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Abstract

If G is a graph without isolated vertices, and if r and s are positive inte-
gers, then the (r, s)-domination number 7, ;(G) of G is the cardinality of
a smallest vertex set D such that every vertex not in D is within distance
r from some vertex in D, while every vertex in D is within distance s
from another vertex in D. This generalizes the total domination number
%(G) = 11 (G).

Let 7(G) denote the set of all spanning trees of a connected graph
G. We prove that 7,,(7(G)) is a set of consecutive integers for every
connected graph G of order at least two when s > 2r + 1. This is not
true if 1 < s < 2r—1, and for s = 27 the problem is open. We prove that
Yr2r(T(G)) is a set of consecutive integers for = 1 and we conjecture this
also holds for r > 2. We also prove that v, ,(7(G)) is a set of consecutive
integers for every 2-connected graph G and for any two positive integers
r and s.

Let G be a simple undirected graph with vertices V(G) and edges E(G). The neigh-
bourhood of a vertex v in G is Ng(v) = {u € V(G) : wv € E(G)} and the closed
neighbourhood is Ng[v] = Ng(v) U {v}. For a connected graph G, let dg(v, u) denote
the distance between vertices v and u in G. If S is a set of vertices of G and v
is a vertex of G, then dg(v,S) denotes the distance between v and S, the shortest
distance between v and a vertex of S.

Let r and s be two positive integers. A vertex set D of a graph G is an (r, —)-set
of G if dg(v,D) < r for every v € V(G) — D. Similarly, a subset D of V(G) is
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a (—,s)-set of G if dg(u,D — {u}) < s for every u € D. A subset D of V(G) is
an (r, s)-dominating set of G if D is both an (r, —)-set and a (—, s)-set of G. The
cardinality of a minimum (r, s)-dominating set in G is called the (r, s)-domination
number of G and is denoted by 7, ,(G). Note that this parameter is only defined for
graphs without isolated vertices and if G is a graph without isolated vertices, then
Yr,s(G) > 2. The (r,s)-domination number introduced by Mo and Williams [11] is
related to other graphical parameters. In particular, the (1,1)-domination number
71,1(G) of a graph G is the total domination number 1(G) of G defined by Cockayne,
Dawes and Hedetniemi [1]. The (r, r)-domination number was studied in [8] as the
total Pe,yy-domination number. (r, —)-sets are also known as distance r-dominating
sets or r-coverings (in [10]) and the minimum cardinality of a distance r-dominating
set of a graph G is called the distance r-domination number of G and is denoted by
Y(G)-

An invariant = defined for all spanning trees of a connected graph @ is said to
interpolate over G if the set 7(7T(G)) = {x(T) : T € T(G)} consists of consecutive
integers, i.e. 7(7(G)) is an integer interval. We shall call 7 an interpolating function
if m interpolates over each connected graph. The interpolating character of different
graphical parameters was investigated in a number of papers. In particular, the in-
terpolation of domination related parameters was studied in [2, 4, 5, 6, 7, 12, 13],
to quote a few. In this paper we study the interpolating character of the (r,s)-
domination number. The following four lemmas will be useful in our proofs.

Lemma 1 [13]. An integer-valued graph function  is an interpolating function
if and only if 7 interpolates over every unicyclic graph.

Lemma 2 [11). Let G be a connected graph of order at least two, and let r and
5 be positive integers. Then v, (G) = 7,4(T) for some spanning tree T of G.

Lemma 3 [13]. For any positive integer r, the distance r-domination number Yr
s an interpolating function.

Lemma 4. If G is a connected graph of order at least two and ifr and s are
positive integers such that s > 2r + 1, then 7,,(G) = max{2,7,(G)}.

