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Abstract 

In this paper, a result is proved that provides a general method of attack 
that can be used to solve the existence problem for partitions of the 
directed edges of Dn , the complete directed graph on n vertices into x 
and n - x almost parallel classes of directed cycles of length ml and 
m2 respectively in the case where ml and m2 are even. Use of this 
technique is then demonstrated by essentially solving the problem when 
(r,nl,m2) E {(4,6), (4,8)}. 

1 Introduction 

Let >..Kn denote the multigraph on n vertices in which each pair of vertices is joined 
by >.. edges, and let Dn denote the complete directed graph on n vertices. 

Let M be a set of positive integers. An M -cycle system of G (or simply an m­
cycle system if M = {m}) is an ordered pair (V (G), C) where C is a set of cycles 
with lengths in M whose edges partition the edge set of G. 
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A parallel class of C is a set of cycles in C that form a 2-factor of G. (V (G), C) 
is said to be resolvable if C can be partitioned into parallel classes. The spectrum 
problem for resolvable m-cycle systems is to find the set of integers n for which there 
exists a resolvable m-cycle system of Kn. This is also known as the Oberwolfach 
problem, as it was first posed in Oberwolfach by Ringel in 1967 to solve the seating 
arrangement for n people at round tables, each table seating m people, so that after 
(n - 1)/2 successive meals each person would sit beside each other person exactly 
once. This problem has now been completely solved [1,9]. 

Clearly one necessary condition on n in any solution of the Oberwolfach problem 
is that n == a (mod m). A related problem has also been considered in the case where 
n == 1 (mod m). An almost parallel class of an m-cycle system (V(G), C) of G that 
is missing the vertex v is a set of m-cycles in C that forms a 2-factor of G - v. The 
m-cycle system (V (G), C) is said to be almost resolvable if C can be partitioned into 
almost parallel classes. It is easy to see that there is no almost resolvable m-cycle 
system of Kn for any n; the spectrum problem for almost resolvable m-cycle systems 
of 2Kn has been completely settled [4, 8]. Of course, if one is considering 2Kn, then 
immediately the more difficult question of the existence of a directed analogue is 
raised. It has been shown that there exists an almost resolvable directed m-cycle 
system of Dn if and only if n == 1 (mod m) in the cases where m = 3 [2], m = 4 [3], 
m = 5 [7], m is even [5], and where m == 3 (mod 6) [6]. 

A more general (and as yet unsolved) problem than the Oberwolfach problem 
is the Hamilton-Waterloo problem. In this case, a joint conference is held at two 
places: s days are spent at Hamilton and (n - 1)/2 - s days at Waterloo, where 
each table seats ml people at Hamilton and m2 people at Waterloo. Again, a seating 
arrangement is required so that each of the n people sits next to each of the other 
people exactly once. So if 8 meals are held at Hamilton, then this asks for the set of 
integers n for which there exists a 2-factorization of Kn in which 8 2-factors consist 
of cycles of length ml, and (n - 1)/2 - s 2-factors consist of cycles of length m2. 
A particularly interesting case for the Hamilton-Waterloo problem is an "extreme" 
situation when (ml' m2) = (3, n), especially because it is quite different to previously 
considered problems in that ml has a fixed length whereas m2 increases with the size 
of the graph. 

It is also worth mentioning that Rees solved a related factorization problem: 
partitioning the edges of Kn into 8 2-factors, each cycle in each 2-factor being a 
3-cycle, and n 1 - 28 I-factors [10]. 

Of course, there is also an almost resolvable directed version of the Hamilton­
Waterloo problem when n == 1 (mod mi), i E {I, 2}. That is, we can try to find the 
set of integers n for which there exists an almost resolvable directed {mll m2}-cycle 
system of Dn into x almost parallel classes of directed ml-cycles and n - x almost 
parallel classes of directed m2-cycles. It is the purpose of this paper to give a general 
method of attack for this problem that can be used whenever ml and m2 are even 
(see Theorem 2.1), and then to demonstrate the use of this theorem to essentially 
solve this spectrum problem when (ml' m2) E {(4, 6), (4, 8)} (see Corollaries 3.1 and 
3.2). 

202 



2 The General Attack 

Let (A)RD(ml' m2)s of D denote an (almost) resolvable directed {ml' m2}-cycle 
system of the directed graph D in which s (almost)-parallel classes consist of directed 
ml-cycles, the remaining (almost)-parallel classes consisting of directed m2-cycles. 

