of G*. In both cases the packing 
property of A is contradicted. It remains to show that {a, b} ~ B is impossible. In 
this case for y defined by (2), IByl 2: 2. Since y E CA, dx(y) 2: 2 and so y EDt. 
Recall that A ~ S U T where T ~ Dt. The independence of Dt implies that 
y 1. N(A n T) and therefore y is adjacent to at least two vertices of An S. It 
follows that yET n Dt = T. However, CAn T = 0, a contradiction. We have 
proved that f is injective and so IAI ~ IX I. Since A is an independent PN-set of 
G and X is a rai-set, ()i ::; rai as asserted. I 

Corollary 16. If Dt is independent, then () ~ ()i ~ rai ::; ir. 

Two more preliminary results are now necessary. 
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Lemma 17. If Dt is a packing and D3 is independent, then T = T and each 
component n ofG[SUT] is a copy of KI,n (n ~ 0) centred in Dt or a KI (= K 1,o) 
in S - Dt. 

Proof: Suppose to the contrary that there exists t E T T. By definition of 
T, t has neighbours SI and S2 in S. Now deg(t) ~ dB(t) + ds(t) ~ 3. But t (j. Dt 
and so deg(t) 3. For i = 1,2, deg(si) ~ dC(Si) + dT(si) + dB(si) ~ 3. However, 
D3 is independent and so Si E Dr But SI, S2 have the common neighbour t which 
implies that Dt is not a packing, contrary to hypothesis. Since Dt is independent, 
the conclusion of Lemma 14 is true. Suppose that n is a copy of K2 in S - Dt, with 
vertices SI, S2. Now for each i = 1,2, deg(si) ~ 3. But Si (j. Dt and so deg(si) = 3, 
contrary to the independence of D 3 . The result now follows from Lemma 14. I 
Lemma 18. Let C = {c E C I dz(c) = O} and P be a packing of G such that 
pnC=0. Then IPI:::; IXI· 

Proof: We define the relation f : P ---t X by 

1 any vertex of N(p) n z if PEC-C 

the unique x E X such that p E Ex if pEE 
f(p) = 

if pEX 

:ny x E Y such that p annihilates x if pE R. 

The hypothesis implies that f is a well-defined injective function so that IPI < 
IXI· I 
Theorem 19. If Dt is a packing and D3 is independent, then PL :::; rai. 

Proof: Let X be an rai-set and recall Lemma 17. For the component n of 
G[S U T] G[S U T]) let Yn be the central vertex of n and A = {yn I n is a 
component of G[S U T]}. Since Dt is a packing, AnDt is also a packing. Choose 
Q, a maximal subset of A such that Q is a packing of G containing A n Dt and 
extend Q to a maximal packing P of G. We show that P n C = 0. Suppose to 
the contrary that there exists c E P n C. There are two cases to consider which 
depend on Lemma 17. 

Case 1. Suppose there exists sEN ( c) n S such that the component n of G[ S U T] 
containing s, is a K 1,n (n ~ 0) centred at Yn EDt. In this case Yn E AnDt ~ P. 
However, s E N[c] n N[yn] which contradicts the packing property. 

Case 2. Each s E N(c) n S is an isolated vertex of G[S U T] and has degree three. 
Note that each such sEA satisfies dB(s) = dc(s) = 1 and S is adjacent to precisely 
one vertex y of Y - (SUT). Since S E D3, the independence of D3 and the fact that 
pn(y, X) -1= 0 imply that y E D2 U Dt. We claim that at least one of the vertices 
S of N (c) n S is in the packing Q. For otherwise select any such S and let q be 
an arbitrary element of Q (~ A). Since q (j. N(c), N(q) n N(s) ~ {y}. If q E Dt 
and y is adjacent to q, then y E Dt, contradicting the independence of Dt. Hence 
y is not adjacent to q and so N[s] n N[q] = 0. If q E A - Dt, then by Lemma 
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17, q E S, thus y is not adj acent to q (otherwise YET). Since q tJ. N ( c) it again 
follows that N[s] n N[q] = 0 and so Q U {s} is a packing of G, which contradicts 
the maximality of Q. Thus some sEN (c) n S satisfies SEQ ~ P, a contradiction 
with c E P. Cases 1 and 2 assert that P n C = 0 and the theorem now follows 
from Lemma 18. I 
Corollary 20. If Dt is a packing and D3 is independent, then () ::; ()i ::; PL ::; 
rai ::; ir. 

