Constructions of Nested Directed BIB Designs

Miwako MISHIMA

Department of Information Science, Faculty of Engineering Gifu University, Gifu 501-1112, Japan miwako@info.gifu-u.ac.jp

Ying MIAO

Centre Interuniversitaire en Calcul Mathématique Algébrique Department of Computer Science Faculty of Engineering and Computer Science Concordia University Montreal, Quebec, Canada H3G 1M8 ymiao@cs.concordia.ca

Sanpei KAGEYAMA

Department of Mathematics, Faculty of School Education Hiroshima University, Higashi-Hiroshima 739-0046, Japan ksanpei@sed.hiroshima-u.ac.jp

Masakazu Jimbo

Department of Mathematics, Faculty of Science and Technology Keio University, Yokohama 223-0061, Japan jimbo@math.keio.ac.jp

Abstract

A directed BIB design $DB(k, \lambda; v)$ is a BIB design $B(k, 2\lambda; v)$ in which the blocks are transitively ordered k-tuples and each ordered pair of elements occurs in exactly λ blocks. A nested directed BIB design $NDB(k, \lambda; v)$ of form $\prod_{2 \le n \le k-1} (n^{j_n}, \lambda_n)^{i_n}$ is a $DB(k, \lambda; v)$ where each block contains $\sum_{2 \le n \le k-1} i_n j_n$ mutually disjoint subblocks, $i_n j_n$ subblocks of which are partitioned into i_n mutually disjoint families of j_n subblocks of size n and the j_n subblocks of size n belong to one distinguished system which forms the collection of blocks of a $DB(n, \lambda_n; v)$. In this paper we will use known and new techniques to show the existence of all $NDB(k, \lambda; v)$ of the form $\prod_{2 \le n \le k-1} (n^{j_n}, \lambda_n)^{i_n}$ for k = 4 and 5.

Australasian Journal of Combinatorics 18(1998), pp.157-172

1. Introduction

A balanced incomplete block (BIB) design (or BIBD) $B(k, \lambda; v)$ is a pair $(\mathcal{V}, \mathcal{B})$ where \mathcal{V} is a set of v elements, \mathcal{B} is a collection of k-subsets, called *blocks*, of \mathcal{V} such that every pair of distinct elements of \mathcal{V} occurs in exactly λ blocks of \mathcal{B} .

Hung and Mendelsohn [8] first introduced the concept of directed BIB designs. These designs have been further studied since then, see, for example, Bennett and Mahmoodi [3], Bennett, Wei, Yin and Mahmoodi [5], Colbourn and Rosa [6], Seberry and Skillicorn [12], Street and Seberry [13], Street and Wilson [14]. A *directed BIB design* (or DBIBD) with parameters v, k and λ , denoted by DB $(k, \lambda; v)$, is a pair $(\mathcal{V}, \mathcal{B})$ where \mathcal{V} is a set of v elements and \mathcal{B} is a set of transitively ordered k-tuples, called blocks, of \mathcal{V} , such that every ordered pair of elements of \mathcal{V} appears in exactly λ blocks of \mathcal{B} , where a transitively ordered k-tuple (x_1, \ldots, x_k) is defined to be the set $\{(x_i, x_j) : 1 \leq i < j \leq k\}$ consisting of k(k-1)/2 ordered pairs. If we ignore the order in the blocks, a DB $(k, \lambda; v)$ becomes a B $(k, 2\lambda; v)$. In fact, a DB $(k, \lambda; v)$ is a B $(k, 2\lambda; v)$ in which the blocks are regarded as transitively ordered k-tuples and in which each ordered pair of distinct elements occurs in eactly λ blocks. A pair $\{x, y\}$ is said to occur in a block if x is written to the left of y.

A nested BIB design (or NBIBD) NB $(k, \lambda; v)$ of form $\prod_{2 \le n \le k-1} (n^{j_n}, \lambda_n)^{i_n}$ is a B $(k, \lambda; v)$ $(\mathcal{V}, \mathcal{B})$ where each block contains $\sum_{2 \le n \le k-1} i_n j_n$ mutually disjoint subblocks, $i_n j_n$ subblocks of which are partitioned into i_n mutually disjoint families of j_n subblocks of size n, and the j_n subblocks of size n belong to one distinguished system $\mathcal{B}_n(\ell), 1 \le \ell \le i_n$, such that $(\mathcal{V}, \mathcal{B}_n(\ell))$ forms a B $(n, \lambda_n; v)$ for each integer n with $i_n \ge 1$.

A nested directed BIB design (or NDBIBD) NDB $(k, \lambda; v)$ of form $\prod_{2 \le n \le k-1} (n^{j_n}, \lambda_n)^{i_n}$ is a DB $(k, \lambda; v)$ $(\mathcal{V}, \mathcal{B})$ where each block contains $\sum_{2 \le n \le k-1} i_n j_n$ mutually disjoint subblocks, $i_n j_n$ subblocks of which are partitioned into i_n mutually disjoint families of j_n subblocks of size n and the j_n subblocks of size n belong to one distinguished system $\mathcal{B}_n(\ell), 1 \le \ell \le i_n$, such that $(\mathcal{V}, \mathcal{B}_n(\ell))$ forms a DB $(n, \lambda_n; v)$ for each integer n with $i_n \ge 1$.

An example of an NDBIBD is illustrated. As a set of 10 elements let $\mathcal{V} = \mathbb{Z}_9 \cup \{\infty\}$ and as a collection of 4-subsets of \mathcal{V} take

 $\mathcal{B} = \{(\underline{0}, \underline{\underline{1}}, \underline{3}, \underline{\underline{8}}), \ (\underline{0}, \underline{4}, \underline{\underline{1}}, \underline{3}), \ (\underline{0}, \underline{5}, \underline{\underline{3}}, \underline{\underline{2}}), \ (\underline{\infty}, \underline{0}, \underline{4}, \underline{\underline{5}}), \ (\underline{0}, \underline{7}, \underline{4}, \underline{\infty}) \mod 9\},$

where the elements underlined "_" and "" within a block form two subblocks belonging to the same system DB(2,1;10). Then $(\mathcal{V}, \mathcal{B})$ is an NDB(4,3;10) of form $(2^2, 1)^1$.

The following necessary conditions for the existence of an NDB $(k, \lambda; v)$ of form $\prod_{2 \le n \le k-1} (n^{j_n}, \lambda_n)^{i_n}$ have been established in [10]: For all integers n with $i_n \ge 1$,

$$\lambda = k(k-1)\frac{\lambda_n}{n(n-1)j_n}, \quad 2\lambda(v-1) \equiv 0 \mod (k-1),$$

$$2\lambda v(v-1) \equiv 0 \mod k(k-1), \quad 2\lambda_n(v-1) \equiv 0 \mod (n-1),$$

$$2\lambda_n v(v-1) \equiv 0 \mod n(n-1).$$
(1.1)

Nested directed BIB designs with parameters satisfying (1.1) are said to be *ad*missible. All admissible NDBIBDs with block sizes 3 and 4 are constructed in [10] except possibly for an NDB(4, 2; 10) of form $(3, 1)^1$ as the following shows.

Theorem 1.1 [10]. The necessary conditions for the existence of an NDB $(k, \lambda; v)$ of any possible form are also sufficient for k = 3 and 4 with one possible exception: an NDB(4, 2; 10) of form $(3, 1)^1$.

The purpose of this paper is to show the existence of an NDB(4, 2; 10) of form $(3, 1)^1$ and all admissible NDBIBDs with k = 5 by using known and new techniques. In Sections 2 to 5, some constructions of NDBIBDs will be introduced. In Section

6, the existence of an NDB(4, 2; 10) of form $(3, 1)^1$ will be shown.

There are six possible forms for an NDB(5, λ ; v), i.e. $(4, \lambda_4)^1$, $(3, \lambda_3)^1(2, \lambda_2)^1$, $(3, \lambda_3)^1$, $(2, \lambda_2)^2$, $(2, \lambda_2)^1$, $(2^2, \lambda_2)^1$. However, since the existence of an NDB(5, λ ; v) of form $(3, \lambda_3)^1(2, \lambda_2)^1$ implies the existence of an NDB(5, λ ; v) of form $(3, \lambda_3)^1(2, \lambda_2)^1$ implies the existence of an NDB(5, λ ; v) of form $(2, \lambda_2)^2$ implies the existence of an NDB(5, λ ; v) of form $(2, \lambda_2)^1$, the designs of the remaining four forms will be treated in each of Sections 7 to 10, i.e. the existence of NDB(5, λ ; v) of form $(4, \lambda_4)^1$, $(3, \lambda_3)^1(2, \lambda_2)^1$, $(2, \lambda_2)^2$ and $(2^2, \lambda_2)^1$.