The basic tool used in the proof of Theorem 2.1 is the following lemma that was 
proved in [5]. Let Zr = {O, 1, ... , r - I}. 

Lemma 2.1. Let F = {{O, I}, {2, 3}, ... , {2r - 2,2r I}}, and let r ;::: 3. There 
exists a I-factorization {Fo, FI , ... , F2r-r} of the multigraph K 2r + F in which F2z 
and F2z+1 each contain a copy of the edge {2z, 2z + I} for each z E Zr. 

The following result gives a method for finding the spectrum for an ARD(ml, m2)s 
of Dn. Let Dx,x denote the complete directed bipartite graph with x vertices in each 
part (so each vertex has in-degree and out-degree x). 

Theorem 2.1. Let ml, m2 be even, let r ;::: 3, let £ = lcm(ml' m2), and let n = 
r£ + 1. Suppose L ~ Z(e/2)+1 has the property that for any s E Zn+l there exist 
so, ... , S2r-1 ELand E E {O, I} such that s = E + L: St. Suppose there exists an 

tEZ2r 

RD(ml' m2)x of De/2,l/2 for each x E L, and there exists an ARD(mb m2)x of De+1 
for each x E Z£+l. Then there exists an ARD(ml, m2)s of Dn for each 8 E Zn. 

Remark. Of course, if 0 < 8 < nand e = lcm(ml' m2) then n == 1 (mod £) is a 
necessary condition for the existence of an ARD(mll m2)s of Dn. 

Proof. Let 8 E Zn+l. Then by assumption there exist 80, ... ,82r-l ELand E E {O, I} 
such that s E+ L: 8t. We produce an ARD(ml' m2)s of Dn ({(X) }U(Z2r X Ze/2), C) 

tEZ2r 
as follows. 

Firstly, for each z E Zr, let ({ oo} U ({2z, 2z + I} x Ze/2) , Cz ) be an 
ARD(ml' m2)€+S2z+S2Z+l of D£+l (this exits by assumption). Name these so that: 

(1) for each i E Z2r and each j E Ze/2,Pi,j is the almost parallel class in Cli/2j that 
is missing vertex (i, j), and that consists of directed ml -cycles or m2-cycles if 
o :::; j < 8i or 8i ::; j < £/2 respectively; and 

(2) for each z E Zr, Pz,oo, is the almost parallel class in Cz that is missing vertex 00, 

and that consists of directed ml-cycles or m2-cycles if E = 1 or 0 respectively. 

Secondly, let F {{O, I}, {2, 3}, ... , {2r - 2, 2r I}}, and let {Fo, FI , ... ,F2r-r} 
be a I-factorization of K2r+F in which F2z and F2z+1 each contain the edge {2z, 2z+ 
I} (see Lemma 2.1). For each i E Z2r and for each edge {x,y} E Fi\F, let ({x,y} x 
Ze/2, C{x,y}) be an RD(ml' m2)s; of De/2,e/2 (this exists by assumption). Name these 
so that: 

(3) for 0 ::; j < Si or 8i ::; j < £/2, P{x,y},j is a parallel class in C{x,y} that consists 
of directed ml-cycles or m2-cycles respectively. 
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Then define Pi,j = U P{x,y},j for each i E Z2r and each j E Zl/2' 
{x,y}EFi\F 

Finally, define 7r 00 = U Pz,oo, 7ri,j = Pi,j U Pi,j, for each i E Z2r and each j E Zl/2, 
zEZr 

and C = 7r00 U (U. 7rij). Then ({<X)} U (Z2r X Zl/2),C) is an ARD(ml,m2)s as 
tEZ 2r ' 

j EZl/2 

the following indicates. 
Clear ly 7r 00 is an almost parallel class of directed ml-cycles or directed m2-cycles if 

E = 1 or 0 respectively that is missing vertex 00. For each i E Z2r and for 0 :::; j < Si, 

7ri,j is an almost parallel class of directed ml-cycles that is missing vertex (i, j). For 
each i E Z2r and for Si :::; j < £/2, 7ri,j is an almost parallel class of directed m2-
cycles that is missing vertex (i, j). So C can be partitioned into E + L: Si = S 

iEZ2r 

almost parallel classes of directed ml-cycles and n - S almost parallel classes of 
directed m2-cycles, as required. 

