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Abstract 

If G is a graph without isolated vertices, and if rand s are positive inte­
gers, then the (r, s)-domination number 'Yr,s(G) of G is the cardinality of 
a smallest vertex set D such that every vertex not in D is within distance 
r from some vertex in D, while every vertex in D is within distance s 
from another vertex in D. This generalizes the total domination number 
'Yt(G) = 'Yl,l(G). 

Let T( G) denote the set of all spanning trees of a connected graph 
G. We prove that 'Yr,s(T(G)) is a set of consecutive integers for every 
connected graph G of order at least two when s 2': 2r + 1. This is not 
true if 1 :::; s :::; 2r -1, and for s = 2r the problem is open. We prove that 
'Yr,2r(T( G)) is a set of consecutive integers for r = 1 and we conjecture this 
also holds for r 2': 2. We also prove that 'Yr,s(T(G)) is a set of consecutive 
integers for every 2-connected graph G and for any two positive integers 
rand s. 

Let G be a simple undirected graph with vertices V(G) and edges E(G). The neigh­
bourhood of a vertex v in G is NG(v) = {u E V(G) : uv E E(G)} and the closed 
neighbourhood is N G [v] = N G ( v) U { v }. For a connected graph G, let dG ( v, u) denote 
the distance between vertices v and u in G. If S is a set of vertices of G and v 
is a vertex of G, then dG ( v, S) denotes the distance between v and S, the shortest 
distance between v and a vertex of S. 

Let rand s be two positive integers. A vertex set D of a graph G is an (r, - )-set 
of G if dG(v, D) :::; r for every v E V(G) - D. Similarly, a subset D of V(G) is 
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a (-,s)-set of G if dc(u,D - {u}) ::; s for every u E D. A subset D of V(G) is 
an (r, s) -dominating set of G if D is both an (r, - )-set and a (-, s )-set of G. The 
cardinality of a minimum (r, s)-dominating set in G is called the (r, s)-domination 
number of G and is denoted bY'Yr,s(G). Note that this parameter is only defined for 
graphs without isolated vertices and if G is a graph without isolated vertices, then 
'Yr,s (G) ~ 2. The (r, s )-domination number introduced by Mo and Williams [11] is 
related to other graphical parameters. In particular, the (1, I)-domination number 
"11,1 (G) of a graph G is the total domination number "It ( G) of G defined by Cockayne, 
Dawes and Hedetniemi [1]. The (r, r)-domination number was studied in [8] as the 
total P<r+1-domination number. (r, - )-sets are also known as distance r-dominating 
sets or -;'-coverings (in [10]) and the minimum cardinality of a distance r-dominating 
set of a graph G is called the distance r-domination number of G and is denoted by 
'Yk( G). 

An invariant 1(" defined for all spanning trees of a connected graph G is said to 
interpolate over G if the set 1(" (T(G) ) = {1("(T) : T E T( G)} consists of consecutive 
integers, i.e. 1("(T( G)) is an integer interval. We shall call 1(" an interpolating function 
if 'If interpolates over each connected graph. The interpolating character of different 
graphical parameters was investigated in a number of papers. In particular, the in­
terpolation of domination related parameters was studied in [2, 4, 5, 6, 7, 12, 13], 
to quote a few. In this paper we study the interpolating character of the (r, s)­
domination number. The following four lemmas will be useful in our proofs. 

Lemma 1 [13]. A n integer-valued graph function 'If is an interpolating function 
if and only if 'If interpolates over every unicyclic graph. 

Lemma 2 [ll]. Let G be a connected graph of order at least two, and let rand 
s be positive integers. Then 'Yr,s(G) = 'Yr,s(T) for some spanning tree T of G. 

Lemma 3 [13J. For any positive integer r, the distance r-domination number 'Yr 
is an interpolating function. 

Lemma 4. If G is a connected graph of order at least two and if rand s are 
positive integers such that s ~ 2r + 1, then 'Yr,s(G) = max{2, 'Yr(G)}. 