The main result of this paper will be given in the last section.

2. Constructions from GDD

Let \mathcal{V} be a set of v elements, \mathcal{G} be a partition of \mathcal{V} into subsets, called *groups*, and \mathcal{B} be a collection of some subsets of \mathcal{V} , called *blocks*. A *group divisible design* (or GDD) (K, λ) -GDD is a triple $(\mathcal{V}, \mathcal{G}, \mathcal{B})$ such that

- (i) $|B| \in K$ for every $B \in \mathcal{B}$;
- (ii) $|G \cap B| \leq 1$ for every $G \in \mathcal{G}$ and every $B \in \mathcal{B}$; and
- (iii) every pair of elements $\{x, y\}$, where x and y belong to distinct groups, is contained in exactly λ blocks of \mathcal{B} .

The type of a GDD $(\mathcal{V}, \mathcal{G}, \mathcal{B})$ is the multiset $\{|G| : G \in \mathcal{G}\}$. An exponential notation is usually used to describe types: a type $g_1^{u_1} \cdots g_m^{u_m}$ denotes u_i occurrences of $g_i, 1 \leq i \leq m$.

In order to prove that the necessary conditions (1.1) for the existence of an $NDB(k, \lambda; v)$ of any possible form are also sufficient for k = 3 and 4, Kageyama and Miao [10] introduced the concept of nested directed GDDs.

A directed GDD (or DGDD) (K, λ) -DGDD of type T is a $(K, 2\lambda)$ -GDD of the same type T in which the blocks are transitively ordered k-tuples and each ordered pair of elements not contained in the same group occurs in exactly λ blocks.

A nested directed GDD (or NDGDD) (k, λ) -NDGDD of type T and of form $\prod_{2 \le n \le k-1} (n^{j_n}, \lambda_n)^{i_n}$, $(\mathcal{V}, \mathcal{G}, \mathcal{B})$, is a $(\{k\}, \lambda)$ -DGDD of type T where each block of \mathcal{B} contains $\sum_{2 \le n \le k-1} i_n j_n$ mutually disjoint subblocks, $i_n j_n$ subblocks of which are partitioned into i_n mutually disjoint families of j_n subblocks of size n and the j_n subblocks of size n belong to one distinguished system $\mathcal{B}_n(\ell)$, $1 \le \ell \le i_n$, such that $(\mathcal{V}, \mathcal{G}, \mathcal{B}_n(\ell))$ forms an $(\{n\}, \lambda_n)$ -DGDD of type T for all integers n and ℓ with $1 \le \ell \le i_n$.

Theorem 2.1 [10]. Let $(\mathcal{V}, \mathcal{G}, \mathcal{B})$ be a (K, λ) -GDD. Further let $w : \mathcal{V} \longrightarrow \mathcal{N} \cup \{0\}$ be a weight function, where \mathcal{N} is the set of all positive integers. For each $B \in \mathcal{B}$, suppose there exists a (k, λ') -NDGDD of type $\{w(x) : x \in B\}$ and of form $\prod_{2 \leq n \leq k-1} (n^{j_n}, \lambda_n)^{i_n}, (\bigcup_{x \in B} S(x), \{S(x) : x \in B\}, \mathcal{B}_B), where <math>S(x) = \{x_1, ..., x_{w(x)}\}$ for every $x \in \mathcal{V}$ and \mathcal{B}_B is the collection of blocks of this NDGDD. Then there exists a $(k, \lambda\lambda')$ -NDGDD of type $\{\sum_{x \in G} w(x) : G \in \mathcal{G}\}$ and of form $\prod_{2 \leq n \leq k-1} (n^{j_n}, \lambda\lambda_n)^{i_n}, (\bigcup_{x \in \mathcal{V}} S(x), \{\bigcup_{x \in G} S(x) : G \in \mathcal{G}\}, \bigcup_{B \in \mathcal{B}} \mathcal{B}_B).$

As an immediate consequence, the following corollary can be obtained. Recall that a *pairwise balanced design* (or PBD) $B(K, \lambda; v)$ can be regarded as a (K, λ) -GDD of type 1^v. A set K of positive integers is said to be *PBD-closed* if B(K) = K, where $B(K) = \{v : a \ B(K, 1; v) \ exists\}$.

Corollary 2.2 [10]. Let NDB $(k, \lambda, F) = \{v : an NDB(k, \lambda; v) \text{ of form } F \text{ exists}\}$. Then the NDB (k, λ, F) is a PBD-closed set.

We also need the following construction.

Theorem 2.3 [11]. Let $(\mathcal{V}, \mathcal{G}, \mathcal{B})$ be a (k, λ) -NDGDD of form F. Further let G_0 be a set of new elements, that is, $G_0 \cap \mathcal{V} = \phi$, and suppose that for each group $G \in \mathcal{G}$, there exists a (k, λ) -NDGDD of form F, $(G \cup G_0, \mathcal{H}_G \cup \{G_0\}, \mathcal{B}_G)$, where \mathcal{H}_G is the set of groups without G_0 and \mathcal{B}_G is the collection of blocks of this NDGDD. Then there exists a (k, λ) -NDGDD of form F, $(\mathcal{V} \cup G_0, (\bigcup_{G \in \mathcal{G}} \mathcal{H}_G) \cup \{G_0\}, \mathcal{B} \cup (\bigcup_{G \in \mathcal{G}} \mathcal{B}_G))$.

3. A construction from directed frames

Let $(\mathcal{V}, \mathcal{G}, \mathcal{B})$ be a $(\{k\}, \lambda)$ -DGDD. If the collection \mathcal{B} of blocks can be partitioned into partial parallel classes each of which partitions $\mathcal{V} - G$ for some $G \in \mathcal{G}$, it is said that this DGDD is a directed frame, denoted by (k, λ) -directed frame. The type of the directed frame is the type of the underlying DGDD.

Directed frames can be used to construct NDBIBDs.

Theorem 3.1. The existence of a (k, λ) -directed frame of type g^u implies the existence of a $(k+1, \frac{k+1}{2})$ -NDGDD of type g^u and of form $(k, \frac{k-1}{2})^1$ when λ is a factor of (k-1)/2, or a $(k+1, \lambda + \frac{2\lambda}{k-1})$ -NDGDD of type g^u and of form $(k, \lambda)^1$ when (k-1)/2 is a factor of λ .

Proof. It is easy to show that for each group of a (k, λ) -directed frame of type g^u , $(\mathcal{V}, \mathcal{G}, \mathcal{B})$, there are $2\lambda g/(k-1)$ partial parallel classes associated with it.

(I) When $\lambda \mid (k-1)/2$, let $(k-1)/2 = s\lambda$, $s \in \mathcal{N}$. Then there are g/s partial parallel classes, say, $\mathcal{P}_{G,i}$, $1 \leq i \leq g/s$, associated with the group G for all $G \in \mathcal{G}$. For each block $B = (b_1, \ldots, b_k)$ of a partial parallel class $\mathcal{P}_{G,i}$ with $G = \{x_1, \ldots, x_g\}$ we form s new blocks $B_1 = ((b_1, \ldots, b_k), x_{(i-1)s+1}), \ldots, B_s = ((b_1, \ldots, b_k), x_{is})$. Then $(\mathcal{V}, \mathcal{G}, \mathcal{B}')$ with $\mathcal{B}' = \{((b_1, \ldots, b_k), x_{(i-1)s+j}) : i = 1, \ldots, g/s ; j = 1, \ldots, s ; (b_1, \ldots, b_k) \in P_{G,i} ; G \in \mathcal{G}\}$ is a $(k + 1, \frac{k+1}{2})$ -NDGDD of type g^u and of form $(k, \frac{k-1}{2})^1$.

