Interpolation theorems for the (r, s)-domination number of spanning trees

Jerzy Topp

Faculty of Applied Physics and Mathematics, Gdańsk Technical University Narutowicza 11/12, 80-952 Gdańsk, Poland E-mail: topp@mifgate.pg.gda.pl

Preben D. Vestergaard

Department of Mathematics, Aalborg University Fredrik Bajers Vej 7, DK-9220 Aalborg, Denmark

E-mail: pdv@math.auc.dk

Abstract

If G is a graph without isolated vertices, and if r and s are positive integers, then the (r, s)-domination number $\gamma_{r, s}(G)$ of G is the cardinality of a smallest vertex set D such that every vertex not in D is within distance r from some vertex in D, while every vertex in D is within distance s from another vertex in D. This generalizes the total domination number $\gamma_{t}(G)=\gamma_{1,1}(G)$.

Let $\mathcal{T}(G)$ denote the set of all spanning trees of a connected graph G. We prove that $\gamma_{r, s}(\mathcal{T}(G))$ is a set of consecutive integers for every connected graph G of order at least two when $s \geq 2 r+1$. This is not true if $1 \leq s \leq 2 r-1$, and for $s=2 r$ the problem is open. We prove that $\gamma_{r, 2 r}(\mathcal{T}(G))$ is a set of consecutive integers for $r=1$ and we conjecture this also holds for $r \geq 2$. We also prove that $\gamma_{r, s}(\mathcal{T}(G))$ is a set of consecutive integers for every 2 -connected graph G and for any two positive integers r and s.

Let G be a simple undirected graph with vertices $V(G)$ and edges $E(G)$. The neighbourhood of a vertex v in G is $N_{G}(v)=\{u \in V(G): u v \in E(G)\}$ and the closed neighbourhood is $N_{G}[v]=N_{G}(v) \cup\{v\}$. For a connected graph G, let $d_{G}(v, u)$ denote the distance between vertices v and u in G. If S is a set of vertices of G and v is a vertex of G, then $d_{G}(v, S)$ denotes the distance between v and S, the shortest distance between v and a vertex of S.

Let r and s be two positive integers. A vertex set D of a graph G is an $(r,-)$-set of G if $d_{G}(v, D) \leq r$ for every $v \in V(G)-D$. Similarly, a subset D of $V(G)$ is
a $(-, s)$-set of G if $d_{G}(u, D-\{u\}) \leq s$ for every $u \in D$. A subset D of $V(G)$ is an (r, s)-dominating set of G if D is both an $(r,-)$-set and a $(-, s)$-set of G. The cardinality of a minimum (r, s)-dominating set in G is called the (r, s)-domination number of G and is denoted by $\gamma_{r, s}(G)$. Note that this parameter is only defined for graphs without isolated vertices and if G is a graph without isolated vertices, then $\gamma_{r, s}(G) \geq 2$. The (r, s)-domination number introduced by Mo and Williams [11] is related to other graphical parameters. In particular, the (1,1)-domination number $\gamma_{1,1}(G)$ of a graph G is the total domination number $\gamma_{t}(G)$ of G defined by Cockayne, Dawes and Hedetniemi [1]. The (r, r)-domination number was studied in [8] as the total $P_{\leq r+1^{1}}$ domination number. ($r,-$)-sets are also known as distance r-dominating sets or r-coverings (in [10]) and the minimum cardinality of a distance r-dominating set of a graph G is called the distance r-domination number of G and is denoted by $\gamma_{k}(G)$.

An invariant π defined for all spanning trees of a connected graph G is said to interpolate over G if the set $\pi(\mathcal{T}(G))=\{\pi(T): T \in \mathcal{T}(G)\}$ consists of consecutive integers, i.e. $\pi(\mathcal{T}(G))$ is an integer interval. We shall call π an interpolating function if π interpolates over each connected graph. The interpolating character of different graphical parameters was investigated in a number of papers. In particular, the interpolation of domination related parameters was studied in $[2,4,5,6,7,12,13]$, to quote a few. In this paper we study the interpolating character of the (r, s) domination number. The following four lemmas will be useful in our proofs.

Lemma 1 [13]. An integer-valued graph function π is an interpolating function if and only if π interpolates over every unicyclic graph.

Lemma 2 [11]. Let G be a connected graph of order at least two, and let r and s be positive integers. Then $\gamma_{r, s}(G)=\gamma_{r, s}(T)$ for some spanning tree T of G.

Lemma 3 [13]. For any positive integer r, the distance r-domination number γ_{r} is an interpolating function.

Lemma 4. If G is a connected graph of order at least two and if r and s are positive integers such that $s \geq 2 r+1$, then $\gamma_{r, s}(G)=\max \left\{2, \gamma_{r}(G)\right\}$.