Proof. Let D be a minimum distance r-dominating set of G. If |D} = 1,
then for any z € V(G) — D, DU {z} is a minimum (r, s)-dominating set of G' and
Vrs(G) = 2 = max{2,%,(G)}. If |D| > 2, then D is an (r, s)-dominating set in G;
for if not, then there is a vertex z in D such that dg(z, D — {z}) > s > 2r + 1 and
any shortest path joining z to a vertex of D — {z} contains a vertex y for which
de(y, D) > r, which contradicts the fact that D is a distance r-dominating set in G.
In addition, since D is a minimum distance r-dominating set of G, D is a minimum
(r, s)-dominating set of G and therefore 7, ,(G) = 7,(G) = max{2, 1(@)}. O

Theorem 1. The (r, s)-domination number v, is an interpolating function if
s> 2r+1.
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Proof. Since v, is an interpolating function (by Lemma 3), max{2,7,} is an
interpolating function. Now, by Lemma 4, +, ; is an interpolating function. O

We now turn our attention to interpolation properties of the (r, s)-domination
number 7., with 1 < s < 2r. For a positive integer r, let G, be the graph given
in Fig. 1. Since G, is a unicyclic graph, every spanning tree of G, is an edge-
deleted subgraph G, — vu, where vu is an edge of the unique cycle of G,. One
can verify that if 1 < s < r, then v (G, — viviy1) = s (Gr — wuiy1) = 4 for
each i =r,...,2r, while v, (G, — v,u,;) = ¥ (Gr — Var41U2r41) = 6. Consequently,
Vr,s(T(Grs)) = {4,6} and this implies that the (r, s)-domination number 7, ; with
1 < s < r and, in particular, the total domination number v, = v;; are not inter-
polating functions. The next example proves that the (r, s)-domination number 7, ,
is not an interpolating function if r +1 < s < 2r — 1. Let 7, s and ! be positive
integers such that 3 <r+1<s <2r—1and! > [(r+1)/3], and let H,, be the
unicyclic graph of girth 21(2r — s 4 2) given in Fig. 2. Let vu be an edge belonging
to the unique cycle of H, ,. It is evident that every (r, s)-dominating set of the tree
H, ; — vu contains at least one vertex of the path v(? — v@, and at least one vertex
of the path u{® — ul?), for every i € {1,...,21}, so that v, 4(H,, — vu) > 4. If
vu {'u((,l)ugl), .. .,v(()m)uf)m}, then, since {vgl_),, .. ‘,vgi,ugl_),, . ,u§2_“,} is an (r, s)-
dominating set of H;, — vu, we also have v, ;(H,, — vu) = 4l. We now show that
Yrs(T) =4+ 28T, = H,, — v((,i)u((f) for i € {1,...,2l}. Since trees Ty, Tp,..., Ty
are mutually isomorphic, it suffices to show that <y, s(T) = 4/ + 2 where T = T}. Let
D be a minimum (7, s)-dominating set of 7', and let v® (u®, resp.) denote that
vertex of D for which dr(v{?, D) = dr(v®,v®) (dr(u), D) = dr(u®, u®), resp.),
i=1,...,2l Certainly, v® (u®, resp.) belongs to the path v{) — v, (uf) — u{? |
resp.) for every ¢ € {1,...,2l}. Let v (u, resp.) be a vertex in D for which
dr(v®, D — {v®}) = dr(v®,v) (dr(u®, D — {uM}) = dr(u®,u), resp.). Since
dr(v®,v) < s and dp(uV,u) < s while dp(v®, {v@, . Co @ @ @) >
dT(vgl_),,ugz_),) > s and dr(u®, {v®,... v 4@ . 4@} > dp@®, o) > s,
neither v nor u belongs to {v®,... v M 4@} In addition, vertices v and
u are distinct, for otherwise dr(v®,u) < dp(v®,v) + dp(u, u®) < 2s which is
impossible as dr(v®,u®) > dp(v®,, ul) = 2(s = r) + 20(2r —s+2) —1 > 25+ 1.
We conclude that v,,(T) > [{v®, ..., 0@ O u®} U {v,u}| = 4l + 2. Since
{vgl_),., . ,vﬁ?fl, oMo ug%f),} U {vél), ugl)} is an (r, s)-dominating set of T, we also
have that v, 5(T) < 4l + 2, whence 7,,,(T) = 41 + 2. It follows that v, (T (H,,)) =
{4l, 41 +2}. Consequently, the (r, s)-domination number v, , with r +1 < s < 2r —1
(and therefore with 1 < s < 2r — 1) is not an interpolating function.