(II) When $(k-1)/2 \mid \lambda$, let $\lambda = \{(k-1)/2\}t$, $t \in \mathcal{N}$. Then there are tg partial parallel classes, say, $\mathcal{Q}_{G,i}, 1 \leq i \leq tg$, associated with the group $G = \{x_1, \ldots, x_g\} \in \mathcal{G}$. For each block $B = (b_1, \ldots, b_k)$ of the t partial parallel classes $\mathcal{Q}_{G,(n-1)t+1}, \ldots, \mathcal{Q}_{G,nt}, n = 1, \ldots, g$, a new block $((b_1, \ldots, b_k), x_n)$ is formed. Then $(\mathcal{V}, \mathcal{G}, \mathcal{B}'')$ with $\mathcal{B}'' = \{((b_1, \ldots, b_k), x_n) : n = 1, \ldots, g; (b_1, \ldots, b_k) \in \cup_{j=1}^t \mathcal{Q}_{G,(n-1)t+j}; G \in \mathcal{G}\}$ is a $(k+1, \lambda + \frac{2\lambda}{k-1})$ -NDGDD of type g^u and of form $(k, \lambda)^1$.

A (k, λ) -directed frame of type 1^v can be named as an almost resolvable directed BIB design (or ARDBIBD) ARDB $(k, \lambda; v)$. In fact, an ARDB $(k, \lambda; v)$ $(\mathcal{V}, \mathcal{B})$ is a DB $(k, \lambda; v)$ in which the collection of blocks can be partitioned into partial parallel classes each of which partitions $\mathcal{V} - \{x\}$ for some $x \in \mathcal{V}$.

It is easy to show that in the ARDB $(k, \lambda; v)$, $\lambda = \{(k-1)/2\}m$ for some integer $m \in \mathcal{N}$.

Corollary 3.2. Let $m \in \mathcal{N}$. Then the existence of an ARDB $(k, \frac{k-1}{2}m; v)$ implies the existence of an NDB $(k + 1, \frac{k+1}{2}m; v)$ of form $(k, \frac{k-1}{2}m)^1$.

Recall that an almost resolvable BIB design (or ARBIBD) ARB $(k, \lambda; v)$ is a BIB design B $(k, \lambda; v)$ in which the collection of blocks can be partitioned into partial parallel classes each of which partitions $\mathcal{V} - \{x\}$ for some $x \in \mathcal{V}$. It follows that the existence of an ARB $(k, \lambda; v)$ implies the existence of an ARDB $(k, \lambda; v)$. In fact, by assigning to each block of the ARB $(k, \lambda; v)$ two new blocks, one in some arbitrary but fixed order which is imposed on the elements of each block and one in the reverse order, an ARDB $(k, \lambda; v)$ is obtained.

Corollary 3.3. Let $m \in \mathcal{N}$. Then the existence of an ARB(k, (k-1)m; v) implies the existence of an NDB(k+1, (k+1)m; v) of form $(k, (k-1)m)^1$.

The existence problem of ARBIBDs has been extensively discussed in [7]. The results contained there can then be utilized to construct many such NDBIBDs.

4. A construction from idempotent MOLS

A Latin square of order v based on a set \mathcal{V} of v elements is a $v \times v$ array such that each row and each column contains each element of \mathcal{V} exactly once. Two Latin squares, $A = (a_{ij})$ and $B = (b_{ij})$ on \mathcal{V} , are said to be *orthogonal* if $\{(a_{ij}, b_{ij}) : 1 \leq i, j \leq v\} = \mathcal{V} \times \mathcal{V}$. Without loss of generality, we may assume $\mathcal{V} = \{1, 2, \ldots, v\}$. A

Latin square on \mathcal{V} is said to be *idempotent* if the (i, i)-entry is i for all $i, 1 \leq i \leq v$. The t idempotent Latin squares A_1, \ldots, A_t of order v are called t mutually orthogonal *idempotent Latin squares* if A_i and A_j are orthogonal for all $i, j, 1 \leq i < j \leq t$, and are denoted by t idempotent MOLS(v).

The existence of t idempotent MOLS(v) has been studied extensively. For example, the following result can be found in [1].

Theorem 4.1 [1]. For any integer $v \ge 5$, $v \ne 6$, 10, there exist 3 idempotent MOLS(v).

This concept can be utilized to construct NDBIBDs as follows.

Theorem 4.2. The existence of k-2 idempotent MOLS(v) implies the existence of an $NDB(k, \frac{k(k-1)}{2}; v)$ of form $\prod_{2 \le n \le k-1} (n^{j_n}, j_n \frac{n(n-1)}{2})^{i_n}$ for any possible integers n, j_n and i_n such that $\sum_{2 \le n \le k-1} i_n j_n n \le k$.

Proof. Let $\mathcal{V} = \{1, 2, \dots, v\}$. Take k - 2 idempotent MOLS(v) based on \mathcal{V} , $A_1 = (a_{ij}^{(1)}), \dots, A_{k-2} = (a_{ij}^{(k-2)})$ for $1 \leq i, j \leq v$, where $1 \leq a_{ij}^{(\ell)} \leq v, 1 \leq \ell \leq k-2$. Let $\mathcal{B} = \{(i, j, a_{ij}^{(1)}, \dots, a_{ij}^{(k-2)}) : 1 \leq i, j \leq v, i \neq j\}$. Then $(\mathcal{V}, \mathcal{B})$ is a DB $(k, \frac{k(k-1)}{2}; v)$. Divide each block of \mathcal{B} into $\sum_{2 \leq n \leq k-1} i_{njn}$ mutually disjoint subblocks, such that i_{njn} of them are partitioned into i_n mutually disjoint families of j_n subblocks of size n belong to one distinguished system $\mathcal{B}_n(\ell), 1 \leq \ell \leq i_n$, and that $(\mathcal{V}, \mathcal{B}_n(\ell))$ forms a DB $(n, j_n \frac{n(n-1)}{2}; v)$ for all integers n and ℓ with $1 \leq \ell \leq i_n$. This completes the proof.

5. A construction from the method of differences

The method of differences is the most commonly used direct construction technique. Here we describe a construction based on this technique, which is an extension of [14].

Theorem 5.1. Let S be a 5-subset of GF(q), and θ be a primitive element of GF(q), q > 3. If S can be arranged so that the 10 ordered differences of S contain 5 squares and 5 non-squares, then the base blocks $S, \theta^2 S, \ldots, \theta^{q-3}S$ form a DB(5,5;q). Furthermore,

- if there exists a 4-subset T₄ of the arranged S so that the 6 ordered differences of T₄ contain 3 squares and 3 non-squares, then the DB(5,5;q) gives an NDB(5,5;q) of form (4,3)¹;
- (2) if there exist two mutually disjoint 2-subsets T₂, T'₂ of the arranged S so that the 2 ordered differences of T₂ and T'₂ contain 1 square and 1 non-square, then the DB(5,5;q) gives an NDB(5,5;q) of form (2², 1)¹.

The proof of this theorem is straightforward.

6. Construction of NDB $(4, \lambda; v)$

As pointed out in Section 1, the necessary conditions (1.1) for the existence of an NDB(4, λ ; v) of any possible form are also sufficient, except possibly for an NDB(4, 2; 10) of form $(3, 1)^1$. This possible exception will be removed.

At first we need an almost resolvable directed BIB design below.

Lemma 6.1. There exists an ARDB(3, 1; 10).

Proof. Let $\mathcal{V} = Z_5 \times Z_2$ and \mathcal{B} be the development of the following base blocks modulo (5, -).

 $((1,0), (0,0), (3,0)), \quad ((2,1), (3,1), (2,0)), \quad ((4,0), (1,1), (4,1)), \\ ((1,0), (4,1), (2,0)), \quad ((2,1), (1,1), (3,0)), \quad ((4,0), (3,1), (0,1)).$

It is readily checked that $(\mathcal{V}, \mathcal{B})$ is an ARDB(3, 1; 10), where the first three base blocks form a partition of $\mathcal{V} - \{(0, 1)\}$, and the last three base blocks form a partition of $\mathcal{V} - \{(0, 0)\}$.

Theorem 6.2. There exists an NDB(4, 2; 10) of form $(3, 1)^1$.

Proof. Apply Corollary 3.2 with Lemma 6.1.

Thus we can show the entire existence of nested directed BIB designs of block size 4 as follows.

Theorem 6.3. The necessary conditions (1.1) for the existence of an NDB(4, λ ; v) of any possible form are also sufficient.