Lemma 21. If Dt 0 (i.e . .6 ::;3), then any component n of G[S U T] is a copy 
of: 

P3 with vertex sequence sltns2 where tn E T and {Sll S2} ~ S, 

P2 with vertices SI and S2 both in S 

or PI with vertex s E S. 

Proof: The definitions of Sand T imply that each s E Sand t E T have degree 
three and 

dx(s) = dc(s) = dB(s) = 1 } 

dx-s(t) = 0, ds(t) = 2, dB(t) = 1. 
(3) 

If n is a single vertex s, then (3) implies that s E S. If n contains tn E T, then 
(3) asserts that 0 is a P3 with vertex sequence sItn82 with 81 and 82 both in S. 
Otherwise 0 is contained in S and (by (3)) is a P2 · I 
Theorem 22. If Dt = 0, then PL ::; rai. 

Proof: Suppose that X is an rai-set. Recall Lemma 21, observe that T = {to I 
o is isomorphic to P3 } and let K be the set of all vertices of PI or P2 components 
of G[S U T]. Observe that since dx-s(t) = 0, T is a packing of G. Let Q be a 
maximal subset of T U K such that Q is a packing of G which contains T and 
extend Q to a maximal packing P of G. We show that P n C = 0. Suppose to 
the contrary that there exists c E P n C. There are two situations which depend 
on Lemma 21. If there exists 8 E N(c) n S such that 8 is in 0, a P3 component 
of G[S U T], then tn E T ~ P. However, s E N[c] n N[tn] which contradicts the 
packing property. Otherwise N ( c) n S ~ K. Choose any 8 E N ( c) n S and let 
N(s) n Y = {y}. Since c E P, 

c tJ. N[Q], s ~ N[Q] and y ~ Q. (4) 

But by (3), N(y) n (SUT) = {s} and so y ~ N(Q). This, together with (4), implies 
that N[s] n N[QJ = 0. Hence Q U {s} is a packing of G contrary to maximality. 
Thus P n C = 0 and the theorem follows from Lemma 18. I 

Corollary 23. If .6(G) ::; 3, then () ::; ()i ::; PL ::; rai ::; ir. 

Our last result improves a result of Puech [15]. Let k be the largest number 
of isolated vertices in the induced subgraph of any ra-set of G. 
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l3ra - kJ Theorem 24. For any graph G J P :s 2 . 

Proof: Let X be an ra-set of G such that G[X] has k isolates (i.e. IZI = k) 
and P be a maximum packing (of cardinality p) of G. The R-annihilation property 
implies that we may partition X U E U R into 

u {x} U Ex U Rx (disjoint union) 
xEX 

where for each x E X, Rx is a subset of vertices of R which annihilate x. Note 
that Rz = 0 for z E Z. Since G[{x} U Ex U Rx] has diameter at most two, each 
{x} U Ex U Rx contains at most one element of P. Suppose that q (:s k) is the 
number of vertices z of Z such that {z} U Ez U Rz (in fact Rz = 0) contains exactly 
one vertex of P. For each such z, by the packing property, z is not adjacent to 
C n P. Further, the vertices of C n P are adjacent to disjoint subsets of X of size 
at least two. Hence 

Ipncl:S IXI
2
-q· (5) 

But there are at least k - q vertices of Z for which P n ({x} U Ex U Rx) = 0 and so 

IP n (X U E U R)I :s IXI- (k - q). (6) 

31XI-k 
From (5), (6) and q :s k we deduce that IPI :s 2 and the result follows. I 

3rai 
Corollary 25 [14]. For any graph G, ()i:S 2 

Proof: Immediate deduction from Theorem 24 and Proposition 2. I 
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