Since 7, is an interpolating function when s > 2r + 1, a question to be consid-
ered here is whether +, 2, is an interpolating function. We suspect that Yror 1S an
interpolating function for every positive integer 7, but we are able to prove it only
for r = 1. We also prove that for any positive integers 7 and s, 7, interpolates over
every 2-connected graph. First we analyze how the (r, s)-domination number varies
as we delete an edge from a graph.
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Fig. 1. A graph G = G, for which v, ,(7(G)) = {4,6} where 1 < s < r.
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Fig. 2. A graph G = H,, for which 7, ,(T(G)) = {4l,4] + 2}
where 3<r+1<s<2r—1and!> [(r+1)/3].
Lemma 5. Let r and s be positive integers, and let vu be an edge of a graph G.

If vu is not an end-edge of G, then
Vrs(G) < Y,s(G = vu) < Vrs(G) +2.

Proof. Since any (r, s)-dominating set of G — vu is (r, s)-dominating in G, the
inequality v,4(G) < ¥s(G — vu) is obvious. .

By definition v, s(G) > 2, so the inequality 7, (G — vu) < r,s(G) +2 is obvious if
[V(G)| < 4. Thus assume that |V (G)| > 5 and let D be a minimum (r, s)-dominating

set of G. We consider four possible cases.
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Case 1. D is both an (r, —)- and (—, s)-set of G—vu. Then D is (r, s)-dominating
in G — vu and therefore 7, s(G — vu) < |D| < 7,4(G) + 2.

Case 2. D is a (—,s)-set but it is not an (r,—)-set of G — vu. In this case the
set V! = {z € V(G) — D : dg—yu(x, D) > r} is nonempty and for every = € V', since
dg(z, D) < r, any path of length at most r joining z to a vertex of D in G contains
the edge vu. This implies that dg(v, D) # dg(u, D), say dg(v, D) < dg(u, D). Now,
for any u' € Ng(u) — {v}, the set DU {u,u'} is (r, s)-dominating in G — vu and so
Yrs(G —vu) < | DU {u, v’} < %(G) + 2.

Case 8. D is an (r,—)-set but it is not a (—,s)-set of G — vu. Now the set
D' = {z € D : dg_yu(z,D — {z}) > s} is nonempty and for every z € D', since
dg(z, D — {z}) < s, any path of length at most s joining z to a vertex of D — {z}
in G contains the edge vu. Therefore dg(z,v) # dg(z,u) for every z € D' and the
sets D, = {z € D' : dg(z,v) < dg(z,u)} and D, = {z € D' : dg(z,u) < dg(z,v)}
form a partition of D'. In addition, since vu is not an end-edge of G, Ng[v] — {u}
(Ng[u] — {v}, resp.) is not a subset of D if D, # @ (D, # 0, resp.). Now if D, # 0
(D, # 0, resp.) and if v' is any vertex from Ng[v] — (DU {u}) (v is any vertex from
Nglu] — (DU {v}), resp.), then the set DU {v'} (if D, = 0), DU {u'} (if D, = @) or
Du{v',u'} is (r, s)-dominating in G —vu and s0 7,s(G—vu) < |D|+2 = 7.4(G)+2.

Case 4. D is neither an (r, —)-set nor a (—, 5)-set of G —vu. Then both the sets
V'={zxeV(G)~-D:dg_w(z,D)>r}and D' = {z € D : dg—pu(z, D — {z}) > s}
are nonempty. Certainly, for any z from V', every path of length at most r joining
z to a vertex of D in G contains the edge vu. Similarly, if = belongs to D', then
every path of length at most s joining z to a vertex of D — {z} in G contains vu.
In addition, since V' # @, we have dg(v, D) # dg(u, D), say dg(v, D) < dg(u, D)
and let d be a vertex of D for which dg(v, D) = dg(v,d). As in Case 3, the sets
D, ={z € D :dg(z,v) < dg(z,u)} and D, = {z € D' : dg(z,u) < dg(z,v)} form
a partition of D’. The assumption dg(v, D) < dg(u, D) easily implies that either
D, =0or D, = {d}. If D, =0, then DU {u} is an (r, s)-dominating set in G — vu.
Finally, if D, # 0, then Ng[v] — {u} is not a subset of D (since vu is not an end-edge
of G) and for any v' € Ng[v] — (D U {u}), the set DU {u,v'} is (r, s)-dominating in
G — vu. Thus in each case 7, (G — vu) < |D|+ 2 = 7,,(G) + 2.