Proof. Take Theorems 1.1 and 6.2.

7. Construction of NDB $(5, \lambda; v)$ of form $(4, \lambda_4)^1$

It is clear that the necessary conditions (1.1) for the existence of an NDB(5, λ ; v) of form $(4, \lambda_4)^1$ are $v \ge 5$, $\lambda_4 = 3t$, $\lambda = 5t$ and $t(v - 1) \equiv 0 \mod 2$ for some positive integer t. It will be shown that they are also sufficient.

Theorem 7.1. The existence of an NB $(k, \lambda; v)$ of form F implies the existence of an NDB $(k, \lambda; v)$ of form F.

Proof. For each block $\{x_1, \ldots, x_k\}$ of an NB $(k, \lambda; v)$ of form F, define two new blocks (x_1, \ldots, x_k) and (x_k, \ldots, x_1) . Then these new directed blocks form the collection of blocks of an NDB $(k, \lambda; v)$ of form F.

Corollary 7.2. There exists an NDB(5, 5t; v) of form $(4, 3t)^1$ whenever $v \ge 5$ and $t(v-1) \equiv 0 \mod 4$ for $t \in \mathcal{N}$.

Proof. Wang and Zhu [15] constructed all of these NB(5, 5t; v) of form $(4, 3t)^1$. Apply Theorem 7.1.

Now we use DBIBDs to produce NDBIBDs.

Theorem 7.3. The existence of a DB(5, t; v) implies the existence of an NDB(5, 5t; v) of form $(4, 3t)^1$.

Proof. For each block (a, b, c, d, e) of an DB(5, t; v), define five new blocks:

 $(\underline{a}, \underline{b}, \underline{c}, \underline{d}, e), \ (\underline{a}, \underline{b}, \underline{c}, d, \underline{e}), \ (\underline{a}, \underline{b}, c, \underline{d}, \underline{e}), \ (\underline{a}, b, \underline{c}, \underline{d}, \underline{e}), \ (a, \underline{b}, \underline{c}, \underline{d}, \underline{e}),$

where the elements underlined with "_" within a block form a subblock. Then these new blocks can form the collection of blocks of an NDB(5, 5t; v) of form $(4, 3t)^1$. \Box

Corollary 7.4. There exists an NDB(5,5t;v) of form $(4,3t)^1$ whenever $v \ge 5$, $(v,t) \ne (15,1), t(v-1) \equiv 0 \mod 2$ and $tv(v-1) \equiv 0 \mod 10$ for $t \in \mathcal{N}$.

Proof. When v and t satisfy the stated conditions, there exists a DB(5, t; v) (see [14]). Then apply Theorem 7.3.

By an argument similar to those for Theorem 7.3 and Corollary 7.4, we have the following.

Theorem 7.5. The existence of a $(\{5\}, t)$ -DGDD of type T implies the existence of a (5, 5t)-NDGDD of type T and of form $(4, 3t)^1$.

Corollary 7.6. There exist (5,5)-NDGDD of types 2^5 and 2^6 , and of form $(4,3)^1$.

Proof. The $(\{5\}, 1)$ -DGDD of types 2^5 and 2^6 can be found in [14].

Furthermore, we have the following.

Lemma 7.7. There exists a (5,5)-NDGDD of type 2^7 and of form $(4,3)^1$.

Proof. Let $\mathcal{V} = Z_2 \times Z_7$, $\mathcal{G} = \{Z_2 \times \{i\} : i \in Z_7\}$, and \mathcal{B} be the development of the following base blocks modulo (2, 7), where the elements underlined with "" within a block form a subblock:

 $\begin{array}{l} (\underbrace{(0,0)},\underbrace{(0,1)},\underbrace{(0,6)},\underbrace{(1,3)},\underbrace{(1,4)},\\ (\underbrace{(0,0)},\underbrace{(0,4)},\underbrace{(0,3)},\underbrace{(1,2)},\underbrace{(1,5)},\\ (\underbrace{(0,0)},\underbrace{(0,5)},\underbrace{(0,2)},\underbrace{(1,6)},\underbrace{(1,1)},\\ (\underbrace{(1,0)},\underbrace{(0,1)},\underbrace{(0,6)},\underbrace{(0,3)},\underbrace{(0,2)},\underbrace{(0,5)},\\ (\underbrace{(1,0)},\underbrace{(0,5)},\underbrace{(0,2)},\underbrace{(0,6)},\underbrace{(0,1)}.\\ \end{array}$

Theorem 5.1 can also be used to produce some useful NDBIBDs.

Lemma 7.8. There exists an NDB(5,5;q) of form $(4,3)^1$, where $q \in \{7, 19, 23, 27, 43, 47, 83\}$.

Proof. Suitable orderings for S and T_4 in Theorem 5.1 are listed below:

 $q=7, \quad \theta=3,$ S = (1, 3, 2, 6, 4), $T_4 = (1, 3, 2, 6);$ S = (1, 2, 4, 16, 8), $q = 19, \ \theta = 2,$ $T_4 = (2, 4, 16, 8);$ S = (1, 5, 10, 2, 4), $T_4 = (1, 5, 10, 2);$ $q = 23, \ \theta = 5,$ $q = 27, \ \theta^3 = \theta + 2, \ S = (1, \theta, \theta^2, \theta + 2, \theta^2 + 2\theta), \ T_4 = (1, \theta^2, \theta + 2, \theta^2 + 2\theta);$ $q = 43, \ \theta = 3,$ S = (1, 3, 27, 9, 38), $T_4 = (1, 3, 27, 9);$ S = (1, 5, 25, 31, 14), $q = 47, \ \theta = 5,$ $T_4 = (5, 25, 31, 14);$ S = (1, 2, 4, 8, 16), $q = 83, \ \theta = 2,$ $T_4 = (1, 2, 4, 16).$

Then apply Theorem 5.1(1).

A ({k}, λ)-GDD of type g^k is called a *transversal design*, denoted by TD(k, $\lambda; g$).

Theorem 7.9. Let $0 \le s$, $t \le g$. Suppose there exists a TD(7,1;g). If there exist NDB(5,5;u) of form $(4,3)^1$ for u = 2g + 1, 2s + 1, 2t + 1, then there exists an NDB(5,5;v) of form $(4,3)^1$ with v = 10g + 2s + 2t + 1.

Proof. Delete g - s elements and g - t elements from two groups of the TD(7, 1; g) respectively. Give weight 2 to each element of the resulting ({5, 6, 7}, 1)-GDD of type $g^5s^1t^1$. Since Corollary 7.6 and Lemma 7.7 give (5, 5)-NDGDD of types 2^5 , 2^6 and 2^7 , and of form (4, 3)¹, by applying Theorem 2.1 we get a (5, 5)-NDGDD of type $(2g)^5(2s)^1(2t)^1$ and of form (4, 3)¹. Applying Theorem 2.3 with $|G_0| = 1$, the desired NDBIBD is obtained.

Corollary 7.10. There exists an NDB(5,5; v) of form $(4,3)^1$, where $v \in \{99, 107, 119, 139, 143, 179, 183, 283\}$.

Proof. Applying Theorem 7.9 with g = 8, 9, 11, 16 and 23 (see [1] for their existence), we have the required result, since $99 = 10 \cdot 8 + 2 \cdot 5 + 2 \cdot 4 + 1, 107 = 10 \cdot 8 + 2 \cdot 8 + 2 \cdot 5 + 1, 119 = 10 \cdot 9 + 2 \cdot 9 + 2 \cdot 5 + 1, 139 = 10 \cdot 11 + 2 \cdot 9 + 2 \cdot 5 + 1, 143 = 10 \cdot 11 + 2 \cdot 8 + 2 \cdot 8 + 1, 179 = 10 \cdot 16 + 2 \cdot 5 + 2 \cdot 4 + 1, 183 = 10 \cdot 16 + 2 \cdot 6 + 2 \cdot 5 + 1$ and $283 = 10 \cdot 23 + 2 \cdot 13 + 2 \cdot 13 + 1$.

Theorem 7.11. Let $0 \le s \le g$. Suppose there exists a TD(6,1;g). If there exist NDB(5,5;u) of form $(4,3)^1$ for u = 2g + 1, 2s + 1, then there exists an NDB(5,5;v) of form $(4,3)^1$ with v = 10g + 2s + 1.