Proof. Let D be a minimum distance r-dominating set of G. If $|D|=1$, then for any $x \in V(G)-D, D \cup\{x\}$ is a minimum (r, s)-dominating set of G and $\gamma_{r, s}(G)=2=\max \left\{2, \gamma_{r}(G)\right\}$. If $|D| \geq 2$, then D is an (r, s)-dominating set in G; for if not, then there is a vertex x in D such that $d_{G}(x, D-\{x\})>s \geq 2 r+1$ and any shortest path joining x to a vertex of $D-\{x\}$ contains a vertex y for which $d_{G}(y, D)>r$, which contradicts the fact that D is a distance r-dominating set in G. In addition, since D is a minimum distance r-dominating set of G, D is a minimum (r, s)-dominating set of G and therefore $\gamma_{r, s}(G)=\gamma_{r}(G)=\max \left\{2, \gamma_{r}(G)\right\}$.

Theorem 1. The (r, s)-domination number $\gamma_{r, s}$ is an interpolating function if $s \geq 2 r+1$.

Proof. Since γ_{r} is an interpolating function (by Lemma 3), $\max \left\{2, \gamma_{r}\right\}$ is an interpolating function. Now, by Lemma 4, $\gamma_{r, s}$ is an interpolating function.

We now turn our attention to interpolation properties of the (r, s)-domination number $\gamma_{r, s}$ with $1 \leq s \leq 2 r$. For a positive integer r, let G_{r} be the graph given in Fig. 1. Since G_{r} is a unicyclic graph, every spanning tree of G_{r} is an edgedeleted subgraph $G_{r}-v u$, where $v u$ is an edge of the unique cycle of G_{r}. One can verify that if $1 \leq s \leq r$, then $\gamma_{r, s}\left(G_{r}-v_{i} v_{i+1}\right)=\gamma_{r, s}\left(G_{r}-u_{i} u_{i+1}\right)=4$ for each $i=r, \ldots, 2 r$, while $\gamma_{r, s}\left(G_{r}-v_{r} u_{r}\right)=\gamma_{r, s}\left(G_{r}-v_{2 r+1} u_{2 r+1}\right)=6$. Consequently, $\gamma_{r, s}\left(\mathcal{T}\left(G_{r, s}\right)\right)=\{4,6\}$ and this implies that the (r, s)-domination number $\gamma_{r, s}$ with $1 \leq s \leq r$ and, in particular, the total domination number $\gamma_{t}=\gamma_{1,1}$ are not interpolating functions. The next example proves that the (r, s)-domination number $\gamma_{r, s}$ is not an interpolating function if $r+1 \leq s \leq 2 r-1$. Let r, s and l be positive integers such that $3 \leq r+1 \leq s \leq 2 r-1$ and $l \geq\lceil(r+1) / 3\rceil$, and let $H_{r, s}$ be the unicyclic graph of girth $2 l(2 r-s+2)$ given in Fig. 2. Let $v u$ be an edge belonging to the unique cycle of $H_{r, s}$. It is evident that every (r, s)-dominating set of the tree $H_{r, s}-v u$ contains at least one vertex of the path $v_{s}^{(i)}-v_{s-r}^{(i)}$ and at least one vertex of the path $u_{s}^{(i)}-u_{s-r}^{(i)}$ for every $i \in\{1, \ldots, 2 l\}$, so that $\gamma_{r, s}\left(H_{r, s}-v u\right) \geq 4 l$. If $v u \notin\left\{v_{0}^{(1)} u_{0}^{(1)}, \ldots, v_{0}^{(2 l)} u_{0}^{(2 l)}\right\}$, then, since $\left\{v_{s-r}^{(1)}, \ldots, v_{s-r}^{(2 l)}, u_{s-r}^{(1)}, \ldots, u_{s-r}^{(2 l)}\right\}$ is an $(r, s)-$ dominating set of $H_{r, s}-v u$, we also have $\gamma_{r, s}\left(H_{r, s}-v u\right)=4 l$. We now show that $\gamma_{r, s}\left(T_{i}\right)=4 l+2$ if $T_{i}=H_{r, s}-v_{0}^{(i)} u_{0}^{(i)}$ for $i \in\{1, \ldots, 2 l\}$. Since trees $T_{1}, T_{2}, \ldots, T_{2 l}$ are mutually isomorphic, it suffices to show that $\gamma_{r, s}(T)=4 l+2$ where $T=T_{1}$. Let D be a minimum ($r, s)$-dominating set of T, and let $v^{(i)}\left(u^{(i)}\right.$, resp.) denote that vertex of D for which $d_{T}\left(v_{s}^{(i)}, D\right)=d_{T}\left(v_{s}^{(i)}, v^{(i)}\right)\left(d_{T}\left(u_{s}^{(i)}, D\right)=d_{T}\left(u_{s}^{(i)}, u^{(i)}\right)\right.$, resp. $)$, $i=1, \ldots, 2 l$. Certainly, $v^{(i)}\left(u^{(i)}\right.$, resp.) belongs to the path $v_{s}^{(i)}-v_{s-r}^{(i)}\left(u_{s}^{(i)}-u_{s-r}^{(i)}\right.$, resp.) for every $i \in\{1, \ldots, 2 l\}$. Let v (u, resp.) be a vertex in D for which $d_{T}\left(v^{(1)}, D-\left\{v^{(1)}\right\}\right)=d_{T}\left(v^{(1)}, v\right)\left(d_{T}\left(u^{(1)}, D-\left\{u^{(1)}\right\}\right)=d_{T}\left(u^{(1)}, u\right)\right.$, resp.). Since $d_{T}\left(v^{(1)}, v\right) \leq s$ and $d_{T}\left(u^{(1)}, u\right) \leq s$ while $d_{T}\left(v^{(1)},\left\{v^{(2)}, \ldots, v^{(2 l)}, u^{(1)}, \ldots, u^{(2 l)}\right\}\right) \geq$ $d_{T}\left(v_{s-r}^{(1)}, u_{s-r}^{(2)}\right)>s$ and $d_{T}\left(u^{(1)},\left\{v^{(1)}, \ldots, v^{(2 l)}, u^{(2)}, \ldots, u^{(2 l)}\right\}\right) \geq d_{T}\left(u_{s-r}^{(1)}, v_{s-r}^{(2)}\right)>s$, neither v nor u belongs to $\left\{v^{(1)}, \ldots, v^{(2 l)}, u^{(1)}, \ldots, u^{(2 l)}\right\}$. In addition, vertices v and u are distinct, for otherwise $d_{T}\left(v^{(1)}, u^{(1)}\right) \leq d_{T}\left(v^{(1)}, v\right)+d_{T}\left(u, u^{(1)}\right) \leq 2 s$ which is impossible as $d_{T}\left(v^{(1)}, u^{(1)}\right) \geq d_{T}\left(v_{s-r}^{(1)}, u_{s-r}^{(1)}\right)=2(s-r)+2 l(2 r-s+2)-1 \geq 2 s+1$. We conclude that $\gamma_{r, s}(T) \geq\left|\left\{v^{(1)}, \ldots, v^{(2 l)}, u^{(1)}, \ldots, u^{(2 l)}\right\} \cup\{v, u\}\right|=4 l+2$. Since $\left\{v_{s-r}^{(1)}, \ldots, v_{s-r}^{(2 l)}, u_{s-r}^{(1)}, \ldots, u_{s-r}^{(2 l)}\right\} \cup\left\{v_{0}^{(1)}, u_{0}^{(1)}\right\}$ is an (r, s)-dominating set of T, we also have that $\gamma_{r, s}(T) \leq 4 l+2$, whence $\gamma_{r, s}(T)=4 l+2$. It follows that $\gamma_{r, s}\left(\mathcal{T}\left(H_{r, s}\right)\right)=$ $\{4 l, 4 l+2\}$. Consequently, the (r, s)-domination number $\gamma_{r, s}$ with $r+1 \leq s \leq 2 r-1$ (and therefore with $1 \leq s \leq 2 r-1$) is not an interpolating function.