To see that a directed {ml' m2}-cycle system has been formed, note that: for i, 
u E Z2r and each j, v E Zl/2: the directed edges (00, (i, j)) and « i, j), (0) occur in a 
directed cycle in CLi/2j; if li/2J = lu/2J then the directed edge «i,j), (u,v)) occurs 
in a directed cycle in Cli / 2j; and if li/2J =1= lu/2J then the directed edge «i,j), (u, v)) 
occurs in a directed cycle in CW/2j , Lu/2J} . 0 

When applying Theorem 2.1, the choice of L will depend on ml and m2. In 
any case, L could be chosen for example to be {O, 2, 4, ... ,£/2}, but usually a much 
smaller set will suffice. 

It should also be recorded that some of the ingredients needed to apply Theorem 
2.1 have already been found. First, the case where ml = m2 (or if you prefer, the 
cases where S E {O,n}) has been settled. 

Theorem 2.2 ([5]). There exists a directed 2m-cycle system of Dn if and only if 
n == 1 (mod m). 

Also, the existence of RD( ml, m2)x of Dl/2,l/2 has been considered in the case 
where ml = m2' 

Lemma 2.2 ([5]). Let ml and m2 be even, and let £ = lcm(ml' m2)' There exists 
an RD(ml' m2)x of Dl/2,l/2 for each x E {O, £/2}. 

3 Applications of the Main Theorem 

In this section we demonstrate the use of Theorem 2.1 by applying it to the cases 
where (ml' m2) E {(4, 8), (4, 6)}. Throughout the following we adopt the convention 
that (CI' C2, ... , cm ) + i = (CI + i, C2 + i, . .. , Cm + i) reducing the sums modulo n (the 
value of n will be clear from the vertex set of the graph containing the m-cycle). 

Corollary 3.1. Let 0 :::; s :::; n. There exists an ARD(4, 8)8 of Dn if and only if 

n={ 1 (mod 4) 
1 (mod 8) 
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Proof. The necessity is obvious, and the sufficiency is proven in the cases where 
s E {O, n} by Theorem 2.2. So we can assume that 1 ~ s < n. To apply Theorem 
2.1, it suffices to find an ARD( 4, 8)x of Dg for all x E {1, ... , 8}, and an ARD( 4, 8)x 
of D4 ,4 for each x E {O, 2, 4}, since clearly L = {O, 2, 4} suffices; the cases where 
x E {0,4} are handled by Lemma 2.2. These ingredients are listed below with the 
cycles arranged into almost parallel classes. Unless otherwise stated, the vertex set 
is V = {1, ... , n}. 

D g ; x = 1: V = {oo}UZs and C = {(1,4,6,5,2,3,7,oo)+i liE Zs}U 
{(0,6,4,2), (1, 7,5,3)}. 

D g ; x = 2: C = {(2, 3, 4, 5), (6,7,8,9), (1,3,5,4), (6, 9,8, 7), (1,2,4,6,8,5, 7, 9), 
(1,5,3,8,6,2,9, 7),(1,6,3,7,4,9,2,8),(1,4,8,2,7,5,9,3),(1,8,3,9,4,2,6,5), 
(1,9,5,6,4, 7,3,2), (1,7,2,5,8,4,3, 6)}. 

Dg; x = 3: C = {(2, 3, 4, 5), (6, 7, 8, 9), (1,3,5,4), (6,9,8, 7), (1, 2,6,8), (4, 7, 5, 9), 
(1,5,3, 7,9,2,8,6),(1,4,6,3,8,2,9,7),(1,8,3,2, 7,4,9,5),(1,9,3,6,5,8,4,2), 
(1,7,2,5,6,4,3,9), (1,6,2,4,8,5,7,3)}. 

D g ; x = 4: C = {(2, 3, 4, 5), (6, 7,8,9), (1,3,5,4), (6, 9,8, 7), (1,2,6,8), 
(4,7,5,9), (1,5,7,9),(2,8,3,6),(1,4,2,9, 7,3,8,6),(1, 7,4,3,9,5,8,2), 
(1,8,4,9,2,5,6,3), (1,9,3,7,2,4,6,5), (1,6,4,8,5,3,2, 7)}. 

Dg; x = 5: C = {(2, 3, 4, 5), (6,7,8,9), (1,3,5,4), (6,9,8,7), (1, 2,6,8), (4,7,5,9), 
(1,5,7,9), (2,8,3,6), (1,4,8,6), (2,7,3,9), (1,8,4,9,7,2,5,3), (1,9,3,8,5,6,4,2), 
(1,7,4,6,3,2,9,5),(1,6,5,8,2,4,3,7)}. 