Proof. Delete g - s elements from one group of the TD(6, 1; g). Give weight 2 to each element of the resulting ({5, 6}, 1)-GDD of type g^5s^1 . Since Corollary 7.6 gives (5, 5)-NDGDD of types 2^5 and 2^6 , and of form (4, 3)¹, by applying Theorem 2.1 we get a (5, 5)-NDGDD of type $(2g)^5(2s)^1$ and of form (4, 3)¹. Then apply Theorem 2.3.

Corollary 7.12. There exists an NDB(5,5;v) of form $(4,3)^1$, where $v \in \{59, 87, 167, 243, 563\}$.

Proof. Apply Theorem 7.11 with g = 5, 8, 16, 23 and 55 (see [1]), where $59 = 10 \cdot 5 + 2 \cdot 4 + 1, 87 = 10 \cdot 8 + 2 \cdot 3 + 1, 167 = 10 \cdot 16 + 2 \cdot 3 + 1, 243 = 10 \cdot 23 + 2 \cdot 6 + 1$ and $563 = 10 \cdot 55 + 2 \cdot 6 + 1$.

Lemma 7.13. There exists an NDB(5, 5; 39) of form $(4, 3)^1$.

Proof. Bennett et al. [4] showed the existence of a $(\{5,7\},1)$ -DGDD of type 1^{39} . For each block (a, b, c, d, e) of size 5, define five new blocks: $(\underline{a}, \underline{b}, \underline{c}, \underline{d}, e), (\underline{a}, \underline{b}, \underline{c}, d, \underline{e}), (\underline{a}, \underline{b}, \underline{c}, \underline{d}, \underline{e}), (\underline{a}, \underline{b}, \underline{c}, \underline{c}, \underline{d}, \underline{e}), (\underline{a}, \underline{b}, \underline{c}, \underline{c}, \underline{d}, \underline{e}), (\underline{a}, \underline{b}, \underline{c}, \underline{c}), (\underline{a}, \underline{b}, \underline{c}, \underline{c}), (\underline{a}, \underline{b}, \underline{c}, \underline{c}), (\underline{a}, \underline{b}, \underline{c}, \underline{c}), (\underline{a}, \underline{b}, \underline{c}), (\underline{a}, \underline{b}, \underline{c}, \underline{c}), (\underline{a}, \underline{b}, \underline{c}), (\underline{b}, \underline{c}, \underline{c}), (\underline{$

Lemma 7.14. There exists an NDB(5, 5; 15) of form $(4, 3)^1$.

Proof. The design is given below: $\mathcal{V} = Z_{15}, \mathcal{B} = \{(0, \underline{1}, \underline{2}, \underline{3}, \underline{4}), (\underline{0}, 1, \underline{3}, \underline{5}, \underline{8}), (0, \underline{3}, \underline{7}, \underline{13}, \underline{11}), (0, \underline{6}, \underline{13}, \underline{10}, \underline{5}), (\underline{0}, \underline{12}, 9, \underline{6}, \underline{5}), (\underline{0}, \underline{12}, \underline{11}, \underline{6}, 5), (\underline{0}, \underline{13}, \underline{11}, \underline{7}, 6) \mod 15\}.$

Now we can state the following.

Theorem 7.15. Let $v \ge 5$ be odd. Then all NDB(5, 5t; v) of form $(4, 3t)^1$ exist for any positive integers t.

Proof. First we consider the case where t = 1. Bennett et al. [2] showed that $B(\{5,7,9\}) \supseteq (2N+1) - E$, where $E = \{11, 13, 15, 17, 19, 23, 27, 29, 31, 33, 39, 43, 51, 59, 71, 75, 83, 87, 93, 95, 99, 107, 111, 113, 115, 119, 131, 135, 139, 143, 167, 173, 179, 183, 191, 195, 243, 283, 411, 563\}. Since there exist NDB(5, 5; <math>v$) of form $(4, 3)^1$ for v = 5, 7, 9 (see Corollary 7.2 and Lemma 7.8), by applying Corollary 2.2, we need only to construct NDB(5, 5; v) of form $(4, 3)^1$ for $v \in E$. Corollary 7.2 settles the cases for v = 13, 17, 29, 33, 93, 113, 173. Corollary 7.4 covers the cases for v = 11, 31, 51, 71, 75, 95, 111, 115, 131, 135, 191, 195, 411. Lemma 7.8 covers the cases for v = 19, 23, 27, 43, 83. The remaining 15 cases are settled by Corollaries 7.10 and 7.12, and Lemmas 7.13 and 7.14. Thus all NDB(5, 5; v) of form $(4, 3)^1$ are constructed for v odd ≥ 5 .

Next take each block of an NDB(5,5;v) of form $(4,3)^1 t$ times. Then it follows that an NDB(5,5t;v) of form $(4,3t)^1$ is obtained whenever v is odd ≥ 5 . This completes the proof.

On the other hand, when v is even, the following can be obtained.

Theorem 7.16. Let $v \ge 5$ be even. Then all NDB(5, 10s; v) of form $(4, 6s)^1$ exist for any positive integers s.

Proof. Theorem 4.1 with Theorem 4.2 can cover all the cases except for v = 6 and 10, which can be removed by Corollary 7.4.

As a summary, we have the following main result of this section.

Theorem 7.17. The necessary conditions (1.1) for the existence of an NDB $(5, \lambda; v)$ of form $(4, \lambda_4)^1$ are also sufficient.

Proof. The sufficiency follows from Theorems 7.15 and 7.16.

8. Construction of NDB(5, λ ; v) of form $(3, \lambda_3)^1(2, \lambda_2)^1$

In this case, the necessary conditions (1.1) become $v \ge 5$, $\lambda = 10\lambda_2$ and $\lambda_3 = 3\lambda_2$.

Lemma 8.1. There exist an NDB(5, 10; 6) and an NDB(5, 10; 10), both of form $(3, 3)^{1}(2, 1)^{1}$.

Proof. An NDB(5, 10; 6) of form $(3, 3)^1(2, 1)^1$ is given below:

$$\begin{aligned} \mathcal{V} &= Z_5 \cup \{\infty\}, \\ \mathcal{B} &= \{ (\underline{0}, \underline{1}, \underline{2}, \underline{3}, \underline{4}), \quad (\underline{\infty}, \underline{3}, \underline{2}, \underline{1}, \underline{0}), \quad (\underline{4}, \underline{2}, \underline{1}, \underline{0}, \underline{\infty}), \\ &\quad (\underline{1}, \underline{2}, \underline{\infty}, \underline{3}, \underline{4}), \quad (\underline{\infty}, \underline{4}, \underline{3}, \underline{2}, \underline{0}), \quad (\underline{4}, \underline{3}, \underline{1}, \underline{0}, \underline{\infty}) \mod 5 \}, \end{aligned}$$

where the elements underlined with "_" and "" within a block form a subblock of size 3 and of size 2 respectively. An NDB(5, 10; 10) of form $(3,3)^1(2,1)^1$ is constructed below:

$$\begin{split} \mathcal{V} &= \mathrm{GF}(9) \cup \{\infty\}, \\ \mathcal{B} &= \{ \begin{array}{ccc} (\underline{1}, \underline{2}, \underline{\infty}, \underline{2\theta+1}, \underline{\theta+2}), & (\underline{1}, \underline{2}, \underline{\infty}, \underline{2\theta+1}, \underline{\theta+2}), & (\underline{1}, \underline{2}, \underline{\infty}, \underline{2\theta+1}, \underline{\theta+2}), \\ (\underline{1}, \underline{2}, \underline{\infty}, \underline{2\theta+1}, \underline{\theta+2}), & (\underline{1}, \underline{2}, \underline{\infty}, \underline{2\theta+1}, \underline{\theta+2}), & (\underline{0}, \underline{2}, \underline{1}, \underline{\theta+2}, \underline{2\theta+1}), \\ (\underline{0}, \underline{2}, \underline{1}, \underline{\theta+2}, \underline{2\theta+1}), & (\underline{0}, \underline{2}, \underline{1}, \underline{\theta+2}, \underline{2\theta+1}), & (\underline{0}, \underline{2}, \underline{1}, \underline{\theta+2}, \underline{2\theta+1}), \\ (\underline{0}, \underline{2}, \underline{1}, \underline{\theta+2}, \underline{2\theta+1}), & \mathrm{mod} 9 \}, \end{split}$$

where θ is a primitive element of GF(9) satisfying $\theta^2 = 2\theta + 1$.

