Minimally k-factor-critical graphs

Odile Favaron

LRI, Bât, 490, Université de Paris-Sud 91405 Orsay cedex, France of@lri.fr

Minyong Shi

Institute of Software, Chinese Academy of Sciences P.O. Box 8718, Beijing 100080, P. R. China smy@ox.ios.ac.cn

Abstract

A graph G of order n is k-factor-critical, where k is an integer of the same parity as n with $0 \le k \le n$, if G - X has a perfect matching for any set X of k vertices of G. A k-factor-critical graph G is called minimal if for any edge $e \in E(G)$, G - e is not k-factor-critical. In this paper we study some properties of minimally k-factor-critical graphs, in particular a bound on the minimum degree, and characterize (n-4)-and minimally (n-4)-factor-critical graphs.

1. Introduction

The graphs G = (V(G), E(G)) we consider here are undirected, simple and finite of order |V(G)| = n. A graph is even if its order is even and odd if its order is odd. The neighborhood of a vertex x is $N(x) = \{y; y \in V(G) \text{ and } xy \in E(G)\}$, its closed neighborhood is $N[x] = N(x) \cup \{x\}$, and its degree is the integer $d_G(x) = |N(x)|$. The minimum degree of G is $\delta(G) = \min\{d_G(x); x \in V(G)\}$. When no confusion may arise, we write V and d(x) instead of V(G) and $d_G(x)$. For any set $A \subseteq V$, G[A]denotes the subgraph induced by A in G, G - A stands for G[V - A]. Similarly, if e = uv is an edge of G, G - e or G - uv stands for $(V(G), E(G) - \{e\})$. A claw of G is an induced subgraph isomorphic to the star $K_{1,3}$. If G - A is not connected, that is if A is a cutset of G, we denote by $c_o(G - A)$ the number of odd components of G - A. A matching F of G is a set of independent edges and a perfect matching is a matching covering all the vertices of G. Clearly if G has a perfect matching F, its order n is even and F consists of $\frac{n}{2}$ edges. We adopt the convention that a graph of order 0 has a perfect matching. A graph G of even order n is q-extendable [9], where

Australasian Journal of Combinatorics 17(1998), pp.89-97

q is an integer with $1 \le q \le \frac{n}{2}$, if G is connected, has a perfect matching and every set of q independent edges is contained in a perfect matching. A graph G of order n is k-factor-critical [5], where k is an integer of same parity as n with $0 \le k \le n$, if G - X has a perfect matching for any set X of k vertices of G. Graphs which are 0-factor-critical, 1-factor-critical, 2-factor-critical are respectively graphs with a perfect matching, factor-critical graphs as defined in [6], bicritical graphs as defined in [7]. For k and thus n even, a k-factor-critical graph is clearly $\frac{k}{2}$ -extendable. A k-factor-critical (q-extendable resp.) graph G is called minimal if for every edge $e \in E(G), G - e$ is not k-factor-critical (q-extendable resp.).

Minimally bicritical graphs have been extensively studied (see [8]). In [1], [2] and [3], Anunchuen and Caccetta gave general properties of minimal q-extendable graphs and characterized q-extendable and minimally q-extendable graphs of even order n for $q = \frac{n}{2} - 1$ and $q = \frac{n}{2} - 2$.

Our purpose is to study some properties of minimally k-factor-critical graphs and to characterize (n-4)- and minimally (n-4)-factor-critical graphs.

2. Basic properties of minimally k-factor-critical graphs

Let us first recall some properties of k-factor-critical graphs.

Lemma 1 [2] If G is k-factor-critical for some $1 \le k < n$ with n + k even, then G is k-connected, (k + 1)-edge-connected (and thus $\delta \ge k + 1$ which is still true when k = 0), and (k - 2)-factor-critical if $k \ge 2$.

Definition: A graph G has Property Q_k if $c_o(G-B) \leq |B| - k$ for every $B \subseteq V$ with $|B| \geq k$.

Lemma 2 [2] A graph G is k-factor-critical if and only if it has Property Q_k .

The following Lemma 3 and Theorem 2.1 are simple adaptations of similar results for k = 1 or 2 (cf [8]).

Lemma 3 Let G be a k-factor-critical graph. Then G is minimal if and only if for each $e = uv \in E(G)$, there exists $S_e \subseteq V - \{u, v\}$ with $|S_e| = k$ such that every perfect matching of $G - S_e$ contains e.