Proof. Let D be a minimum distance r-dominating set of G. If I D I = 1, 
then for any x E V(G) - D, D U {x} is a minimum (r, s)-dominating set of G and 
'Yr,s(G) = 2 = max{2, 'Yr(G)}. If IDI ~ 2, then D is an (r, s)-dominating set in G; 
for if not, then there is a vertex x in D such that dc(x, D - {x}) > s ~ 2r + 1 and 
any shortest path joining x to a vertex of D - {x} contains a vertex y for which 
dc(y, D) > r, which contradicts the fact that D is a distance r-dominating set in G. 
In addition, since D is a minimum distance r-dominating set of G, D is a minimum 
(r, s)-dominating set of G and therefore "ir,s(G) = 'Yr(G) = max{2, 'Yr(G)}. 0 

Theorem 1. The (r, s)-domination number "ir,s is an interpolating function if 
s ~ 2r + 1. 
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Proof. Since 'Yr is an interpolating function (by Lemma 3), max{2, 'Yr} is an 
interpolating function. Now, by Lemma 4, 'Yr,s is an interpolating function. 0 

We now turn our attention to interpolation properties of the (r, s)-domination 
number 'Yr,s with 1 :::; s :::; 2r. For a positive integer r, let Gr be the graph given 
in Fig. 1. Since Gr is a unicyclic graph, every spanning tree of Gr is an edge­
deleted subgraph Gr - VU, where vu is an edge of the unique cycle of Gr. One 
can verify that if 1 :::; s :::; r, then 'Yr,s(Gr - ViVi+d = 'Yr,s(Gr - uiUi+d = 4 for 
each i = r, ... , 2r, while 'Yr,s(Gr - vrur) = 'Yr,s(Gr - V2r+1U2r+l) = 6. Consequently, 
'Yr,s (T( Gr,s)) = {4, 6} and this implies that the (r, s )-domination number Ir,s with 
1 :::;: s :::; r and, in particular, the total domination number 'Yt = 'Yl,1 are not inter­
polating functions. The next example proves that the (r, s)-domination number 'Yr,s 
is not an interpolating function if r + 1 :::; s :::; 2r - 1. Let r, sand 1 be positive 
integers such that 3 :::; r + 1 :::; s :::; 2r - 1 and 1 ~ I(r + 1)/31, and let Hr,s be the 
unicyclic graph of girth 2l(2r - s + 2) given in Fig. 2. Let vu be an edge belonging 
to the unique cycle of Hr,s. It is evident that every (r, s)-dominating set of the tree 
Hr,s - vu contains at least one vertex of the path V~i) - v~~r and at least one vertex 

of the path U~i) - u~~r for every i E {I, ... , 2l}, so that 'Yr,s(Rr,s - vu) ~ 4l. If 

{
(I) (1) (2l) (2l)} . {(I) (2l) (1) (21)} . () vu fI. Vo Uo , ... , Vo Uo ,then, Slnce Vs- n "" vs- r, Us- n ... ,Us- r IS an r, s -

dominating set of Hr,s - VU, we also have 'Yr,s(Hr,s - vu) = 4l. We now show that 
'Yr,s(7i) = 4l + 2 if 'Ii = Hr,s - V~i)u~i) for i E {I, ... , 2l}. Since trees TI, T2, ... , T2l 
are mutually isomorphic, it suffices to show that 'Yr,s(T) = 4l + 2 where T = TI. Let 
D be a minimum (r,s)-dominating set of T, and let V(i) (U(i), resp.) denote that 
vertex of D for which dT(V~i),D) = dT(V~i),V(i») (dT(U~i),D) = dT(U~i),U(i»), resp.), 
. - 1 2l Ct' 1 (i) ( (i) ) bIt th th (i) (i) (i) (i) 'l - , •.. , . er am y, v u, resp. e ongs 0 e pa Vs - Vs- r Us - Us- n 
resp.) for every i E {I, ... , 21}. Let v (u, resp.) be a vertex in D for which 
dT(v(1),D - {v(1)}) = dT(v(1),v) (dT(u{l),D - {u(1)}) = dT(u(1),u), resp.). Since 
dT(v(1),v) :::; sand dT(u(1),u) :::; s while dT(v(I),{V(2), ... ,V(2l),U(I), ... ,U(2l)}) ~ 