Since $\gamma_{r, s}$ is an interpolating function when $s \geq 2 r+1$, a question to be considered here is whether $\gamma_{r, 2 r}$ is an interpolating function. We suspect that $\gamma_{r, 2 r}$ is an interpolating function for every positive integer r, but we are able to prove it only for $r=1$. We also prove that for any positive integers r and $s, \gamma_{r, s}$ interpolates over every 2 -connected graph. First we analyze how the (r, s)-domination number varies as we delete an edge from a graph.

Fig. 1. A graph $G=G_{r}$ for which $\gamma_{r, s}(\mathcal{T}(G))=\{4,6\}$ where $1 \leq s \leq r$.

Fig. 2. A graph $G=H_{r, s}$ for which $\gamma_{r, s}(\mathcal{T}(G))=\{4 l, 4 l+2\}$
where $3 \leq r+1 \leq s \leq 2 r-1$ and $l \geq\lceil(r+1) / 3\rceil$.
Lemma 5. Let r and s be positive integers, and let vu be an edge of a graph G. If $v u$ is not an end-edge of G, then

$$
\gamma_{r, s}(G) \leq \gamma_{r, s}(G-v u) \leq \gamma_{r, s}(G)+2
$$

Proof. Since any (r, s)-dominating set of $G-v u$ is (r, s)-dominating in G, the inequality $\gamma_{r, s}(G) \leq \gamma_{r, s}(G-v u)$ is obvious.

By definition $\gamma_{r, s}(G) \geq 2$, so the inequality $\gamma_{r, s}(G-v u) \leq \gamma_{r, s}(G)+2$ is obvious if $|V(G)| \leq 4$. Thus assume that $|V(G)| \geq 5$ and let D be a minimum (r, s)-dominating set of G. We consider four possible cases.

Case 1. D is both an $(r,-)$ - and $(-, s)$-set of $G-v u$. Then D is (r, s)-dominating in $G-v u$ and therefore $\gamma_{r, s}(G-v u) \leq|D| \leq \gamma_{r, s}(G)+2$.

Case 2. D is a $(-, s)$-set but it is not an $(r,-)$-set of $G-v u$. In this case the set $V^{\prime}=\left\{x \in V(G)-D: d_{G-v u}(x, D)>r\right\}$ is nonempty and for every $x \in V^{\prime}$, since $d_{G}(x, D) \leq r$, any path of length at most r joining x to a vertex of D in G contains the edge $v u$. This implies that $d_{G}(v, D) \neq d_{G}(u, D)$, say $d_{G}(v, D)<d_{G}(u, D)$. Now, for any $u^{\prime} \in N_{G}(u)-\{v\}$, the set $D \cup\left\{u, u^{\prime}\right\}$ is (r, s)-dominating in $G-v u$ and so $\gamma_{r, s}(G-v u) \leq\left|D \cup\left\{u, u^{\prime}\right\}\right| \leq \gamma_{r, s}(G)+2$.