Proof 1. Let G be a minimally k-factor-critical graph, then for each $e = uv \in E(G)$, G - e is not k-factor-critical. Therefore, there exists $S_e \subseteq V$ with $|S_e| = k$ such that $G - e - S_e$ has no perfect matching. But $G - S_e$ has a perfect matching since G is k-factor-critical. Hence neither u nor v belong to S_e and any perfect matching of $G - S_e$ contains e.

2. Conversely, suppose that for each $e = uv \in E(G)$, there exists $S_e \subseteq V - \{u, v\}$ with $|S_e| = k$ such that any perfect matching of $G - S_e$ contains e. So, $G - e - S_e$ has no perfect matching and thus G - e is not k-factor-critical. Therefore, G is minimally k-factor-critical.

Theorem 2.1 Let G be a k-factor-critical graph. Then G is minimal if and only

if for each $e = uv \in E(G)$, there exists $B_e \subseteq V - \{u, v\}$ with $|B_e| \ge k$ such that $c_o(G - B_e - e) = |B_e| - k + 2$ and u and v belong respectively to two different odd components of $G - B_e - e$.

Proof 1. If G is a minimally k-factor-critical graph, then for each $e = uv \in E(G)$, G - e is not k-factor-critical. By Lemma 2, there exists $B_e \subseteq V$ with $|B_e| \ge k$ such that $c_o(G - e - B_e) > |B_e| - k$ and by parity, $c_o(G - B_e - e) \ge |B_e| - k + 2$. Since G is k-factor-critical, by Lemma 2, $c_o(G - B_e) \le |B_e| - k$ and thus u and v do not belong to B_e . But $c_o(G - B_e - e) \ge c_o(G - B_e) + 2 \le |B_e| - k + 2$. Therefore, $c_o(G - B_e - e) = |B_e| - k + 2$, $c_o(G - B_e) = |B_e| - k$, and e is an edge connecting two odd components of $G - B_e - e$. So u and v belong respectively to two different odd components of $G - B_e - e$.

2. Conversely if for each $e \in E(G)$ there exists $B_e \subseteq V$ with $|B_e| \ge k$ and such that $c_o(G - B_e - e) = |B_e| - k + 2$, then B_e contradicts Property Q_k for the graph G - e and G - e is not k-factor-critical.

For $n \ge k + 4$, the classes of minimally k-factor-critical graphs and of (k + 2)-factor-critical graphs are both contained in the class of k-factor-critical graphs (cf Lemma 1). The next result shows that these two classes are disjoint.

<u>Theorem 2.2</u> Let G be a minimally k-factor-critical graph of order $n \ge k+4$. Then G is not (k+2)-factor-critical.

Proof Let e = uv be an edge of a minimally k-factor-critical graph G of order $n \ge k + 4$, and B_e a subset of V as in Theorem 2.1.

Case 1 $|B_e| \ge k+2$. Let $B = B_e$, then $|B| \ge k+2$ and $c_o(G-B) = |B_e| - k > |B| - (k+2)$.

Case 2 $|B_e| = k + 1$. Let $B = B_e \cup \{u\}$, then $|B| \ge k + 2$ and $c_o(G - B) \ge c_o(G - B_e) + 1 = |B_e| - k + 1 = |B| - k > |B| - (k + 2)$.

Case 3 $|B_e| = k$. If $G - B_e$ has more than one even component, let w belong to an even component which does not contain the edge e and $B = B_e \cup \{w, u\}$. Then |B| = k+2 and $c_o(G-B) \ge c_o(G-B_e)+2 = |B_e|-k+2 = |B|-k > |B|-(k+2)$. If $G-B_e$ has just one even component, then $G-B_e-e$ has exactly two components, say C_u which contains u and C_v which contains v, and both are odd. Since n > k+2, we may assume $|C_u| > 1$. By parity, $|C_u| \ge 3$. Let $w \in C_u - \{u\}$ and $B = B_e \cup \{w, u\}$. Then |B| = k+2 and $c_o(G-B) \ge c_o(G-B_e)+2 = |B_e|-k+2 = |B|-k > |B|-(k+2)$.

In the three cases above, we have $|B| \ge k+2$ and $c_o(G-B) > |B| - (k+2)$. By Lemma 2, G is not (k+2)-factor-critical.