d ( 1) (2») d d ( (1) { (1) (2l) (2) (2l)}) > d (1) (21}) TVs-nUs- r >san TU ,V , ... ,V ,U , ... ,U _ TUs-nVs- r >s, 
neither v nor U belongs to {v(1), ... , V(2l), u(1), ... ,U(21)}. In addition, vertices v and 
U are distinct, for otherwise dT(v(I),u(1») :::; d;(V(l),V) + dT(u,u(1») :::; 2s which is 

impossible as dT(v(I}, u(1») ~ dT(V~~r' u~~r) = 2(8 - r) + 2l(2r - 8 + 2) -1 ~ 2s + l. 
We conclude that 'Yr,s(T) ~ I{V(1), ... ,V(21),u(1), ... ,U(2l)}U{v,u}1 = 41+2. Since 

{
(I) (2l) (1) (2l)} {(1) (I)}. () d ., f Vs- r ," ., Vs- n Us- n " ., Us- r U Vo ,UO IS an r, s - ommatmg set 0 T, we also 

have that 'Yr,s(T) :::;: 4l + 2, whence 'Yr,s(T) = 4l + 2. It follows that 'Yr,s(T(Hr,s)) = 
{4l, 4l + 2}. Consequently, the (r, s)-domination number 'Yr,s with r + 1 :::; s :::; 2r-l 
(and therefore with 1 :::; s :::; 2r - 1) is not an interpolating function. 

Since 'Yr,s is an interpolating function when s ~ 2r + 1, a question to be consid­
ered here is whether 'Yr,2r is an interpolating function. We suspect that 'Yr,2r is an 
interpolating function for every positive integer r, but we are able to prove it only 
for r = 1. We also prove that for any positive integers rand 8, 'Yr,s interpolates over 
every 2-connected graph. First we analyze how the (r, s)-domination number varies 
as we delete an edge from a graph. 
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Fig. 1. A graph G = Gr for which '"Yr,s(T(G)) {4,6} where 1::; s::; r. 
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Fig. 2. A graph G = Hr,s for which '"Yr,s(T(G)) = {4l, 4l + 2} 
where 3::; r + 1 ::; s ::; 2r - 1 and 1 ~ f(r + 1)/31-

Lemma 5. Let rand s be positive integers, and let vu be an edge of a graph G. 
If vu is not an end-edge of G, then 

'"Yr,s(G) ::; '"Yr,s(G - vu) ::; '"Yr,s(G) + 2. 

Proof. Since any (r, s)-dominating set of G - vu is (r, s)-dominating in G, the 
inequality '"Yr,s(G) ::; '"Yr,s(G - vu) is obvious. 

By definition '"Yr,s(G) ~ 2, so the inequality '"Yr,s(G - vu) ::; '"Yr,s(G) + 2 is obvious if 
IV(G)I ::; 4. Thus assume that IV(G)I ~ 5 and let D be a minimum (r, s)-dominating 
set of G. We consider four possible cases. 
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Case 1. D is both an (r, -)- and (-, s)-set ofG -vu. Then D is (r, s)-dominating 
in G - vu and therefore Ir,s(G - vu) ::; IDI ::; Ir,s(G) + 2. 

Case 2. D is a (-, s)-set but it is not an (r, - )-set of G - vu. In this case the 
set V' = {x E V(G) D: de-vu(x,D) > r} is nonempty and for every x E V', since 
de(x, D) ::; r, any path of length at most r joining x to a vertex of D in G contains 
the edge vu. This implies that de(v, D) =I- de(u, D), say de(v, D) < de(u, D). Now, 
for any u' E Ne ( u) {v}, the set D U {u, u'} is (r, s )-dominating in G - vu and so 
Ir,s(G-vu)::; IDU{u,u'}1 ::;'r,s(G)+2. 