Theorem 8.2. There exists an NDB(5, 10; v) of form $(3, 3)^1(2, 1)^1$ for $v \ge 5$.

Proof. Theorem 4.1 with Theorem 4.2 covers all the cases except for v = 6 and 10, which are constructed in Lemma 8.1.

Hence we have the following.

Theorem 8.3. The necessary conditions (1.1) for the existence of an NDB(5, λ ; v) of form $(3, \lambda_3)^{1}(2, \lambda_2)^{1}$ are also sufficient.

Proof. Repeat each block (and thus each subblock) of an NDB(5, 10; v) of form $(3, 3)^{1}(2, 1)^{1} \lambda_{2}$ times.

9. Construction of NDB(5, $\lambda; v$) of form $(2, \lambda_2)^2$

Here the necessary conditions (1.1) are that $v \ge 5$ and $\lambda = 10\lambda_2$.

Lemma 9.1. There exist an NDB(5, 10; 6) and an NDB(5, 10; 10), both of form $(2, 1)^2$.

Proof. An NDB(5, 10; 6) of form $(2, 1)^2$ is obtained below:

 $\begin{aligned} \mathcal{V} &= Z_6, \\ \mathcal{B} &= \{(\underline{0},\underline{1},\underline{\underline{2}},\underline{\underline{3}},4), \ (\underline{0},\underline{\underline{1}},\underline{2},\underline{\underline{3}},4), \ (\underline{4},\underline{3},\underline{2},\underline{\underline{1}},0), \ (\underline{4},\underline{\underline{3}},\underline{2},\underline{\underline{1}},0), \ (5,\underline{1},\underline{\underline{3}},\underline{\underline{0}},\underline{4}) \mod 6\}, \end{aligned}$

where the elements underlined with "_" and "_" within a block form a subblock respectively. An NDB(5, 10; 10) of form $(2, 1)^2$ is given below:

$$\begin{split} \mathcal{V} &= \mathrm{GF}(9) \cup \{\infty\}, \\ \mathcal{B} &= \{ \underbrace{(\underline{1}, 2, \underline{\infty}, \underline{2\theta+1}, \theta+2)}_{(\underline{1}, \underline{2}, \underline{\infty}, \underline{2\theta+1}, \theta+2)}, \underbrace{(\underline{1}, 2, \underline{\infty}, \underline{2\theta+1}, \theta+2)}_{(\underline{1}, \underline{2}, \underline{\infty}, \underline{2\theta+1}, \theta+2)}, \underbrace{(\underline{1}, 2, \underline{\infty}, \underline{2\theta+1}, \theta+2)}_{(\underline{0}, 2, 1, \underline{\theta+2}, 2\theta+1)}, \underbrace{(\underline{0}, 2, 1, \underline{\theta+2}, 2\theta+1)}_{(\underline{0}, 2, 1, \underline{\theta+2}, 2\theta+1)}, \underbrace{(\underline{0}, 2, 1, \underline{\theta+2}, 2\theta+1)}_{(\underline{0}, 2, 1, \underline{\theta+2}, 2\theta+1)}, \underbrace{(\underline{0}, 2, 1, \underline{\theta+2}, 2\theta+1)}_{(\underline{0}, 2, 1, \underline{\theta+2}, 2\theta+1)}, \underbrace{(\underline{0}, 2, 1, \underline{\theta+2}, 2\theta+1)}_{(\underline{0}, 2, 1, \underline{\theta+2}, 2\theta+1)}, \underbrace{(\underline{0}, 2, 1, \underline{\theta+2}, 2\theta+1)}_{(\underline{0}, 2, 1, \underline{\theta+2}, 2\theta+1)}, \underbrace{(\underline{0}, 2, 1, \underline{\theta+2}, 2\theta+1)}_{(\underline{0}, 2, 1, \underline{\theta+2}, 2\theta+1)}, \underbrace{(\underline{0}, 2, 1, \underline{\theta+2}, 2\theta+1)}_{(\underline{0}, 2, 1, \underline{\theta+2}, 2\theta+1)}, \underbrace{(\underline{0}, 2, 1, \underline{\theta+2}, 2\theta+1)}_{(\underline{0}, 2, 1, \underline{\theta+2}, 2\theta+1)}, \underbrace{(\underline{0}, 2, 1, \underline{\theta+2}, 2\theta+1)}_{(\underline{0}, 2, 1, \underline{\theta+2}, 2\theta+1)}, \underbrace{(\underline{0}, 2, 1, \underline{\theta+2}, 2\theta+1)}_{(\underline{0}, 2, 1, \underline{\theta+2}, 2\theta+1)}, \underbrace{(\underline{0}, 2, 1, \underline{\theta+2}, 2\theta+1)}_{(\underline{0}, 2, 1, \underline{\theta+2}, 2\theta+1)}, \underbrace{(\underline{0}, 2, 1, \underline{\theta+2}, 2\theta+1)}_{(\underline{0}, 2, 1, \underline{\theta+2}, 2\theta+1)}, \underbrace{(\underline{0}, 2, 1, \underline{\theta+2}, 2\theta+1)}_{(\underline{0}, 2, 1, \underline{\theta+2}, 2\theta+1)}, \underbrace{(\underline{0}, 2, 1, \underline{\theta+2}, 2\theta+1)}_{(\underline{0}, 2, 1, \underline{\theta+2}, 2\theta+1)}, \underbrace{(\underline{0}, 2, 1, \underline{\theta+2}, 2\theta+1)}_{(\underline{0}, 2, 1, \underline{\theta+2}, 2\theta+1)}, \underbrace{(\underline{0}, 2, 1, \underline{\theta+2}, 2\theta+1)}_{(\underline{0}, 2, 1, \underline{\theta+2}, 2\theta+1)}, \underbrace{(\underline{0}, 2, 1, \underline{\theta+2}, 2\theta+1)}_{(\underline{0}, 2, 1, \underline{\theta+2}, 2\theta+1)}, \underbrace{(\underline{0}, 2, 1, \underline{\theta+2}, 2\theta+1)}_{(\underline{0}, 2, 1, \underline{\theta+2}, 2\theta+1)}, \underbrace{(\underline{0}, 2, 1, \underline{\theta+2}, 2\theta+1)}_{(\underline{0}, 2, 1, \underline{\theta+2}, 2\theta+1)}, \underbrace{(\underline{0}, 2, 1, \underline{\theta+2}, 2\theta+1)}_{(\underline{0}, 2, 1, \underline{\theta+2}, 2\theta+1)}, \underbrace{(\underline{0}, 2, 1, \underline{\theta+2}, 2\theta+1)}_{(\underline{0}, 2, 1, \underline{\theta+2}, 2\theta+1)}, \underbrace{(\underline{0}, 2, 1, \underline{\theta+2}, 2\theta+1)}_{(\underline{0}, 2, 1, \underline{\theta+2}, 2\theta+1)}, \underbrace{(\underline{0}, 2, 1, \underline{\theta+2}, 2\theta+1)}_{(\underline{0}, 2, 1, \underline{\theta+2}, 2\theta+1)}, \underbrace{(\underline{0}, 2, 1, \underline{\theta+2}, 2\theta+1)}_{(\underline{0}, 2, 1, \underline{\theta+2}, 2\theta+1)}, \underbrace{(\underline{0}, 2, 1, \underline{\theta+2}, 2\theta+1)}_{(\underline{0}, 2, 1, \underline{\theta+2}, 2\theta+1)}, \underbrace{(\underline{0}, 2, 1, \underline{\theta+2}, 2\theta+1)}_{(\underline{0}, 2, 1, \underline{\theta+2}, 2\theta+1)}, \underbrace{(\underline{0}, 2, 1, \underline{\theta+2}, 2\theta+1)}_{(\underline{0}, 2, 1, \underline{\theta+2}, 2\theta+1)}, \underbrace{(\underline{0}, 2, 1, \underline{\theta+2}, 2\theta+1)}_{(\underline{0}, 2, 1, \underline{\theta+2}, 2\theta+1)}, \underbrace{(\underline{0}, 2, 1, \underline{\theta+2}, 2\theta+1)}_{(\underline{0}, 2, 1, \underline{\theta+2}, 2\theta+1)}, \underbrace{(\underline{0}, 2, 1, \underline{\theta+2}, 2\theta+1)}_{(\underline{0}, 2, 1, \underline{\theta+2}, 2\theta+1)}, \underbrace{(\underline{$$

where θ is a primitive element of GF(9) satisfying $\theta^2 = 2\theta + 1$.