3. Minimally k-factor-critical graphs and degrees

Theorem 3.1 Let G be a minimally k-factor-critical graph of order n. Then for each $e = uv \in E(G)$, there exists $S_e \subseteq V - \{u, v\}$ with $|S_e| = k$ such that $d_G(u) + d_G(v) \leq n + |N(u) \cap N(v) \cap S_e|$. In particular, $d_G(u) + d_G(v) \leq n + k$.

Proof Since G is a minimally k-factor-critical graph, for each $e = uv \in E(G)$,

there exists by Lemma 3 a set $S_e \subseteq V - \{u, v\}$ with $|S_e| = k$ such that any perfect matching of $G - S_e$ contains e.

If $N(u) \cap N(v) \subseteq S_e$ then $|N(u) \cap N(v) \cap S_e| = |N(u) \cap N(v)|$ and thus $d_G(u) + d_G(v) = |N(u) \cup N(v)| + |N(u) \cap N(v)| \le n + |N(u) \cap N(v) \cap S_e|$. Otherwise, let F be a perfect matching of $G - S_e$. For each $w \in N(u) \cap N(v) - S_e$, there exists $w' \in V - S_e - \{u, v\}$ such that $ww' \in E(F)$. If $w' \in N(u) \cup N(v)$, say $w' \in N(v)$, then $F' = (F - \{uv, ww'\}) \cup \{uw, vw'\}$ is a perfect matching of $G - S_e$ which does not contain e, in contradiction to the definition of S_e . Hence $w' \notin N(u) \cup N(v)$. Since F is a matching, we have $|N(u) \cup N(v)| \le n - |(N(u) \cap N(v)) \setminus S_e| = n - |N(u) \cap N(v)| + |N(u) \cap N(v) \cap S_e|$. Therefore, $d_G(u) + d_G(v) \le n + |N(u) \cap N(v) \cap S_e|$.

Corollary 3.2 Let G be a k-factor-critical graph of order n and maximum degree $\overline{\Delta(G)} = n - 1$. Then G is minimal if and only if G contains one vertex of degree n - 1 and n - 1 vertices of degree k + 1.

Proof Let G be a k-factor-critical graph of order n, and $u \in V$ such that $d_G(u) = n-1$. Then for any $v \in V \setminus \{u\}$, we have $e = uv \in E(G)$.

If G is minimal, then for any $v \in V \setminus \{u\}$, by Theorem 2.3, $d_G(u) + d_G(v) \leq n+k$. So $d_G(v) \leq n+k-(n-1) = k+1$. By Lemma 1, $\delta(G) \geq k+1$ and thus $d_G(v) = k+1$. Conversely, if G has n-1 vertices of degree k+1, then for any $e \in E(G)$, we

have $\delta(G-e) < k+1$ and thus G-e is not k-factor-critical.

 $\frac{\text{Theorem 3.3}}{2} \quad \text{In a minimally } k - \text{factor-critical graph } G \text{ of order } n \ge k+4, \, \delta(G) \le \frac{n+k}{2} - 1. \text{ If moreover } n \ge k+6, \text{ then } \delta(G) \le \frac{n+k}{2} - 2.$

Proof Let G be k-factor-critical of order $n \ge k+4$. By [4], if $\delta(G) \ge \frac{n+k}{2}$ then G is k-hamiltonian, i.e. G - X contains a hamiltonian cycle for every set of at most k vertices of G. Let e be any edge of G and X any set of k vertices of G. Since G - X contains an even hamiltonian cycle, G - X - e contains a hamiltonian path of even order, and thus a perfect matching. Therefore G - e is k-factor-critical. Hence if G is minimally k-factor-critical then $\delta(G) \le \frac{n+k}{2} - 1$, which is the first part of the theorem. To show the second part, we give another and direct proof of the first part, without using the result of [4], in order to point out all the possible cases of equality $\delta(G) = \frac{n+k}{2} - 1$. Since G is a minimally k-factor-critical graph, for each $e = uv \in E(G)$ there exists by Theorem 2.1 a set $B_e \subseteq V - \{u, v\}$ with $|B_e| \ge k$ such that $c_o(G - e - B_e) = |B_e| - k + 2$. Let $C_1, C_2, \dots, C_p, C_u$ and C_v be the odd components of $G - e - B_e$, where $p = |B_e| - k, C_u$ is the component which contains u and C_v the component which contains v. We may assume $|C_1| \le |C_2| \le \dots \le |C_p|$ and $|C_u| \le |C_v|$. We note that $\delta(G) \le |B_e| + |C_1| - 1$ and that $\delta(G) \le |B_e| + |C_u| - 1$ if $|C_u| > 1$ (i.e. by parity $|C_u| \ge 3$), $\delta(G) \le |B_e| + 1$ if $|C_u| = 1$.