Case 3. D is an (r, - )-set but it is not a (-, s)-set of G vu. Now the set 
D' = {x ED: de-vu(x,D - {x}) > s} is nonempty and for every xED', since 
de(x, D - {x}) ::; s, any path of length at most s joining x to a vertex of D {x} 
in G contains the edge vu. Therefore de (x, v) =I- de (x, u) for every xED' and the 
sets Dv = {x E D' : de(x, v) < de(x, u)} and Du {x E D' : de(x, u) < dc(x, v)} 
form a partition of D'. In addition, since vu is not an end-edge of G, N c [v] - {u} 
(Ne[u] - {v}, resp.) is not a subset of D if Dv =I- 0 (Du =I- 0, resp.). Now if Dv =I- 0 
(Du =I- 0, resp.) and if v' is any vertex from Ne[v]- (DU{u}) (u' is any vertex from 
Ne[u] - (D U {v}), resp.), then the set D U {v'} (if Du = 0), D U {u'} (if Dv = 0) or 
DU {v', u'} is (r, s)-dominating in G - vu and so Ir,s( G - vu) ::; IDI + 2 = 'Yr,s(G) + 2. 

Case 4. D is neither an (r, - )-set nor a (-, s)-set of G - vu. Then both the sets 
V' = {x E V(G) - D: de-vu(x, D) > r} and D' = {x ED: dc-vu(x,D - {x}) > s} 
are nonempty. Certainly, for any x from V', every path of length at most r joining 
x to a vertex of D in G contains the edge vu. Similarly, if x belongs to D', then 
every path of length at most s joining x to a vertex of D - {x} in G contains vu. 
In addition, since V' =I- 0, we have de(v, D) =I- de(u, D), say de(v, D) < dc(u, D) 
and let d be a vertex of D for which de(v, D) = de(v, d). As in Case 3, the sets 
Dv = {x E D' : de(x, v) < de(x, un and Du = {x E D' : de(x, u) < de(x, v)} form 
a partition of D'. The assumption dc(v, D) < de(u, D) easily implies that either 
Dv = 0 or Dv = {d}. If Dv = 0, then D U {u} is an (r, s)-dominating set in G - vu. 
Finally, if Dv =I- 0, then Ne[v] - {u} is not a subset of D (since vu is not an end-edge 
of G) and for any v' E Ne[v] - (D u {u}), the set D U {u, v'} is (r, s)-dominating in 
G vu. Thus in each case 'Yr,s(G - vu) ::; IDI + 2 = 'Yr,s(G) + 2. 

This completes the proof. 0 

Corollary 1. Let G be a unicyclic graph and let rand s be positive integers. If 
Ir,s( G) = a, then Ir,s(T(G)) is a subset of {a, a + 1, a + 2}. 

Proof. Let C be the unique cycle of G. Then T(G) = {G - vu : vu E E(C)} 
and the result follows from Lemma 5. 0 

Lemma 6. Let G be a unicyclic graph with 11,2(G) = a, and let v'v, vu and 
uu' be three consecutive edges on the unique cycle of G. If 11,2 (G - vu) > a, then 
Il,2(G - vv') ::; a + 1 or Il,2(G - uu') ::; a + l. 

Proof. Let D be a minimum (1, 2)-dominating set of G. Then Dn{ v, u} =I- 0 and 
{v, u, v', u'} is not a subset of Dj otherwise D would be a (1, 2)-dominating set of 
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G - vu which is impossible as IDI = a < 'Y1,2(G - vu). We consider two possibilities. 
Case 1. {v, u} ~ D. Then {v', u'} - D =f. 0. Now it is easy to observe that if 

v' rf. D, then DU{ v'} is a (1, 2)-dominating set of G -vv' and so 'Yl,2(G -vv') :::; a+ 1. 
Similarly, 'Y1,2(G - uu') ::; a + 1 if u' rf. D. 