This completes the proof. O

Corollary 1. Let G be a unicyclic graph and let r and s be positive integers. If
Yr,s(G) = a, then v, ,(T(G)) is a subset of {a,a+ 1,a+ 2}.

Proof. Let C be the unique cycle of G. Then T(G) = {G ~ vu : vu € E(C)}
and the result follows from Lemma 5. O

Lemma 6. Let G be a unicyclic graph with v12(G) = a, and let v'v, vu and
uu' be three consecutive edges on the unique cycle of G. If y12(G — vu) > a, then

T1,2(G—vv') <a+1 ory2(G —uv) <a+1.

Proof. Let D be a minimum (1, 2)-dominating set of G. Then DN{v,u} # @ and
{v, u, V', v’} is not a subset of D; otherwise D would be a (1, 2)-dominating set of
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G —vu which is impossible as |D| = a < 7,2(G — vu). We consider two possibilities.

Case 1. {v,u} C D. Then {v/, '} — D # 0. Now it is easy to observe that if
v' & D, then DU{v'} is a (1, 2)-dominating set of G'— v’ and so Y12(G—v') < a+1.
Similarly, v 2(G —wvu') < a+1ifu' & D.

Case 2. {v,u}ND|=1,sayu € Dandv ¢ D. If Ne(v) N (D = {u}) = 0,
then D is a (1,2)-dominating set of G — vv’ and 71 5(G — vv') < ¢ +1. Suppose that
No(v)N(D—{u}) #0. If ' ¢ D, then DU{u'} is a (1,2)-dominating set of G — '
and 12(G —uw') < a+ 1. Finally, if u' € D, then, for any v’ € Ne(u') — {u},
DU {u"} is a (1,2)-dominating set of G — wu' and so 12(G—wv) <a+1. O

Lemma 7. Let G be a unicyclic graph with v, 5(G) = a, and let v'v, vu and uu' be
three consecutive edges on the unique cycle of G. If v, 5(G — ') = a = y,(G —uu'),
then v12(G — vu) < a+1.

Proof. Let G, be the component of G — {vu, vv'} that contains the vertex wv.
Similarly, let G, be the component of G — {vu, uu'} that contains u. Let D, D, and
D, denote the sets of all minimum (1, 2)-dominating sets of the graphs G, G—vv' and
G —uu/, respectively. Since 71 2(G —vv') = 715(G ~u') = 71 5(G) = a, D,UD, C D.