Case 1. $|B_e| \ge k + 2$ i.e. $p \ge 2$.

Since $|C_p| \ge \cdots \ge |C_1|$ and $|C_v| \ge |C_u| \ge 1$, we have $n \ge |B_e| + (|B_e| - k)|C_1| + 2$, that is $n \ge |B_e| + (|B_e| - k) + 2(|C_1| - 1) + (|B_e| - k - 2)(|C_1| - 1) + 2$, with $|B_e| - k - 2 \ge 0$

and $|C_1| - 1 \ge 0$. Hence $2(|B_e| + |C_1|) \le n + k$ and $\delta(G) \le |B_e| + |C_1| - 1 \le \frac{n+k}{2} - 1$. The equality $\delta(G) = \frac{n+k}{2} - 1$ implies here that $n = |B_e| + (|B_e| - k)|C_1| + 2$, $(|B_e|-k-2)(|C_1|-1) = 0$, $|C_1| = |C_2| = \cdots = |C_p|$, $|C_u| = |C_v| = 1$, and $G - B_e - e$ contains no even component. If $|C_1| > 1$, that is $|C_1| \ge 3$, then $|B_e| = k + 2$ and $n \ge |B_e| + 8 = k + 10$. On the other hand, $\frac{n+k}{2} - 1 = \delta(G) \le |B_e| + 1 = k + 3$ and thus $n \leq k+8$, which yields a contradiction. Hence $|C_1| = |C_2| = \cdots = |C_p| = 1$, $n = 2|B_e| - k + 2 \ge k + 6$ and $|B_e| = \frac{n+k}{2} - 1 = \delta(G)$. So for $1 \le i \le p$, the only vertex z_i of C_i is adjacent to every vertex of B_e , and each vertex u, v is adjacent to at least $|B_e| - 1$ vertices of B_e . Therefore in this first case, the equality $\delta(G) = \frac{n+k}{2} - 1$ implies $n \ge k + 6$, $|N(u) \setminus N[v]| \le 1$ and $|N(v) \setminus N[u]| \le 1$. Case 2. $|B_e| = k + 1$ i.e. p = 1. Subcase 2.1 $|C_1| \leq |C_u|$. If $|C_1| \ge \frac{n-k}{4}$ then $|B_e| + |C_1| \le n - |C_u| - |C_v| \le n - 2|C_1| \le n - \frac{n-k}{2} = \frac{n+k}{2}$. Hence $\delta(G) \leq |B_e| + |C_1| - 1 \leq \frac{n+k}{2} - 1$. The equality $\delta(G) = \frac{n+k}{2} - 1$ requires $|C_u| = |C_v| = |C_1| = \frac{n-k}{4}$, and $|B_e| + |C_1| = n - |C_u| - |C_v|$ and thus $G - B_e - e$ has no even component. Therefore $n = |B_e| + 3|C_1| = k + 1 + \frac{3(n-k)}{4}$, that is n = k + 4. If $|C_1| < \frac{n-k}{4}$ i.e. $|C_1| \le \frac{n-k-2}{4}$, then $\delta(G) \le |B_e| + |C_1| - 1 \le \frac{n+3k-2}{4} < \frac{n+3k-2}{4}$ $\frac{n+k}{2} - 1$, with a strict inequality. **Subcase 2.2** $|C_u| < |C_1|$ and thus by parity, $|C_1| \ge |C_u| + 2$. **2.2.1** If $|C_u| = 1$ then $n \ge |B_e| + |C_u| + |C_v| + |C_1| \ge k + 6$ and thus $\delta(G) \le |B_e| + 1 = k + 2 \le \frac{n+k}{2} - 1$. The equality $\delta(G) = \frac{n+k}{2} - 1$ requires n = k + 6, $|C_u| = |C_v| = 1, |C_1| = 3, G - C_1 - e$ has no even component, u and v are adjacent to every vertex of B_e , and each of the three vertices of C_1 is adjacent to at least k of the k+1 vertices of B_e . In particular, $N(u) \setminus N[v] = N(v) \setminus N[u] = \emptyset$. **2.2.2** Suppose now $|C_u| \ge 3$ (thus $n \ge k + 12$). If $|C_u| \ge \frac{n-k-2}{4}$, then $|B_e| + |C_u| \le n - |C_1| - |C_v| \le n - \frac{n-k-2}{2} - 2 =$ $\frac{n+k}{2} - 1$ and $\delta(G) < \frac{n+k}{2} - 1$, strictly. If $|C_u| \leq \frac{n-k-4}{4}$, then $|B_e| + |C_u| \leq k+1 + \frac{n-k}{4} - 1 = \frac{n+3k}{4}$ and $\delta(G) \leq \frac{n-k-4}{4}$. $\frac{n+3k}{4} - 1 < \frac{n+k}{2} - 1$, strictly. Case 3. $|B_e| = k$ i.e. p = 0 and thus $|C_u| \leq \frac{n-\kappa}{2}$.

