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Abstract 

In thispaper a conjecture of A. Hilton and P. Johnson on list coloring of 
graphs is disproved. By modifying our counterexample, we also answer 
some other questions concerning Hall numbers. 

Introduction 

this paper we consider finite undirected simple graphs. An L-list coloring, or 
L-coloring for short, of a graph G is an assignment of colors to the vertices such that 
each vertex v receives a color from a prescribed list L( v) of colors and the adjacent 
vertices receive distinct colors. If an L-coloring exists then the following inequality, 
called Hall's condition, holds: 

Lt(H,L,i) ~ \V(H)\, 

where H is an arbitrary subgraph of 0 and t(H, L, i) denotes the maximum number 
of independent vertices of H having the color i in their lists, and i ranges over 
UUEV(H)L(v). Clearly, to see if (0, L) satisfies Hall's condition, it is sufficient to 
check the inequality above for all induced subgraphs H of O. 

Although Hall's condition is necessary for the existence of L-coloring, it is not 
sufficient unless we suppose that the sizes of lists are large enough. The following 
definitions appeared in [4]. 

Definition 1. The Hall number of a graph G, h(O), is the smallest positive integer 
m such that, for every list assignment L of G with \L(v)\ ~ m, v E V(O), if (G, L) 
satisfies Hall's condition, then 0 has an L-coloring. 

*Died in a bus accident 17 March 1998. 
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Definition 2. The Hall index of a graph G, h'(G), is defined as h(L(G)), where 
L( G) is the line graph of G and is defined to be the graph whose vertex set is in 
one-one correspondence with E( G) and two vertices of L( G) are adjacent if and only 
if the corresponding edges of G are. 

Because it suffices to check the inequality in Hall's condition for induced sub
graphs of whatever graph is under consideration, in the case of list assignments to 
the edges of G, to see if Hall's condition is satisfied it suffices to check those sub
graphs of the line graph of G which are line graphs of subgraphs of G. Consequently, 
we will permit ourselves a mild notational abuse: when L is a list assignment to the 
edges of G, H is a subgraph of G and i is a color, we will let t(H, L, i) stand for the 
maximum number of independent edges of H having the color i on their lists. Thus, 
the requirement for Hall's condition to be satisfied is that 

Lt(H,L,i) ~ IE(H)I, 

for all subgraphs H of G, in this case. 

Definition 3. The total Hall number of G, hr(G), is defined as h(T(G)), where 
T( G) is the total graph of G and is defined as the graph whose vertex set can be put 
in one-one correspondence with the set V (G) U E (G) such that two vertices of T (G) 
are adjacent if and only if the corresponding elements of G are either two adjacent 
vertices, two adjacent edges, or one is an edge and the other is one of its end vertices. 

We use the following lemmas frequently: 

Lemma A. [3] For a graph G we have h( G) 1 iff every block of G is a complete 
graph. 

Lemma B. [4] For a connected non-trivial graph G we have h'(G) = 1 iff G is a 
nontrivial tree or K 3 . 

Lemma C. [5] If H is an induced subgraph of G then h(H) :::; h(G). 
Hilton and Johnson posed the following conjecture: 

Conjecture. [2] The Hall index of every graph is at most 3. 
In the next section we present a counterexample for this conjecture. Indeed, we 

show more, namely: For every integer k there exists a graph whose Hall index is 
greater than k. 

2 The example 

Consider the graph Gk shown in Figure 1 with the following list assignment: 

L( ab ) L( ac) = {I, 2, ... , k - 1, k + I} 

L(bc) = L(bbi) = L(CCi) = {I, 2" . " k - 1, k}; 1:::; i :::; k - 1. 
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a 

Figure 1. The graph G k 

We have IL(e)1 k for all e E E(G). We claim that (Gk,L) satisfies Hall's condition 
but does not have any L-coloring. For Gk we have t(Gk, L, k+l) 1 and t(Gk, L, i) = 
2, for 1 :S i :S k, thus t( Gk, L, i) = 2k+ 1 = IE( Gk) I. Since for every edge e, Gk - e 
has an L-coloring, Hall's condition holds for every proper subgraph of Gk . However, 

does not have an L--coloring. Suppose on the contrary, ¢ is an L-coloring for Gk . 