It is easy to observe that v15(G ~vu) < a+1if DN{v,v'} # 0 for some D € D,
or D' N {u,u'} # O for some D' € D,. Thus assume that D N {v,v'} = 0 for ev-
ery D € D, and D'N {u,v'} = @ for every D’ € D,. Again it is no problem to
observe that v12(G — vu) < a+1 if (Ng[v] — {u}) N D = 0 for some D € D, or
(Ng[u] = {v}) N D’ = @ for some D' € D,,. Now assume that (Nglv]—{u})ND #£0
for every D € D, and (Ng[u] — {v}) N D' # @ for every D' € D,. It is easy
to see that 712(G — vu) < a + 1 if |(Ng[v] — {u}) N D| > 2 for some D € D, or
[(Ng[u]—{v})ND’| > 2 for some D’ € D,. Thus assume that |(Ng[v]—{u})nD| =1
and |(Ng[u] — {v}) N D'| =1 for every D € D, and D’ € D,. For D € D, and
D' € Dy, let v(D) and u(D') be the unique vertex of (Ng[v] = {u}) N D and
(Ng[u] = {v}) N D', respectively. Certainly, v(D) is a vertex of G, and u(D') is
a vertex of G,. Again it is easy to observe that if there exists D € D, such that
u & D or if there exists D' € D, such that v ¢ D', then v, 5(G — vu) < a + 1.
Thus assume that u belongs to every D € D, and v belongs to every D' € D,. If
there exists D € D, and z € D — {v(D),u} such that dg(z,{v(D),u}) < 2 or if
there exists D' € D, and ' € D’ — {u(D’),v} such that da(2', {u(D'),v}) < 2, then
M2(G —vu) < a+ 1. Finally assume that dg(z, {v(D),u}) > 2 for every D € D,
and every z € D~ {v(D),u}, and dg(y, {u(D'),v}) > 2 for every D' € D, and every
y € D' — {u(D"),v}. Take any D € D, and D' € D,. Let F be the component of
G —wu(D') that contains u(D’), and let H denote the subgraph F' — u(D'). Take
any y € Ng(u(D')) — {u} and let H, be the component of H that contains y. Since
da(z, {v(D),u}) > 2 for every z € D — {v(D), u}, neither u(D’) nor y belongs to
D. This and the minimality of D imply that the set Dy, = DNV(H,) is a minimum
(1,2)-dominating set of H,. Now take any vertex ¢ from Ng(y) N Dy and consider
the graph H, —y. Since D' is a minimum (1, 2)-dominating set of G — uu’ and no
vertex of Ng[y] — {u(D’)} belongs to IV, it must be Y1,2(Hy — y) < |D,]; otherwise
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D' = (D'~ V(H, —y)) U D, containing ¢ would be a minimum (1,2)-dominating
set of G — uu' and ¢ would be at distance two from w(D') = u(D') which is im-
possible. Let Cy be a minimum (1,2)-dominating set of H, — y. Then C, U {y}
is a minimum (1,2)-dominating set of H, and so D = (D — D,) U (C, U {y}) is a
minimum (1,2)-dominating set of G — vv'. But now the vertex y of D — {v(D),u} is
at distance two from u. This contradicts our assumption; therefore we must reject
the assumption that dg(z, {v(D),u}) > 2 for every D € D, and z € D — {v(D), u},
and dg(y, {u(D'),v}) > 2 for every D' € D, and y € D' — {u(D'),v}. In all other

cases, as we have already observed, v, 5(G—vu) < a+1. This completes the proof. O

Corollary 2. Let G be a unicyclic graph with v 2(G) = a. If v'v, vu and uw'
are three consecutive edges on the unique cycle of G and v12(G — vu) = a + 2, then
T2(G—vV) =a+1 or y12(G—wi') =a+1.

Proof. Assume on the contrary that y; 3(G—vv') # a+1 and 71 2(G—uv') # a+1.
Then it follows from Lemmas 6 and 7 that min{vy; 2(G — vv'), 11,2(G — wv')} = a and
max{y;2(G — vv'), 112(G — uv')} = a+2, say v12(G — vv') = a and v, 5(G — wu') =
a+2. Let D be any minimum (1,2)-dominating set of G —vv’. Then D is a minimum
(1,2)-dominating set of G. Since v12(G —vu) = 712(G~uwv') =a+2>a = |D|, Dis
neither a (1,2)-dominating set of G — vu nor a (1,2)-dominating set of G — uv’. This
implies that DN {v,u} # 0, DN{u,u'} # 0 and neither {v,u} nor {u,u'} is a subset
of D. It is easy to observe that D N {v,u,u'} # {v,u'}; otherwise DU {u} would be
(1,2)-dominating in G — vu. Consequently, DN {v,u,u'} = {u}. Let z be any vertex
of D — {u} for which dg(u,z) < 2. We must have dg(u, ) = 2; otherwise D U {v}
and DU{v'} would be (1,2)-dominating in G —vu and in G —uu/, respectively, which
is impossible. Thus, let 2’ be a common neighbour of u and z. It is easy to observe
that neither 2’ = v nor 2’ = u'; for if 2’ = v (¢/ = v/, resp.), then DU {u'} (DU {v},
resp.) would be (1,2)-dominating in G — uv' (G — vu, resp.) which is impossible.
This implies that neither 2’ nor z belongs to the unique cycle of G. But now DU {v}
(D U {u'}, resp.) is (1,2)-dominating in G — vu (G — ww', resp.) which again is
impossible. Therefore we must reject the assumption that v, (G — vv') # a+ 1 and
1,2(G — uv') # a + 1. This completes the proof. O

We are now ready to prove that v, interpolates over every connected graph of
order at least two.