Case 3. D is an ($r,-$)-set but it is not $a(-, s)$-set of $G-v u$. Now the set $D^{\prime}=\left\{x \in D: d_{G-v u}(x, D-\{x\})>s\right\}$ is nonempty and for every $x \in D^{\prime}$, since $d_{G}(x, D-\{x\}) \leq s$, any path of length at most s joining x to a vertex of $D-\{x\}$ in G contains the edge $v u$. Therefore $d_{G}(x, v) \neq d_{G}(x, u)$ for every $x \in D^{\prime}$ and the sets $D_{v}=\left\{x \in D^{\prime}: d_{G}(x, v)<d_{G}(x, u)\right\}$ and $D_{u}=\left\{x \in D^{\prime}: d_{G}(x, u)<d_{G}(x, v)\right\}$ form a partition of D^{\prime}. In addition, since $v u$ is not an end-edge of $G, N_{G}[v]-\{u\}$ ($N_{G}[u]-\{v\}$, resp.) is not a subset of D if $D_{v} \neq \emptyset\left(D_{u} \neq \emptyset\right.$, resp.). Now if $D_{v} \neq \emptyset$ ($D_{u} \neq \emptyset$, resp.) and if v^{\prime} is any vertex from $N_{G}[v]-(D \cup\{u\})$ (u^{\prime} is any vertex from $N_{G}[u]-\left(D \cup\{v\}\right.$), resp.), then the set $D \cup\left\{v^{\prime}\right\}$ (if $D_{u}=\emptyset$), $D \cup\left\{u^{\prime}\right\}$ (if $D_{v}=\emptyset$) or $D \cup\left\{v^{\prime}, u^{\prime}\right\}$ is (r, s)-dominating in $G-v u$ and so $\gamma_{r, s}(G-v u) \leq|D|+2=\gamma_{r, s}(G)+2$.

Case 4. D is neither an $(r,-)$-set nor $a(-, s)$-set of $G-v u$. Then both the sets $V^{\prime}=\left\{x \in V(G)-D: d_{G-v u}(x, D)>r\right\}$ and $D^{\prime}=\left\{x \in D: d_{G-v u}(x, D-\{x\})>s\right\}$ are nonempty. Certainly, for any x from V^{\prime}, every path of length at most r joining x to a vertex of D in G contains the edge $v u$. Similarly, if x belongs to D^{\prime}, then every path of length at most s joining x to a vertex of $D-\{x\}$ in G contains $v u$. In addition, since $V^{\prime} \neq \emptyset$, we have $d_{G}(v, D) \neq d_{G}(u, D)$, say $d_{G}(v, D)<d_{G}(u, D)$ and let d be a vertex of D for which $d_{G}(v, D)=d_{G}(v, d)$. As in Case 3, the sets $D_{v}=\left\{x \in D^{\prime}: d_{G}(x, v)<d_{G}(x, u)\right\}$ and $D_{u}=\left\{x \in D^{\prime}: d_{G}(x, u)<d_{G}(x, v)\right\}$ form a partition of D^{\prime}. The assumption $d_{G}(v, D)<d_{G}(u, D)$ easily implies that either $D_{v}=\emptyset$ or $D_{v}=\{d\}$. If $D_{v}=\emptyset$, then $D \cup\{u\}$ is an (r, s)-dominating set in $G-v u$. Finally, if $D_{v} \neq \emptyset$, then $N_{G}[v]-\{u\}$ is not a subset of D (since $v u$ is not an end-edge of G) and for any $v^{\prime} \in N_{G}[v]-(D \cup\{u\})$, the set $D \cup\left\{u, v^{\prime}\right\}$ is (r, s)-dominating in $G-v u$. Thus in each case $\gamma_{r, s}(G-v u) \leq|D|+2=\gamma_{r, s}(G)+2$.

This completes the proof.
Corollary 1. Let G be a unicyclic graph and let r and s be positive integers. If $\gamma_{r, s}(G)=a$, then $\gamma_{r, s}(\mathcal{T}(G))$ is a subset of $\{a, a+1, a+2\}$.

Proof. Let C be the unique cycle of G. Then $\mathcal{T}(G)=\{G-v u: v u \in E(C)\}$ and the result follows from Lemma 5 .

Lemma 6. Let G be a unicyclic graph with $\gamma_{1,2}(G)=a$, and let $v^{\prime} v$, vu and $u u^{\prime}$ be three consecutive edges on the unique cycle of G. If $\gamma_{1,2}(G-v u)>a$, then $\gamma_{1,2}\left(G-v v^{\prime}\right) \leq a+1$ or $\gamma_{1,2}\left(G-u u^{\prime}\right) \leq a+1$.