93

Subcase 3.1 If $|C_u| > 1$ then $\delta(G) \le |B_e| + |C_u| - 1 \le \frac{n+k}{2} - 1$. The equality $\delta(G) = \frac{n+k}{2} - 1$ requires $|C_u| = |C_v| = \frac{n-k}{2}$ and thus $\frac{n-k}{2}$ is odd ≥ 3 and $n-k \ge 6$, $G-B_e-e$ has no even component, C_u and C_v are cliques, every vertex of $C_u \setminus \{u\}$ and of $C_v \setminus \{v\}$ is adjacent to all the vertices of B_e , u (v resp.) is adjacent to all the vertices of B_e except perhaps to one of them.

Subcase 3.2 If $|C_u| = 1$ then $\delta(G) \le |B_e| + 1 = k + 1 \le \frac{n+k}{2} - 1$ since $n \ge k+4$. The equality $\delta(G) = \frac{n+k}{2} - 1$ requires n = k+4, $|C_u| = |C_v| = 1$ and $G - B_e - e$ contains one even component of order 2, or $|C_u| = 1$, $|C_v| = 3$ and $G - B_e - e$ contains no even component.

To summarize the study, when $n \ge k + 6$ the only possible cases of equality $\delta(G) = \frac{n+k}{2} - 1$ occur in 1, 2.2.1 and 3.1. Hence if a minimally k-factor-critical graph G with $n \ge k + 6$ satisfies $\delta(G) = \frac{n+k}{2} - 1$, each edge e = uv is of one of the three encountered types, Type 1 described in Case 1, Type 2 described in Case 2.2.1, Type 3 described in Case 3.1. Recall that if e = uv is of Type 1 then $|N(u) \setminus N[v]| \le 1$ and $|N(v) \setminus N[u]| \le 1$; if e is of Type 2 then $N(u) \setminus N[v] = N(v) \setminus N[u] = \emptyset$; if e is of Type 3 then there exist two disjoint triangles $K_3(u)$ and $K_3(v)$ such that uv is the only edge of G between $K_3(u)$ and $K_3(v)$.

Let G be a minimally k-factor-critical graph of order $n \ge k + 6$ and $\delta(G) = \frac{n+k}{2} - 1$. If G contains an edge e = uv of Type 1, let $x \in B_e \cap N(u)$. Using the notation of Case 1, we have $\{z_1, z_2\} \subseteq N(x) \setminus N[u]$, so the edge ux is not of Type 1 or 2 and thus must be of Type 3. But as in Type 1 each z_i , $1 \le i \le p$, is adjacent to every vertex of B_e , and u is adjacent to every vertex of B_e except perhaps to at most one, we cannot find two disjoint triangles $K_3(x)$ and $K_3(u)$ joined by the only edge ux, a contradiction. Hence no edge of G is of Type 1.

If G contains an edge e = uv of Type 2 (which implies n = k + 6), let x be a vertex of B_e adjacent to some vertex z_1 of C_1 . Since $z_1 \in N(x) \setminus N[u]$, the edge ux is not of Type 2 and must be of Type 3. The triangle $K_3(u)$ does not contain v since x is adjacent to v, and is of the kind utw with $t, w \in B_e$. Hence $K_3(x)$ contains no vertex of C_1 since each vertex of C_1 is adjacent to at least one of t, w, and $K_3(x)$ is contained in B_e . This gives a contradiction since u is adjacent to every vertex of B_e .