Theorem 2. The (1,2)-domination number v, 5 is an interpolating function.

Proof. By Lemma 1, it suffices to show that 7; » interpolates over every unicyclic
graph. Let G be a unicyclic graph with v, 2(G) = a. Then the set A = {v,2(T) :
T € T(G)} is a subset of {a,a + 1,a + 2} (by Corollary 1) and a € A (by Lemma
2). Certainly, it follows from Corollary 2 that a + 1 € A if a + 2 € A. This proves
that v, interpolates over G. O
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We conclude with a result that describes the interpolating character of the (r, s)-
domination number for 2-connected graphs. In the proof we will use the following
property of 2-connected graphs. Lovész [9, p.269] and later Harary, Mokken and
Plantholt [3] proved that if G is a 2-connected graph, then any spanning tree T'
of G can be transformed into any spanning tree T* of G through a sequence Ty =
T,T,...,T7, = T* of spanning trees of G, called a sequence of end edge-ezchanges
transforming T into T*, such that for every k =0,1,...,n—~ 1, Tpy1 = Tp + fr — €
where ey and f;, are end edges in 7} and T, respectively.

Theorem 3. For any positive integers r and s, the (r, s)-domination number v, ;
interpolates over every 2-connected graph.

Proof. Assume G is a 2-connected graph, and let m and M be respectively
the smallest and largest integer of <, ,(7(G)). Let Ty and T* be spanning trees
of G with 7,4(To) = m and v, 4(T*) = M. Since G is 2-connected, there ex-
ists a sequence of end edge-exchanges Ty, 71,...,T, = T* transforming Ty into T™.
To prove that v, ,(7(G)) is an integer interval, we need only show that each step
of the end edge-exchange may increase the value of 7,, by at most one, that is
Yrs(Tkt1) € ¥rs(Tk) +1for k=0,1,...,n — 1, which, in turn, implies that the se-
quence (Vr,s(T0), Vr,s(T1), - - -, ¥r,s(Tn)) contains (m,m +1,..., M) as a subsequence
and this proves that v, ,(7(G)) = {m,m +1,..., M}.

Let D be any minimum (r, s)-dominating set in T} and suppose that Ty, =
Ty + wv — vu, where v is an end vertex of Ty (and of Ty41) and u is the unique
neighbour of v in Tj. Since T} # K,, the minimality of D implies that the set
Np,[u] is not a subset of D and therefore we may assume that v ¢ D; otherwise
D' = (D~ {v})U{u} (ifu¢g D) or D' = (D - {v})U{z} for any z € Ng,[u] — D
(if v € D) is a minimum (r, s)-dominating set in T}, no one of them contains v
and we could replace D by D’ or D". Since Ty, = T +wv — vu and D is (r, s)-
dominating in T, we have dr,,, (v, D — {y}) = dr,(y, D — {y}) < s for any y € D,
dr,,, (v, D) = dp(w,Dy +1 < r +1 and dg,,,(z,D) = dp,(z,D) < r for any

z € V(G) = (DU {v}). Thus, if dr,(w,D) < 7 — 1, then D is an (r, s)-dominating
set in Ty1; and therefore v, ((Tiy1) < |D| < 4:5(Tk) + 1. On the other hand, if
dr, (w, D) = r, then let  be a vertex of D for which dy, (w,t) = r and let ¢’ be the
unique neighbour of ¢ which belongs to the ¢ — w path in 7. Then D U {#'} is an
(r, s)-dominating set in Ty4; and again Y, s(Ti1) < [DU {t'} = 75(Tk) + 1. O

From Theorem 3, we immediately have the following corollary proved in [13].

Corollary 3. The total domination number v, interpolates over any 2-connected
graph.

Problem. If r > 2, does 7,2, interpolate over every connected graph?
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