Proof. Let D be a minimum (1,2)-dominating set of G. Then $D \cap\{v, u\} \neq \emptyset$ and $\left\{v, u, v^{\prime}, u^{\prime}\right\}$ is not a subset of D; otherwise D would be a $(1,2)$-dominating set of
$G-v u$ which is impossible as $|D|=a<\gamma_{1,2}(G-v u)$. We consider two possibilities.
Case 1. $\{v, u\} \subseteq D$. Then $\left\{v^{\prime}, u^{\prime}\right\}-D \neq \emptyset$. Now it is easy to observe that if $v^{\prime} \notin D$, then $D \cup\left\{v^{\prime}\right\}$ is a $(1,2)$-dominating set of $G-v v^{\prime}$ and so $\gamma_{1,2}\left(G-v v^{\prime}\right) \leq a+1$. Similarly, $\gamma_{1,2}\left(G-u u^{\prime}\right) \leq a+1$ if $u^{\prime} \notin D$.

Case 2. $|\{v, u\} \cap D|=1$, say $u \in D$ and $v \notin D$. If $N_{G}(v) \cap(D-\{u\})=\emptyset$, then D is a (1,2)-dominating set of $G-v v^{\prime}$ and $\gamma_{1,2}\left(G-v v^{\prime}\right)<a+1$. Suppose that $N_{G}(v) \cap(D-\{u\}) \neq \emptyset$. If $u^{\prime} \notin D$, then $D \cup\left\{u^{\prime}\right\}$ is a $(1,2)$-dominating set of $G-u u^{\prime}$ and $\gamma_{1,2}\left(G-u u^{\prime}\right) \leq a+1$. Finally, if $u^{\prime} \in D$, then, for any $u^{\prime \prime} \in N_{G}\left(u^{\prime}\right)-\{u\}$, $D \cup\left\{u^{\prime \prime}\right\}$ is a $(1,2)$-dominating set of $G-u u^{\prime}$ and so $\gamma_{1,2}\left(G-u u^{\prime}\right) \leq a+1$.

Lemma 7. Let G be a unicyclic graph with $\gamma_{1,2}(G)=a$, and let $v^{\prime} v$, vu and $u u^{\prime}$ be three consecutive edges on the unique cycle of G. If $\gamma_{1,2}\left(G-v v^{\prime}\right)=a=\gamma_{1,2}\left(G-u u^{\prime}\right)$, then $\gamma_{1,2}(G-v u) \leq a+1$.

Proof. Let G_{v} be the component of $G-\left\{v u, v v^{\prime}\right\}$ that contains the vertex v. Similarly, let G_{u} be the component of $G-\left\{v u, u u^{\prime}\right\}$ that contains u. Let $\mathcal{D}, \mathcal{D}_{v}$ and \mathcal{D}_{u} denote the sets of all minimum (1,2)-dominating sets of the graphs $G, G-v v^{\prime}$ and $G-u u^{\prime}$, respectively. Since $\gamma_{1,2}\left(G-v v^{\prime}\right)=\gamma_{1,2}\left(G-u u^{\prime}\right)=\gamma_{1,2}(G)=a, \mathcal{D}_{v} \cup \mathcal{D}_{u} \subseteq \mathcal{D}$.