Since degck(b) = k + 1, all colors must appear in vertex b, thus ¢(ab) = k + 1. Bya 
similar discussion we obtain ¢(ac) = k + 1, a contradiction. 

As the following proposition shows, from every graph with Hall index greater 
than k we can construct a graph with Hall index greater than k + 1. 

1. Let G be a non-trivial graph with Hall index k, k 2 2, and let G* 
be the graph which is obtained by joining to each vertex v of G a set Sv of knew 
independent vertices. Then h'(G*) > h'(G). 

Proof. Let L be a list assignment to the edges of G such that 1 L ( e ) 12k - 1, e E 
E(G), and (G, L) satisfies Hall's condition, but G has no L-coloring. Consider the 
graph G* and assign to each of the new edges the same list of k new symbols and 
add one of these new symbols arbitrarily to each of the old lists on the edges of G. 
Denote this new list assignment by L*. Obviously, IL*(e)1 2:: k, e E E(G*). We 
show that (G*, L *) satisfies Hall's condition. Let .H* be a subgraph of G*. We have 
E(H*) = E(H) U E*, where H is a subgraph of G and E* c E(G*) \ E(G). Since 
for e* E E* and e E E(H), we have L*(e*) n L(e) = 0, thus: 

t(H*,L*,i) 2:: Lrt(H,L,r) + Lst(E*,L*,s) 
2:: IE(H)I + IE*I 
= IE(H*)I· 

Hence (G*, L*) satisfies Hall's condition. Obviously, if G* has an L*-coloring, then 
G has an L-coloring, which is a contradiction. 0 

One of the present authors [1] has shown that almost all graphs have Hall index 
greater than 2 and therefore by Proposition 1 we have infinitely many examples which 
disprove the conjecture. Of course, we already had infinitely many: G3 , G4 , • ". But 
Proposition 1 adds to the diversity of the examples. 
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3 Answers to some other questions 

Recently, Hilton and Johnson [4], posed the following questions: 

1. Is it true that h( G - e) 2: h( G) 1 for each edge e in E( G)? 

2. Is it true that hT(G - e) 2: hT(G) - 1 for each edge e in E(G)? 

The graph G k shown in Figure 1 also leads us to answer the above questions. 

Proposition 2. All of the following sets are unbounded: 

(a) {h(G) - h(G - e)1 G is a simple graph}. 

(b) {h'(G) - h'(G e)1 G is a simple graph}. 

(c) {hT(G) hT(G - e)1 G is a simple graph}. 

Proof. (a) Let Gk be the graph constructed above and let G = L(Gk ). Note that 
G consists of two copies of K k+I , say HI and H 2, which have a vertex v in common 
and there is an edge e which joins a vertex of HI - V to a vertex of H2 - V. Now 
h(G) = h'(Gk ) > k and since every block in G - e is a complete graph, by Lemma 
A we have h(G - e) = l. 

(b) Let G = Gk and e = be. We have h'(G) > k and since G - e is a tree, by 
Lemma B we have h'(G - e) = 1. 

(c) Let G = Gk and e = be. By Lemma C, hT(G) 2: h'(G) > k. The degrees 
of vertices corresponding to e/s, bi's, and a in T (G - e) are at most 4. By deleting 
these vertices from T(G - e) we obtain a graph whose blocks are complete. Hence 
hT(G-e):S;5. 0 

Finally, the referee informed us that M. Cropper from the University of West 
Virginia, also disproved the conjecture of Hilton and Johnson, by a very different 
means. He shows that h'(Km,n) > n - 2, for n 2: m 2: 2, n 2: 3, and that h'(Kn) > 
n - 2, n odd, n 2: 3, and h'(Kn) > n - 3, n even, n 2: 4. After submitting the first 
version of our paper we received a pre print of Hilton and Johnson [4] in which they 
show that the Petersen graph has Hall index 4. 
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