D g ; x = 6: C = {(2, 3, 4,5), (6,7,8,9), (1,3,5,4), (6,9,8, 7), (1, 2,6,8), (4, 7, 5,9), 
(1,5,7,9), (2,8,3,6), (1,4,8,6),(2, 7,3,9),(1, 7,4,3),(2,9,5,8),(1,9,3,8,5,6,4,2), 
(1,6,5,3,2,4,9,7),(1,8,4,6,3,7,2,5)}. 

D g ; x = 7: C = {(2, 3, 4,5), (6,7,8,9), (1,3,5,4), (6,9,8,7), (1, 2,6,8), (4,7,5,9), 
(1,5,7,9), (2,8,3,6), (1,7,4,6), (2,9,3,8), (1,9,7,3), (2, 5, 8, 4), (1,8,6,5), (2,4,3,9), 
(1,4,9,5,6,3,2,7),(1,6,4,8,5,3,7,2)}. 

D g ; x = 8: V = {oo} U Zs and C = {(0,4,6,1) + i,(2, 7,5,(0) + i) liE 
Zg} U {(O, 1,2,3,4,5,6, 7)}. 

D 4,4; x = 2: C = {(1, 8, 2, 7, 3, 6, 4, 5), (1,6,2,5,3,8,4, 7), (1, 7, 2, 8), (3,5,4,6), 
(1,5,2,6), (3,7,4,8)}. 0 

Since Theorem 2.1 requires r > 2, it only remains to find an ARD(4,8)8 of D17 
for ° < s < n. Since this case stands alone and is not required for the recursion of 
Theorem 2.1, to save space it is not included here, but can be found on the internet 
at http://www.dms.auburn.edu/rvpikedav/publications/resolve 

Corollary 3.2. There exists an ARD( 4,6)8 of Dn if and only if 

{ 

1 (mod 4) 
n == 1 (mod 6) 

1 (mod 12) 

if s = n, 
if s = 0, and 
if 1 ~ s ::; n - 1, 

except possibly if n = 25 and 2 < s < 23. 

Proof. The necessity is obvious, and the sufficiency when s E {O, n} is settled by 
Theorem 2.2. By Theorem 2.1 it suffices to find an ARD(4, 6)x of D13 for 1 ::; x ~ 12 
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and an ARD(4, 6)x of D6,6 for each x E {O, 2, 4, 6}; an ARD(4, 6)x of D6,6 for each 
x E {O, 6} is obtained by Lemma 2.2. These ingredients listed below with the directed 
cycles arranged into almost parallel classes. Unless otherwise stated, the vertex set 
is V = {I, 2, ... , n}. 

D13 ; x = 1: V = {OO}UZ12 and C = {(1,9,3, 10,2,4) +i, (8,7,5,6,11,00) +i I 
i E Z12} U {(O, 3, 6, 9) + iii E Z3}. 

D13 ; x = 2: C = {(2, 3, 4, 5), (6,7,8,9), (10, 11, 12, 13), (1,3,5,4), (6,8, 7, 10), 
(9,11,13,12),(1,2,4,6,5,7),(8,10, 12,11,9,13), (1,5,3,2,6,9),(7,11,8,12,10,13), 
(1,4,2,7,3,6), (8,13,11,10,9,12), (1,7,2,5,8,11), (3, 12,4,13,9,10), (1,6,10,2,9,8), 
(3,11,4,12,5,13),(1,9,2,10,4,3),(5,11,6,12, 7,13),(1,11,2,8,5,10), 
(3,13,4, 7,12,6),(1,8,6,13,2,12),(3,7,5,9,4,11),(1,10,5,12,2,13),(3,9,7,6,4,8), 
(1,13,6,2,11,5),(3,8,4,10,7,9),(1,12,3,10,8,2),(4,9,5,6,11,7)}. 

D13; x = 3: C = {(2, 3, 4, 5), (6,7,8,9), (10,11,12,13), (1,3,5,4), (6,8,7,10), 
(9,11,13,12), (1,2,4,6), (5,7,9,12), (8, 10, 13, ll), (1,5,3,2,6,9), (7, 11, 10, 12,8,13), 
(1,4,2, 7,3,10), (6,11,9,13,8,12),(1,7,2,5,8,11),(3,12,4,13,9,10),(1,6,2,8,3,13), 
(4,10,9,5,12,11),(1,9,2,10,4,3),(5,11,6,12, 7,13),(1,8,6,3,11,2), 
(4,7,12,10,5,13),(1,11,3,7,4,12), (2,9,8,5,6,13), (1,13,6,5,10,7),(2,12,3,9,4,8), 
(1,10,2,13,3,8),(4,11,5,9,7,6),(1,12,2,11, 7,5),(3,6,10,8,4,9)}. 