Case 2. I{v, u} n DI = 1, say u E D and v rf. D. If Nc(v) n (D - {u}) = 0, 
then D is a (1, 2)-dominating set of G - vv' and 'Y1,2(G - vv') < a + 1. Suppose that 
Nc(v)n(D-{u}) #- 0. Ifu' rf. D, then DU{u'} is a (1,2)-dominatingset ofG-uu' 
and 'Y1,2(G - uu') ::; a + 1. Finally, if u' E D, then, for any u" E Nc(u') - {u}, 
D U {u"} is a (1, 2 )-dominating set of G - uu' and so 'Y1,2 (G - uu') ::; a + 1. 0 

Lemma 7. Let G be a unicyclic graph with 'Y1,2(G) = a, and let v'v, vu and uu' be 
three consecutive edges on the unique cycle o/G. I/'Y1,2(G-vv') = a = 'Y1,2(G-UU'), 
then 'Y1,2(G - vu) :::; a + 1. 

Proof. Let Gv be the component of G - {vu, vv'} that contains the vertex v. 
Similarly, let Gu be the component of G - {vu, uu'} that contains u. Let D, Dv and 
Du denote the sets of all minimum (1, 2)-dominating sets of the graphs G, G - vv' and 
G-uu', respectively. Since 'Y1,2(G-vV') = 'Y1,2(G-UU') = 'Y1,2(G) = a, DvUDu ~ D. 

It is easy to observe that 'Y1,2(G - vu) :::; a + 1 if D n {v, v'} #- 0 for some D E Dv 
or D' n {u, u'} #- 0 for some D' E Du. Thus assume that D n {v, v'} = 0 for ev­
ery D E Dv and D' n {u, u'} = 0 for every D' E Du. Again it is no problem to 
observe that 'Y1,2(G - vu) ::; a + 1 if (Nc[v] - {u}) n D = 0 for some D E Dv or 
(Nc[u] - {v}) n D' = 0 for some D' E Du. Now assume that (Nc[v] - {u}) n D =f. 0 
for every D E Dv and (Nc[u] - {v}) n D' #- 0 for every D' E Du' It is easy 
to see that 'Y1,2(G - vu) ::; a + 1 if I (Nc[v] - {u}) n DI 2:: 2 for some D E Dv or 
I (Nc[u] - {v}) nD'1 2:: 2 for some D' E Du. Thus assume that I (Nc[v] - {u}) nDI = 1 
and I (Nc[u] - {v}) n D'I = 1 for every D E Dv and D' E Du. For D E Dv and 
D' E Du, let v(D) and u(D') be the unique vertex of (Nc[v] - {u}) n D and 
(Nc[u] - {v}) n D', respectively. Certainly, v(D) is a vertex of Gv and u(D') is 
a vertex of Gu . Again it is easy to observe that if there exists D E Dv such that 
u rf. D or if there exists D' E Du such that v rf. D', then 'Yl,2(G - vu) :::; a + 1. 
Thus assume that u belongs to every D E Dv and v belongs to every D' E Du. If 
there exists D E Dv and zED - {v(D),u} such that dc(z,{v(D),u}) :::; 2 or if 
there exists D' E Du and z' E D' - {u(D'), v} such that dc(z', {u(D'), v}) ::; 2, then 
'Y1,2( G - vu) :::; a + 1. Finally assume that dc(x, {v(D), u}) > 2 for every D E Dv 
and every xED - {v(D), u}, and dc(y, {u(D'), v}) > 2 for every D' E Du and every 
y E D' - {u(D'), v}. Take any D E Dv and D' E Du' Let F be the component of 
G -uu(D') that contains u(D'), and let H denote the subgraph F - u(D'). Take 
any y E Nc(u(D')) - {u} and let Hy be the component of H that contains y. Since 
dc(x, {v(D), u}) > 2 for every xED - {v(D), u}, neither u(D') nor y belongs to 
D. This and the minimality of D imply that the set Dy = D n V(Hy) is a minimum 
(1, 2)-dominating set of Hy. Now take any vertex t from Nc(Y) n Dy and consider 
the graph Hy - y. Since D' is a minimum (1, 2)-dominating set of G - uu' and no 
vertex of Nc[y] - {u(D')} belongs to D', it must be 'Yl,2(Hy - y) < IDyl; otherwise 
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D' = (D' - V(Hy - y)) U Dy containing t would be a minimum (1,2)-dominating 
set of G - uu' and t would be at distance two from u(D') = u(D') which is im­
possible. Let Cy be a minimum (1,2)-dominating set of Hy - y. Then Cy U {y} 
is a minimum (1,2)-dominating set of Hy and so D (D - Dy) U (Cy U {y}) is a 
minimum (1,2)-dominating set of G - vv'. But now the vertex y of D - {v(D), u} is 
at distance two from u. This contradicts our assumption; therefore we must reject 
the assumption that dc(x, {v(D),u}) > 2 for every DE Vv and xED - {v(D),u}, 
and dc(Y, {u(D'), v}) > 2 for every D' E Vu and y E D' - {u(D'), v}. In all other 
cases, as we have already observed, 'Yl,2(G-VU) ::; a+1. This completes the proof. 0 