It is easy to observe that $\gamma_{1,2}(G-v u) \leq a+1$ if $D \cap\left\{v, v^{\prime}\right\} \neq \emptyset$ for some $D \in \mathcal{D}_{v}$ or $D^{\prime} \cap\left\{u, u^{\prime}\right\} \neq \emptyset$ for some $D^{\prime} \in \mathcal{D}_{u}$. Thus assume that $D \cap\left\{v, v^{\prime}\right\}=\emptyset$ for every $D \in \mathcal{D}_{v}$ and $D^{\prime} \cap\left\{u, u^{\prime}\right\}=\emptyset$ for every $D^{\prime} \in \mathcal{D}_{u}$. Again it is no problem to observe that $\gamma_{1,2}(G-v u) \leq a+1$ if $\left(N_{G}[v]-\{u\}\right) \cap D=\emptyset$ for some $D \in \mathcal{D}_{v}$ or $\left(N_{G}[u]-\{v\}\right) \cap D^{\prime}=\emptyset$ for some $D^{\prime} \in \mathcal{D}_{u}$. Now assume that $\left(N_{G}[v]-\{u\}\right) \cap D \neq \emptyset$ for every $D \in \mathcal{D}_{v}$ and $\left(N_{G}[u]-\{v\}\right) \cap D^{\prime} \neq \emptyset$ for every $D^{\prime} \in \mathcal{D}_{u}$. It is easy to see that $\gamma_{1,2}(G-v u) \leq a+1$ if $\left|\left(N_{G}[v]-\{u\}\right) \cap D\right| \geq 2$ for some $D \in \mathcal{D}_{v}$ or $\left|\left(N_{G}[u]-\{v\}\right) \cap D^{\prime}\right| \geq 2$ for some $D^{\prime} \in \mathcal{D}_{u}$. Thus assume that $\left|\left(N_{G}[v]-\{u\}\right) \cap D\right|=1$ and $\left|\left(N_{G}[u]-\{v\}\right) \cap D^{\prime}\right|=1$ for every $D \in \mathcal{D}_{v}$ and $D^{\prime} \in \mathcal{D}_{u}$. For $D \in \mathcal{D}_{v}$ and $D^{\prime} \in \mathcal{D}_{u}$, let $v(D)$ and $u\left(D^{\prime}\right)$ be the unique vertex of $\left(N_{G}[v]-\{u\}\right) \cap D$ and $\left(N_{G}[u]-\{v\}\right) \cap D^{\prime}$, respectively. Certainly, $v(D)$ is a vertex of G_{v} and $u\left(D^{\prime}\right)$ is a vertex of G_{u}. Again it is easy to observe that if there exists $D \in \mathcal{D}_{v}$ such that $u \notin D$ or if there exists $D^{\prime} \in \mathcal{D}_{u}$ such that $v \notin D^{\prime}$, then $\gamma_{1,2}(G-v u) \leq a+1$. Thus assume that u belongs to every $D \in \mathcal{D}_{v}$ and v belongs to every $D^{\prime} \in \mathcal{D}_{u}$. If there exists $D \in \mathcal{D}_{v}$ and $z \in D-\{v(D), u\}$ such that $d_{G}(z,\{v(D), u\}) \leq 2$ or if there exists $D^{\prime} \in \mathcal{D}_{u}$ and $z^{\prime} \in D^{\prime}-\left\{u\left(D^{\prime}\right), v\right\}$ such that $d_{G}\left(z^{\prime},\left\{u\left(D^{\prime}\right), v\right\}\right) \leq 2$, then $\gamma_{1,2}(G-v u) \leq a+1$. Finally assume that $d_{G}(x,\{v(D), u\})>2$ for every $D \in \mathcal{D}_{v}$ and every $x \in D-\{v(D), u\}$, and $d_{G}\left(y,\left\{u\left(D^{\prime}\right), v\right\}\right)>2$ for every $D^{\prime} \in \mathcal{D}_{u}$ and every $y \in D^{\prime}-\left\{u\left(D^{\prime}\right), v\right\}$. Take any $D \in \mathcal{D}_{v}$ and $D^{\prime} \in \mathcal{D}_{u}$. Let F be the component of $G-u u\left(D^{\prime}\right)$ that contains $u\left(D^{\prime}\right)$, and let H denote the subgraph $F-u\left(D^{\prime}\right)$. Take any $y \in N_{G}\left(u\left(D^{\prime}\right)\right)-\{u\}$ and let H_{y} be the component of H that contains y. Since $d_{G}(x,\{v(D), u\})>2$ for every $x \in D-\{v(D), u\}$, neither $u\left(D^{\prime}\right)$ nor y belongs to D. This and the minimality of D imply that the set $D_{y}=D \cap V\left(H_{y}\right)$ is a minimum (1,2)-dominating set of H_{y}. Now take any vertex t from $N_{G}(y) \cap D_{y}$ and consider the graph $H_{y}-y$. Since D^{\prime} is a minimum (1,2)-dominating set of $G-u u^{\prime}$ and no vertex of $N_{G}[y]-\left\{u\left(D^{\prime}\right)\right\}$ belongs to D^{\prime}, it must be $\gamma_{1,2}\left(H_{y}-y\right)<\left|D_{y}\right|$; otherwise
$\bar{D}^{\prime}=\left(D^{\prime}-V\left(H_{y}-y\right)\right) \cup D_{y}$ containing t would be a minimum (1,2)-dominating set of $G-u u^{\prime}$ and t would be at distance two from $u\left(\bar{D}^{\prime}\right)=u\left(D^{\prime}\right)$ which is impossible. Let C_{y} be a minimum (1,2)-dominating set of $H_{y}-y$. Then $C_{y} \cup\{y\}$ is a minimum (1,2)-dominating set of H_{y} and so $\bar{D}=\left(D-D_{y}\right) \cup\left(C_{y} \cup\{y\}\right)$ is a minimum (1,2)-dominating set of $G-v v^{\prime}$. But now the vertex y of $\bar{D}-\{v(\bar{D}), u\}$ is at distance two from u. This contradicts our assumption; therefore we must reject the assumption that $d_{G}(x,\{v(D), u\})>2$ for every $D \in \mathcal{D}_{v}$ and $x \in D-\{v(D), u\}$, and $d_{G}\left(y,\left\{u\left(D^{\prime}\right), v\right\}\right)>2$ for every $D^{\prime} \in \mathcal{D}_{u}$ and $y \in D^{\prime}-\left\{u\left(D^{\prime}\right), v\right\}$. In all other cases, as we have already observed, $\gamma_{1,2}(G-v u) \leq a+1$. This completes the proof.

Corollary 2. Let G be a unicyclic graph with $\gamma_{1,2}(G)=a$. If $v^{\prime} v$, vu and $u u^{\prime}$ are three consecutive edges on the unique cycle of G and $\gamma_{1,2}(G-v u)=a+2$, then $\gamma_{1,2}\left(G-v v^{\prime}\right)=a+1$ or $\gamma_{1,2}\left(G-u u^{\prime}\right)=a+1$.