D13 ; x = 4: C = {(2, 3, 4, 5), (6,7,8,9), (10, 11, 12, 13), (1,3,5,4), (6,8,7,10), 
(9, ll, 13, 12), (1,2,4,6), (5,7,9,12), (8, 10, 13, ll), (1,5,3,2), (6,9,7,13), 
(8,11,10,12),(1,4,2,6,3,10),(7,11,9,13,8,12),(1, 7,2,5,8,13),(3,9,10,4,12,11), 
(1,6,2,8,3,11),(4,13,5,12,10,9),(1,9,2,7,3,12),(4,10,5, 11,6,13),(1,10,3,7,4,8), 
(2,12,6,11,5,13),(1,8,2,11,4, 7),(3,13,9,5,6,12), (1,12,2,13,7,5),(3,6,10,8,4,9), 
(1,13,3,8,5,9),(2,10, 7,6,4,11),(1,11, 7,12,4,3),(2,9,8,6,5,10)}. 

D13 ; x = 5: C = {(2, 3, 4,5), (6,7,8,9), (10, 11, 12, 13), (1,3,5,4), (6,8,7,10), 
(9,11,13,12), (1,2,4,6),(5,7,9, 12),(8, 10, 13, 11), (1,5,3,2),(6,9,7,13), 
(8,11,10,12),(1,4,2,7),(3,6,12,11),(8,13,9,10), (1,7,2,5,8,12),(3,10,4,11,9,13), 
(1,6,2,8,3,11),(4,12,10,9,5,13),(1,9,2,6,3,13),(4,10,5,11,7,12), 
(1,8,2,13,5, 10),(3,12, 7,11,6,4),(1,13,8,5,12,3),(2,9,4, 7,6,11),(1,10,2,12,6,5), 
(3,9,8,4,13,7), (1, 11,4,9,3,8), (2, 10,7,5,6,13), (1,12,2, ll, 5, 9), (3,7,4,8,6,10)}. 

D13 ; x = 6: V = {oo} U (Z6 x Z2) and C = {((0,0),(1,0),(4,1),(2,1)) + 
(i, 0), ((3,0), (3, 1), (0, 1), (1, 1)) + (i, 0), ((5,0), (2,0), (4,0),00) + (i, 0), 
((1,0), (0, 1), (2, 1), (1, 1), (4,0), (3, 0)) + (i, 0), ((5,1), (5,0), (3, 1), (2,0), (4, 1),00) + 
(i,O) liE Z6} U {((O, 0), (1, 1), (2,0), (3, 1), (4,0), (5, 1)) + (i, 0) liE Z2}' 

D13 ; x = 7: V = {oo} U (Z6 x Z2) and C = {((O, 0), (3, 1), (1,0), (5, 1)) + (i, 0), 
((3,0), (2, 1), (0,1), (1, 1)) + (i, 0), ((5,0), (2,0), (4,0),00) + (i, 0) liE Z6} 
U{((l, 0), (2, 1), (4, 1), (3,0), (4,0), (2, O))+(i, 0), ((5,1), (5,0), (1, 1), (0, 1), (3, 1), 00)+ 
(i,O) liE Z6} U {((O, 0), (0, 1), (3,0), (3, 1)) + (i, 0) liE Z3}' 