Corollary 2. Let G be a unicyclic graph with 'Yl,2(G) = a. If v'v, vu and uu' 
are three consecutive edges on the unique cycle of G and 'Y1,2(G - vu) = a + 2, then 
'Y1,2(G - vv') = a + 1 or 'Y1,2(G - uu') = a + 1. 

Proof. Assume on the contrary that 'Yl,2(G-VV') f: a+1 and 'Yl,2(G-uU') f: a+1. 
Then it follows from Lemmas 6 and 7 that min{'Yl,2(G - vv'), /'1,2(G - uu')} = a and 
max{ /'1,2(G - vv'), 'Yl,2(G - uu')} = a + 2, say 'Yl,2(G - vv') = a and 'Yl,2(G - uu') = 
a+2. Let D be any minimum (1,2)-dominatingset ofG-vv'. Then D is a minimum 
(1,2)-dominating set of G. Since /'1,2(G -vu) = 'Yl,2(G -uu') = a+2 > a = /DI, Dis 
neither a (1,2)-dominating set of G - vu nor a (1,2)-dominating set of G - uu'. This 
implies that D n {v, u} f: 0, D n {u, u'} f: 0 and neither {v, u} nor {u, u'} is a subset 
of D. It is easy to observe that D n {v, u, u'} f: {v, u'}; otherwise D U { u} would be 
(1,2)-dominating in G - vu. Consequently, D n {v, u, u'} = {u}. Let x be any vertex 
of D - {u} for which dc(u,x) ::; 2. We must have dc(u,x) = 2; otherwise D U {v} 
and DU{u'} would be (1,2)-dominating in G-vu and in G-uu', respectively, which 
is impossible. Thus, let x' be a common neighbour of u and x. It is easy to observe 
that neither x' = v nor x' = u'; for if x' = v (x' = u', resp.), then D U {u' } (D U {v}, 
resp.) would be (1,2)-dominating in G - uu' (G - vu, resp.) which is impossible. 
This implies that neither x' nor x belongs to the unique cycle of G. But now D U { v} 
(D U {u' }, resp.) is (1,2)-dominating in G - vu (G - uu' , resp.) which again is 
impossible. Therefore we must reject the assumption that 'Y1,2(G - vv' ) f: a + 1 and 
1'1,2 (G - uu' ) f: a + 1. This completes the proof. 0 

We are now ready to prove that 1'1,2 interpolates over every connected graph of 
order at least two. 

Theorem 2. The (1, 2)-domination number 1'1,2 is an interpolating function. 