Theorem 9.2. There exists an NDB(5, 10; v) of form $(2, 1)^2$ for v > 5.

Proof. Theorem 4.1 with Theorem 4.2 covers all the cases except for v = 6 and 10, which are constructed in Lemma 9.1.

Therefore we have the following.

Theorem 9.3. The necessary conditions (1.1) for the existence of an NDB $(5, \lambda; v)$ of form $(2, \lambda_2)^2$ are also sufficient.

Proof. Repeat each block (and thus each subblock) of an NDB(5, 10; v) of form $(2, 1)^2 \lambda_2$ times.

10. Construction of NDB(5, λ ; v) of form $(2^2, \lambda_2)^1$

Now the necessary conditions (1.1) are that $v \ge 5$, $\lambda = 5\lambda_2$ and $\lambda_2(v-1) \equiv 0 \mod 2$. We first consider the case $\lambda_2 \equiv 0 \mod 2$.

Theorem 10.1. The existence of an NDB(5, 10t; v) of form $(2, t)^2$ implies the existence of an NDB(5, 10t; v) of form $(2^2, 2t)^1$ for any $t \in \mathcal{N}$.

Proof. Combine the two sub-systems of an NDB(5, 10t; v) of form $(2, t)^2$ into one. \Box

Corollary 10.2. There exists an NDB $(5, 5\lambda_2; v)$ of form $(2^2, \lambda_2)^1$ whenever $v \ge 5$ and $\lambda_2 \equiv 0 \mod 2$.

Proof. Apply Theorem 10.1 with Theorem 9.2. Then repeat each block (and thus each subblock) $\lambda_2/2$ times.

Next we consider the case $\lambda_2 \equiv 1 \mod 2$. Then the necessary conditions further become that v be odd ≥ 5 and $\lambda = 5\lambda_2$.

Theorem 10.3. There exists an NDB $(5, 5\lambda_2; v)$ of form $(2^2, \lambda_2)^1$ whenever $v \ge 5$ and $\lambda_2(v-1) \equiv 0 \mod 4$ for $\lambda_2 \in \mathcal{N}$.

Proof. Apply Theorem 7.1, where all the NB $(5, 5\lambda_2; v)$ of form $(2^2, \lambda_2)^1$ have been constructed in [9].

Theorem 10.4. The existence of a ($\{5\}, \lambda_2$)-DGDD of type T implies the existence of a ($(5, 5\lambda_2)$ -NDGDD of type T and of form $(2^2, \lambda_2)^1$.

Proof. For each block (a, b, c, d, e) of a $(\{5\}, \lambda_2)$ -DGDD of type T, define five new blocks:

 $(\underline{a}, \underline{b}, \underline{c}, d, \underline{e}), \quad (\underline{a}, \underline{b}, \underline{c}, \underline{d}, e), \quad (\underline{a}, \underline{b}, c, \underline{d}, \underline{e}), \quad (\underline{a}, b, \underline{c}, \underline{d}, \underline{e}), \quad (a, \underline{b}, \underline{c}, \underline{d}, \underline{e}),$

which can produce a $(5, 5\lambda_2)$ -NDGDD of type T and of form $(2^2, \lambda_2)^1$, where the elements underlined with "_" and "_" within a block form a subblock respectively, both of them belonging to the same system.

Since a DB(5, λ ; v) can be regarded as a ({5}, λ)-DGDD of type 1^v, we have the following.

Theorem 10.5. There exists an NDB $(5, 5\lambda_2; v)$ of form $(2^2, \lambda_2)^1$ whenever $v \ge 5$, $(v, \lambda_2) \neq (15, 1), \lambda_2(v - 1) \equiv 0 \mod 2$ and $\lambda_2 v(v - 1) \equiv 0 \mod 10$ for $\lambda_2 \in \mathcal{N}$.

Proof. The DB(5, λ_2 ; v) can be found in [14]. Then apply Theorem 10.4.

Lemma 10.6. There exist (5,5)-NDGDD of types 2^5 , 2^6 and 2^7 , and of form $(2^2,1)^1$.

Proof. The first two designs can be obtained by applying Theorem 10.4, where the corresponding ($\{5\}, 1$)-DGDD of types 2^5 and 2^6 are constructed in [14]. The third design is given below:

.

$$\mathcal{V} = Z_2 \times Z_7, \qquad \mathcal{G} = \{Z_2 \times \{i\} : i \in Z_7\}, \\ \left\{ \begin{array}{l} (\underline{(0,0)}, (\underline{0,1}), (\underline{0,6}), (\underline{1,3}), (1,4)), \\ (\underline{(0,0)}, (\underline{0,4}), (\underline{0,3}), (1,2), (\underline{1,5})), \\ (\underline{(0,0)}, (\underline{0,5}), (\underline{0,2}), (1,6), (\underline{1,1})), \\ (\underline{(1,0)}, (\underline{0,1}), (\underline{0,6}), (\underline{0,3}), (0,4)), \\ (\underline{(1,0)}, (0,4), (\underline{0,3}), (\underline{0,2}), (\underline{0,5})), \\ (\underline{(1,0)}, (0,5), (\underline{0,2}), (\underline{0,6}), (\underline{0,1})) \mod (2,7) \end{array} \right\}.$$

Lemma 10.7. There exists an NDB(5,5;q) of form $(2^2,1)^1$, where $q \in \{7, 19, 23, 27, 43, 47, 83\}$.

Proof. Apply Theorem 5.1(2) with the suitable orderings for S and T_2 , T'_2 as follows.

q = 7,	$\theta = 3,$	S = (1, 3, 2, 6, 4),	$T_2 = (1, 3),$	$T_2' = (6, 4);$
q = 19,	$\theta = 2,$	S = (1, 2, 4, 16, 8),	$T_2 = (2, 4),$	$T_2' = (16, 8);$
q = 23,	$\theta = 5,$	S = (1, 5, 10, 2, 4),	$T_2 = (1, 5),$	$T_2' = (10, 2);$
q = 27,	$\theta^3 = \theta + 2,$	$S = (1, \theta, \theta^2, \theta + 2, \theta^2 + 2\theta),$	$T_2 = (1, \theta),$	$T_2' = (\theta + 2, \theta^2 + 2\theta);$
q = 43,	$\theta = 3,$	S = (1, 3, 27, 9, 38),	$T_2 = (1, 3),$	$T_2' = (27, 9);$
q = 47,	$\theta = 5,$	S = (1, 5, 25, 31, 14),	$T_2 = (1, 5),$	$T_2' = (31, 14);$
q = 83,	$\theta = 2,$	S = (1, 2, 4, 8, 16),	$T_2 = (1, 4),$	$T_2' = (2, 8).$

Since Lemma 10.6 gives (5, 5)-NDGDD of type 2^5 , 2^6 and 2^7 , and of form $(2^2, 1)^1$, we have the following by arguments similar to those for Theorems 7.9 and 7.11, and Corollaries 7.10 and 7.12.

Theorem 10.8. Let $0 \le s$, $t \le g$. Suppose there exists a TD(7, 1; g). If there exist NDB(5, 5; u) of form $(2^2, 1)^1$ for u = 2g + 1, 2s + 1, 2t + 1, then there exists an NDB(5, 5; v) of form $(2^2, 1)^1$ with v = 10g + 2s + 2t + 1.

Theorem 10.9. Let $0 \le s \le g$. Suppose there exists a TD(6,1;g). If there exist NDB(5,5;u) of form $(2^2, 1)^1$ for u = 2g+1, 2s+1, then there exists an NDB(5,5;v) of form $(2^2, 1)^1$ with v = 10g + 2s + 1.

Corollary 10.10. There exists an NDB(5,5;v) of form $(2^2,1)^1$, where $v \in \{59, 87, 99, 107, 119, 139, 143, 167, 179, 183, 243, 283, 563\}.$

Lemma 10.11. There exists an NDB(5,5;39) of form $(2^2,1)^1$.