D13 ; x = 8: C = {(2, 3,4,5), (6,7,8,9), (10, 11, 12, 13), (1,3,5,4), (6,8,7,10), 
(9,11,13,12), (1,2,4,6),(5,7,9,12),(8,10,13,11), (1,5,3,2),(6,9,7,13), 
(8,11,10,12),(1,4,2,7),(3,6,12,11),(8,13,9,10), (1,7,2,5),(3,8,12,10), 
(4,11,9,13),(1,6,2,11),(3,10,9,8),(4,13,5,12),(1,9,2,10),(3,7,5,13),(4,12,6,11), 
(1,10,5,6,4,8), (2,13, 7,12,3,11),(1,8,6,13,2,12),(3,9,5,11,7,4),(1,12, 7,6,3,13), 
(2,8,5,9,4,10),(1,13,8,2,9,3),(4, 7,11,6,5,10),(1,11,5,8,4,9),(2,6,10,7,3,12)}. 
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D13 ; x = 9: C = {(2, 3, 4, 5), (6,7,8,9), (10, 11, 12, 13), (1,3,5,4), (6,8,7,10), 
(9,11,13,12),(1,2,4,6),(5,7,9,12),(8,10,13,11),(1,5,3,2),(6,9,7,13), 
(8,11,10,12),(1,4,2, 7),(3,6,12,11),(8,13,9,10),(1,7,2,5),(3,8,12,10), 
(4,11,9,13),(1,6,2,11),(3,10,9,8),(4,13,5,12),(1,9,2,10),(3,11,4,12), 
(5,6,13,7), (1,11,7,12),(2,6,3,13),(4,10,5,8),(1,12,6,11,5,13), 
(2,9,3, 7,4,8),(1,13,3,12,2,8),(4,9,5,10,7,6),(1,10,4,7,3,9),(2,13,8,6,5,11), 
(1,8,5,9,4,3),(2,12,7,11,6,10)}. 

D 13 ; x = 10: C = {(2, 3, 4,5), (6,7,8,9), (10, 11, 12, 13), (1,3,5,4), 
(6,8, 7,10), (9,11,13,12),(1,2,4,6),(5,7,9,12),(8,10,13,11),(1,5,3,2),(6,9,7,13), 
(8,11,10,12), (1,4,2,7), (3,6,12,11), (8, 13,9,10), (1,7,2,5), (3,8,12,10), 
(4,11,9,13),(1,6,2,11),(3,10,9,8),(4,13,5,12),(1,9,2,12),(3,11,5,13), 
(4,10, 7,6), (1,10,4,8),(2,6,5,11),(3,13,7,12),(1,8,2,13),(3,7,5,9), 
(4,12,6,11),(1,13,8,5,6,10),(2,9,4,7,3,12),(1,11, 7,4,3,9),(2,10,5,8,6,13), 
(1,12,7,11,6,3),(2,8,4,9,5,10)}. 

D 13 ; x = 11: C = {(2, 3, 4, 5), (6,7,8,9), (10, 11, 12, 13), (1,3,5,4), (6,8, 7,10), 
(9,11,13,12), (1, 2,4,6), (5, 7, 9,12), (8, 10, 13, 11), (1,5,3,2), (6,9, 7, 13), 
(8,11,10,12),(1,4,2, 7),(3,6,12,11),(8,13,9,10),(1,7,2,5),(3,8,12,10), 
(4,11,9,13),(1,6,2,11),(3,10,9,8),(4,13,5,12),(1,9,2,12),(3,13,7,4),(5,11,6,10), 
(1,10,4,8), (2,6,5,13),(3,11, 7,12),(1,8,2,13),(3, 7,5,9),(4,12,6,11),(1,12, 7,3), 
(2,9,4,10), (5,6,13,8),(1,13,3,9,5,10),(2,8,6,4, 7,11),(1,11,5,8,4,9), 
(2,10,7,6,3,12)}. 

D 13 ; x = 12: V = {(X) }UZ12 and C = {(I, 8, 7, 5)+i, (4,9,6, 10)+i, (11,2,3, (0)+ 
iii E Z12} U {(O, 2, 4, 6, 8,10) + iii E Z2}' 

D6,6; x = 2: C = {(I, 7, 2, 8), (3,9,4,10), (5, 11,6,12), (1,8,2,7), (3, 10,4,9), 
(5,12,6,11),(1,9,2,11,3,12),(4, 7,5,10,6,8),(1,10,2,12,3,11),(4,8,5,9,6,7), 
(1,11,4,12,2,9),(3, 7,6,10,5,8),(1,12,4,11,2,10),(3,8,6,9,5, 7)}. 

D 6,6; x = 4: C = {(1, 7,2,8), (3,9,4,10), (5, 11,6,12), (1,8,2,7), (3, 10,4,9), 
(5,12,6,11),(1,9,2,10),(3,11,4,12),(5, 7,6,8),(1,11,2,12),(3, 7,4,8), 
(5,10~6,9), (1,10,5,8,4,11),(2,9,6,~3,12),(1,12,4,7,5,9),(2,11,3,8,6,10)}. 

As in the case of the previous corollary, it remains to find an ARD(4,6)x of 
DU+l = D 25 for each x E {O, 1, 24, 25}; these can be found on the internet at 
http://www.dms.auburn.edu/'''pikedav/publications/resolve for x E {1,24}, and by 
using Theorem 2.2 otherwise. 0 
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