Proof. By Lemma 1, it suffices to show that 1'1,2 interpolates over every unicyclic 
graph. Let G be a unicyclic graph with 'Y1,2(G) = a. Then the set A = {'Y1,2(T) : 
T E T(G)} is a subset of {a, a + 1, a + 2} (by Corollary 1) and a E A (by Lemma 
2). Certainly, it follows from Corollary 2 that a + 1 E A if a + 2 E A. This proves 
that /'1,2 interpolates over G. 0 
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We conclude with a result that describes the interpolating character of the (r, s)­
domination number for 2-connected graphs. In the proof we will use the following 
property of 2-connected graphs. Lovasz [9, p. 269] and later Harary, Mokken and 
Plantholt [3] proved that if G is a 2-connected graph, then any spanning tree T 
of G can be transformed into any spanning tree T* of G through a sequence To = 
T, T I , . .. , Tn = T* of spanning trees of G, called a sequence of end edge-exchanges 
transforming T into T*, such that for every k = 0,1, ... , n - 1, Tk+1 = Tk + fk - ek 
where ek and fk are end edges in Tk and Tk+1, respectively. 

Theorem 3. For any positive integers rand s, the (r, s)-domination number Ir,s 
interpolates over every 2-connected graph. 

Proof. Assume G is a 2-connected graph, and let m and M be respectively 
the smallest and largest integer of Ir,s(7(G)). Let To and T* be spanning trees 
of G with 'Yr,s(To) = m and 'Yr,s·(T*) = M. Since G is 2-connected, there ex­
ists a sequence of end edge-exchanges To, TI , .. . , Tn = T* transforming To into T*. 
To prove that Ir,s(7(G)) is an integer interval, we need only show that each step 
of the end edge-exchange may increase the value of 'Yr,s by at most one, that is 
'Yr,s(Tk+d ~ Ir,s(Tk) + 1 for k = 0, 1, ... ,n - 1, which, in turn, implies that the se­
quence (,r,s (To) , Ir,s(Tt} , ... , 'Yr,s(Tn)) contains (m, m + 1, ... , M) as a subsequence 
and this proves that Ir,s(7(G)) = {m, m + 1, ... , M}. 

Let D be any minimum (r, s)-dominating set in Tk and suppose that Tk+1 = 
Tk + wv VU, where v is an end vertex of Tk (and of Tk+1) and U is the unique 
neighbour of v in Tk . Since Tk i- K 2 , the minimality of D implies that the set 
NTk [u] is not a subset of D and therefore we may assume that v rt. D; otherwise 
D' = (D - {v}) U {u} (if u rt. D) or D" = (D - {v}) U {x} for any x E NTk [u] - D 
(if u E D) is a minimum (r, s)-dominating set in Tk , no one of them contains v 
and we could replace D by D' or D". Since Tk+1 = Tk + wv - vu and D is (r, s)­
dominating in Tk, we have dTk+l(y,D - {y}) = dTk(y,D - {y}) ~ s for any y E D, 
dTk+l(V,D) = dTk(W,D) + 1 ~ r + 1 and dTk+l(x,D) = dTk(X,D) ~ r for any 
x E V(G) - (D U {v}). Thus, if dTk(W, D) ::; r - 1, then D is an (r, s)-dominating 
set in Tk+I and therefore 'Yr,s(Tk+1) ::; IDI < Ir,s(Tk ) + 1. On the other hand, if 
dTk (w, D) = r, then let t be a vertex of D for which dTk (w, t) = r and let t' be the 
unique neighbour of t which belongs to the t - w path in Tk • Then D U {t'} is an 
(r,s)-dominating set in Tk+1 and again Ir,s(Tk+1)::; IDU {t'}1 = 'Yr,s(Tk) + 1. 0 

From Theorem 3, we immediately have the following corollary proved in [13]. 

Corollary 3. The total domination number It interpolates over any 2-connected 
graph. 

Problem. If r ~ 2, does 'Yr,2r interpolate over every connected graph? 
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