Proof. Assume on the contrary that $\gamma_{1,2}\left(G-v v^{\prime}\right) \neq a+1$ and $\gamma_{1,2}\left(G-u u^{\prime}\right) \neq a+1$. Then it follows from Lemmas 6 and 7 that $\min \left\{\gamma_{1,2}\left(G-v v^{\prime}\right), \gamma_{1,2}\left(G-u u^{\prime}\right)\right\}=a$ and $\max \left\{\gamma_{1,2}\left(G-v v^{\prime}\right), \gamma_{1,2}\left(G-u u^{\prime}\right)\right\}=a+2$, say $\gamma_{1,2}\left(G-v v^{\prime}\right)=a$ and $\gamma_{1,2}\left(G-u u^{\prime}\right)=$ $a+2$. Let D be any minimum (1,2)-dominating set of $G-v v^{\prime}$. Then D is a minimum (1,2)-dominating set of G. Since $\gamma_{1,2}(G-v u)=\gamma_{1,2}\left(G-u u^{\prime}\right)=a+2>a=|D|, D$ is neither a (1,2)-dominating set of $G-v u$ nor a (1,2)-dominating set of $G-u u^{\prime}$. This implies that $D \cap\{v, u\} \neq \emptyset, D \cap\left\{u, u^{\prime}\right\} \neq \emptyset$ and neither $\{v, u\}$ nor $\left\{u, u^{\prime}\right\}$ is a subset of D. It is easy to observe that $D \cap\left\{v, u, u^{\prime}\right\} \neq\left\{v, u^{\prime}\right\}$; otherwise $D \cup\{u\}$ would be (1,2)-dominating in $G-v u$. Consequently, $D \cap\left\{v, u, u^{\prime}\right\}=\{u\}$. Let x be any vertex of $D-\{u\}$ for which $d_{G}(u, x) \leq 2$. We must have $d_{G}(u, x)=2$; otherwise $D \cup\{v\}$ and $D \cup\left\{u^{\prime}\right\}$ would be (1,2)-dominating in $G-v u$ and in $G-u u^{\prime}$, respectively, which is impossible. Thus, let x^{\prime} be a common neighbour of u and x. It is easy to observe that neither $x^{\prime}=v$ nor $x^{\prime}=u^{\prime}$; for if $x^{\prime}=v\left(x^{\prime}=u^{\prime}\right.$, resp. $)$, then $D \cup\left\{u^{\prime}\right\}(D \cup\{v\}$, resp.) would be (1,2)-dominating in $G-u u^{\prime}$ ($G-v u$, resp.) which is impossible. This implies that neither x^{\prime} nor x belongs to the unique cycle of G. But now $D \cup\{v\}$ ($D \cup\left\{u^{\prime}\right\}$, resp.) is (1,2)-dominating in $G-v u\left(G-u u^{\prime}\right.$, resp.) which again is impossible. Therefore we must reject the assumption that $\gamma_{1,2}\left(G-v v^{\prime}\right) \neq a+1$ and $\gamma_{1,2}\left(G-u u^{\prime}\right) \neq a+1$. This completes the proof.

We are now ready to prove that $\gamma_{1,2}$ interpolates over every connected graph of order at least two.

Theorem 2. The (1,2)-domination number $\gamma_{1,2}$ is an interpolating function.
Proof. By Lemma 1, it suffices to show that $\gamma_{1,2}$ interpolates over every unicyclic graph. Let G be a unicyclic graph with $\gamma_{1,2}(G)=a$. Then the set $A=\left\{\gamma_{1,2}(T)\right.$: $T \in \mathcal{T}(G)\}$ is a subset of $\{a, a+1, a+2\}$ (by Corollary 1) and $a \in A$ (by Lemma 2). Certainly, it follows from Corollary 2 that $a+1 \in A$ if $a+2 \in A$. This proves that $\gamma_{1,2}$ interpolates over G.

We conclude with a result that describes the interpolating character of the (r, s) domination number for 2 -connected graphs. In the proof we will use the following property of 2 -connected graphs. Lovász [9, p. 269] and later Harary, Mokken and Plantholt [3] proved that if G is a 2 -connected graph, then any spanning tree T of G can be transformed into any spanning tree T^{*} of G through a sequence $T_{0}=$ $T, T_{1}, \ldots, T_{n}=T^{*}$ of spanning trees of G, called a sequence of end edge-exchanges transforming T into T^{*}, such that for every $k=0,1, \ldots, n-1, T_{k+1}=T_{k}+f_{k}-e_{k}$ where e_{k} and f_{k} are end edges in T_{k} and T_{k+1}, respectively.

Theorem 3. For any positive integers r and s, the (r, s)-domination number $\gamma_{r, s}$ interpolates over every 2-connected graph.