Proof. For each block (a, b, c, d, e) of a $(\{5, 7\}, 1)$ -DGDD of type 1^{39} (see [4] for the existence), define five new blocks: $(\underline{a}, \underline{b}, \underline{c}, d, \underline{e}), (\underline{a}, \underline{b}, c, \underline{d}, e), (\underline{a}, \underline{b}, c, \underline{d}, \underline{e}), (\underline{a}, b, \underline{c}, \underline{d}, \underline{e}), (\underline{a}, b, \underline{c}, \underline{d}, \underline{e}), (\underline{a}, b, \underline{c}, \underline{d}, \underline{e}), (\underline{a}, \underline{b}, c, \underline{d}, \underline{e}), (\underline{a}, b, \underline{c}, \underline{d}, \underline{e}), (\underline{a}, \underline{b}, c, \underline{d}, \underline{e}), (\underline{a}, \underline{b}, c, \underline{d}, \underline{e}), (\underline{a}, \underline{b}, c, \underline{d}, \underline{e}), (\underline{a}, b, \underline{c}, \underline{d}, \underline{e}), (\underline{a}, \underline{b}, c, \underline{d}, \underline{e}), (\underline{a}, b, \underline{c}, \underline{d}, \underline{e}), (\underline{a}, \underline{b}, c, \underline{b}, \underline{c}), (\underline{b}, \underline{c}, \underline{b}, \underline{c}), (\underline{b}, \underline{c}, \underline{c}), (\underline{b}, \underline{c}), (\underline{c}, \underline{c}), (\underline{c}, \underline{c}), (\underline{c}, \underline{c}), (\underline{c}, \underline{c}), (\underline{c}, \underline{c}), (\underline{c}, \underline{c}), (\underline{c},$

Lemma 10.12. There exists an NDB(5,5;15) of form $(2^2,1)^1$.

Proof. The design is given below: $\mathcal{V} = Z_{15}$, $\mathcal{B} = \{(\underline{14}, \underline{11}, \underline{4}, \underline{1}, \underline{0}), (\underline{8}, \underline{2}, \underline{13}, 7, \underline{0}), (\underline{1}, \underline{4}, \underline{11}, \underline{14}, \underline{0}), (\underline{7}, \underline{13}, 2, \underline{8}, \underline{0}), (\underline{0}, \underline{1}, \underline{4}, 2, \underline{8}), (\underline{9}, \underline{1}, \underline{4}, \underline{6}, \underline{0}), (\underline{12}, \underline{10}, \underline{9}, \underline{3}, \underline{6}) \mod 15\}. \square$

Then we have the following by an argument similar to that for Theorem 7.15.

Theorem 10.13. Let $v \ge 5$ be odd. Then all NDB $(5, 5\lambda_2; v)$ of form $(2^2, \lambda_2)^1$ exist for $\lambda_2 \ge 1$.

Proof. By Theorem 10.3, Lemma 10.7 and Corollary 2.2, it suffices to show the existence of NDB(5, 5; v) of form $(2^2, 1)^1$ for $v \in E$, where E is the same set as in the proof of Theorem 7.15. Theorem 10.3 settles the cases for v = 13, 17, 29, 33, 93, 113, 173. Theorem 10.5 covers the cases for v = 11, 31, 51, 71, 75, 95, 111, 115, 131, 135, 191, 195, 411. Lemma 10.7 covers the cases for v = 19, 23, 27, 43, 83. The remaining 15 cases are settled by Corollary 10.10, and Lemmas 10.11 and 10.12. Thus all NDB(5, 5; v) of form $(2^2, 1)^1$ are constructed for $v \ge 5$. Then by taking each block and subblock of an NDB(5, 5; v) of form $(2^2, 1)^1 \lambda_2$ times, an NDB(5, $5\lambda_2; v$) of form $(2^2, \lambda_2)^1$ is obtained whenever v is odd ≥ 5 .

Combining conditions (1.1), Corollary 10.2 and Theorem 10.13, we can establish the following.

Theorem 10.14. The necessary and sufficient conditions for the existence of an NDB $(5, \lambda; v)$ of form $(2^2, \lambda_2)^1$ are that $v \ge 5$, $\lambda = 5\lambda_2$ and $\lambda_2(v-1) \equiv 0 \mod 2$.

11. Main Result

Theorem 11.1. The necessary conditions (1.1) for the existence of an NDB $(k, \lambda; v)$ of any possible form are also sufficient for k = 3, 4 and 5.

Proof. The existence of an NDB(5, λ ; v) of form $(3, \lambda_3)^1(2, \lambda_2)^1$ can imply the existence of an NDB(5, λ ; v) of form $(3, \lambda_3)^1$, and the existence of an NDB(5, λ ; v) of form $(2, \lambda_2)^2$ can imply the existence of an NDB(5, λ ; v) of form $(2, \lambda_2)^1$. Hence, combining the results as in Sections 6 to 10 and as in [10], the proof is completed. \Box

Acknowledgements

Miao was supported by a Post-Doctoral Fellowship from the Centre Interuniversitaire en Calcul Mathématique Algébrique. Miao would also like to express his gratitude to Professor Clement Lam for his kind support. A portion of this work was carried out while Miao was a visiting scholar at the Faculty of School Education of Hiroshima University. The kind hospitality was gratefully acknowledged. Kageyama was supported by Grant-in-Aid for International Scientific Research (Joint Research) 09044088 and by Grant-in-Aid for Scientific Research (C) 09640272. The authors are thankful to the referee for his suggestions to improve the readability of the paper.

References

 R. J. R. Abel, A. E. Brouwer, C. J. Colbourn and J. H. Dinitz, *Mutually orthogonal Latin squares* (MOLS), In: C. J. Colbourn and J. H. Dinitz eds., The CRC Handbook of Combinatorial Designs, CRC Press, Boca Raton, 1996, 111-142.

- [2] F. E. Bennett, C. J. Colbourn and R. C. Mullin, Quintessential pairwise balanced designs, J. Statist. Plann. Inference, to appear.
- [3] F. E. Bennett and A. Mahmoodi, *Directed designs*, In: C. J. Colbourn and J. H. Dinitz, eds., The CRC Handbook of Combinatorial Designs, CRC Press, Boca Raton, 1996, 317-321.
- [4] F. E. Bennett, N. Shalaby and J. Yin, Existence of directed GDDs with block size five, preprint.
- [5] F. E. Bennett, R. Wei, J. Yin and A. Mahmoodi, Existence of DBIBDs with block size six, Utilitas Math. 43 (1993), 205-217.
- [6] C. J. Colbourn and A. Rosa, Directed and Mendelsohn triple systems, In: J. H. Dinitz and D. R. Stinson, eds., Contemporary Design Theorey: A Collection of Surveys, Wiley, New York, 1992, 97-136.
- [7] S. Furino, Y. Miao and J. Yin, Frames and Resolvable Designs: Uses, Constructions, and Existence, CRC Press, Boca Raton, 1996.
- [8] S. H. Y. Hung and N. S. Mendelsohn, *Directed triple systems*, J. Combin. Theory, Ser. A 14 (1973), 310-318.
- [9] S. Kageyama and Y. Miao, Nested designs with block size five and subblock size two, J. Statist. Plann. Inference 64 (1997) 125-139.
- [10] S. Kageyama and Y. Miao, Nested directed BIB designs with block size three or four, J. Indian Soc. Agricult. Statist. 49 (1996-1997) 99-110.
- Y. Miao, Construction of Block Designs with Resolvablity or Nested Structure, D. Sc. Thesis, Hiroshima University, Japan, 1997.
- [12] J. Seberry and D. Skillicorn, All directed BIBDs with k = 3 exist, J. Combin. Theory, Ser. A 29 (1980), 244-248.
- [13] D. J. Street and J. Seberry, All DBIBDs with block size four exist, Utilitas Math. 18 (1980), 27-34.
- [14] D. J. Street and W. H. Wilson, On directed balanced incomplete block designs with block size five, Utilitas Math. 18 (1980) 161-174.
- [15] J. Wang and L. Zhu, Doubly nested triple systems and nested $B[4, 3\lambda; v]$, J. Combin. Math. Combin. Comput. 9 (1991) 129-140.

(Received 25/8/97)