Proof. Assume G is a 2 -connected graph, and let m and M be respectively the smallest and largest integer of $\gamma_{r, s}(\mathcal{T}(G))$. Let T_{0} and T^{*} be spanning trees of G with $\gamma_{r, s}\left(T_{0}\right)=m$ and $\gamma_{r, s}\left(T^{*}\right)=M$. Since G is 2 -connected, there exists a sequence of end edge-exchanges $T_{0}, T_{1}, \ldots, T_{n}=T^{*}$ transforming T_{0} into T^{*}. To prove that $\gamma_{r, s}(\mathcal{T}(G))$ is an integer interval, we need only show that each step of the end edge-exchange may increase the value of $\gamma_{r, s}$ by at most one, that is $\gamma_{r, s}\left(T_{k+1}\right) \leq \gamma_{r, s}\left(T_{k}\right)+1$ for $k=0,1, \ldots, n-1$, which, in turn, implies that the sequence $\left(\gamma_{r, s}\left(T_{0}\right), \gamma_{r, s}\left(T_{1}\right), \ldots, \gamma_{r, s}\left(T_{n}\right)\right)$ contains ($m, m+1, \ldots, M$) as a subsequence and this proves that $\gamma_{r, s}(\mathcal{T}(G))=\{m, m+1, \ldots, M\}$.

Let D be any minimum (r, s)-dominating set in T_{k} and suppose that $T_{k+1}=$ $T_{k}+w v-v u$, where v is an end vertex of T_{k} (and of T_{k+1}) and u is the unique neighbour of v in T_{k}. Since $T_{k} \neq K_{2}$, the minimality of D implies that the set $N_{T_{k}}[u]$ is not a subset of D and therefore we may assume that $v \notin D$; otherwise $D^{\prime}=(D-\{v\}) \cup\{u\}($ if $u \notin D)$ or $D^{\prime \prime}=(D-\{v\}) \cup\{x\}$ for any $x \in N_{T_{k}}[u]-D$ (if $u \in D$) is a minimum (r, s)-dominating set in T_{k}, no one of them contains v and we could replace D by D^{\prime} or $D^{\prime \prime}$. Since $T_{k+1}=T_{k}+w v-v u$ and D is (r, s) dominating in T_{k}, we have $d_{T_{k+1}}(y, D-\{y\})=d_{T_{k}}(y, D-\{y\}) \leq s$ for any $y \in D$, $d_{T_{k+1}}(v, D)=d_{T_{k}}(w, D)+1 \leq r+1$ and $d_{T_{k+1}}(x, D)=d_{T_{k}}(x, D) \leq r$ for any $x \in V(G)-(D \cup\{v\})$. Thus, if $d_{T_{k}}(w, D) \leq r-1$, then D is an (r, s)-dominating set in T_{k+1} and therefore $\gamma_{r, s}\left(T_{k+1}\right) \leq|D|<\gamma_{r, s}\left(T_{k}\right)+1$. On the other hand, if $d_{T_{k}}(w, D)=r$, then let t be a vertex of D for which $d_{T_{k}}(w, t)=r$ and let t^{\prime} be the unique neighbour of t which belongs to the $t-w$ path in T_{k}. Then $D \cup\left\{t^{\prime}\right\}$ is an (r, s)-dominating set in T_{k+1} and again $\gamma_{r, s}\left(T_{k+1}\right) \leq\left|D \cup\left\{t^{\prime}\right\}\right|=\gamma_{r, s}\left(T_{k}\right)+1$.

From Theorem 3, we immediately have the following corollary proved in [13].
Corollary 3. The total domination number γ_{t} interpolates over any 2-connected graph.

Problem. If $r \geq 2$, does $\gamma_{r, 2 r}$ interpolate over every connected graph?

References

[1] E. J. Cockayne, R. M. Dawes and S. T. Hedetniemi, Total domination in graphs, Networks 10 (1980) 211-219.
[2] F. Harary, Maximum versus minimum invariants for graphs, J. Graph Theory 7 (1983) 275-284.
[3] F. Harary, R. J. Mokken and M. J. Plantholt, Interpolation theorem for diameters of spanning trees, IEEE Trans. Circuits Syst. 30 (1983) 429-432.
[4] F. Harary and M. J. Plantholt, Classification of interpolation theorems for spanning trees and other families of spanning subgraphs, J. Graph Theory 13 (1989) 703-712.
[5] F. Harary and S. Schuster, Interpolation theorems for invariants of spanning trees of a given graph: covering numbers, Congr. Numer. 64 (1988) 215-219.
[6] F. Harary and S. Schuster, Interpolation theorems for the independence and domination numbers of spanning trees, Ann. Discrete Math. 41 (1989) 221-228.
[7] F. Harary, S. Schuster and P. D. Vestergaard, Interpolation theorems for the invariants of spanning trees of a given graph: edge-covering, Congr. Numer. 59 (1987) 107-114.
[8] M. A. Henning, O. R. Oellermann and H. C. Swart, Bounds on distance domination parameters, J. Combin. Inform. System Sci. 16 (1991) 11-18.
[9] L. Lovász, Combinatorial Problems and Exercises, Akadémiai Kiadó, Budapest 1979.
[10] A. Meir and J. W. Moon, Relation between packing and covering numbers of a tree, Pacific J. Math. 61 (1975) 225-233.
[11] Z. Mo and K. Williams, (r, s)-domination in graphs and directed graphs, Ars Combin. 29 (1990) 129-141.
[12] J. Topp, Domination, independence and irredundance in graphs, Diss. Math. 342 (1995) 99 pp .
[13] J. Topp and P. D. Vestergaard, Interpolation theorems for domination numbers of a graph, submitted.