Therefore every edge of G must be of Type 3. Let e = uv be such an edge and x, y two vertices of $C_u \setminus \{u\}$. Since $N(x) \setminus \{y\} = N(y) \setminus \{x\} = (C_u \setminus \{x, y\}) \cup B_e$, the edge xy cannot be of Type 3.

Hence no minimally k-factor-critical graph of order $n \ge k + 6$ satisfies $\delta(G) = \frac{n+k}{2} - 1$. This completes the proof of the theorem.

Corollary 3.4 Let G be a minimally k-factor-critical graph of order n. If k = n-2, n-4 or n-6, then $\delta(G) = k+1$.

Proof: The only (n-2)-factor-critical graph of order n is K_n , which proves the corollary for k = n-2. For k = n-4 or n-6, this is a consequence of Theorem 3.3 and the property $\delta(G) \ge k+1$ recalled in Lemma 1.

<u>Problem</u>: It is clear from the Ear Decomposition of 1-factor-critical graphs (cf [8]) that every minimally 1-factor-critical graphs has minimum degree 2.

Is it true that every minimally k-factor-critical graph G has minimum degree $\delta(G) = k + 1$?

4. Minimally (n-4)-factor-critical graphs

Theorem 4.1 A graph G of order $n \ge 6$ is (n-4)-factor-critical if and only if G is claw-free and $\delta(G) \ge n-3$.

Proof Let G be a (n-4)-factor-critical graph. By Lemma 1, $\delta(G) \ge k+1 = n-3$. If there exists a set Y of four vertices inducing a claw, then G[Y] has no perfect matching, contradicting G is (n-4)-factor-critical.

Conversely, let Y be any subgraph of G induced by exactly four vertices. Since G is claw-free and $\delta(G) \ge n-3$, $Y \ne K_{1,3}$ and $\delta(Y) \ge 1$ which implies that Y has a perfect matching.

Let us remark that the condition for a graph G of order n to be claw-free and have minimum degree $\delta(G) \ge n-3$ is equivalent to the condition to have independence number $\alpha(G) \le 2$ and $\delta(G) \ge n-3$.

Theorem 4.2 A graph G of order $n \ge 6$ is minimally (n-4)-factor-critical if and only if it is claw-free and satisfies one of the following three conditions:

- (1) G is (n-3)-regular.
- (2) G contains one vertex of degree n-1 and n-1 vertices of degree n-3.

(3) G contains n-2 vertices of degree n-3 and two vertices of degree n-2, say u and v, which are such that $N(u) \setminus \{v\} = N(v) \setminus \{u\}$.

Proof Let G be a minimally (n-4)-factor-critical graph. By Theorem 4.1 and Corollary 3.4, G is claw-free and $\delta(G) = n-3$.

If $\Delta(G) = n - 3$ then G is (n - 3)-regular.

If $\Delta(G) = n - 1$ then by Corollary 3.2, G contains one vertex of degree n - 1 and n - 1 vertices of degree k + 1 = n - 3.

If $\Delta(G) = n - 2$ then each vertex of G has degree n - 2 or n - 3. If n is odd, then n - 2 is also odd and G has an even number of vertices of degree n - 2. If n is even, then n - 3 is odd and G has an even number of vertices of degree n - 3 and thus also an even number of vertices of degree n - 2. Therefore, G contains at least two vertices of degree n - 2. Suppose G has three vertices of degree n - 2, say u, vand w.

Case 1 Two of them, say u and v are not adjacent.

Then $N(u) = N(v) = V - \{u, v\}$ and $w \in N(u)$. Let e = uw. Since G - e is not (n-4)-factor-critical and $\delta(G-e) \ge n-3$, G-e has an induced subgraph H isomorphic to $K_{1,3}$ by Theorem 4.1. Since G is claw-free, H must contain u and w

as two pendant vertices. There are only two vertices v and w which are not adjacent to u in G-e, so the only other possible pendant vertex is v. But H can not be $K_{1,3}$ since $vw \in E(G-e)$, a contradiction.

Case 2 uv, uw and $vw \in E(G)$. Let e = uw. As in Case 1, G - e has an induced subgraph H isomorphic to $K_{1,3}$ and u and w are two pendant vertices of H. If x is the third pendant vertex of H, then $x \in V(G) - \{u, v, w\}$ and $x \notin N(u) \cup N(w)$. Considering similarly the edge uv, there exists $y \in V(G) - \{u, v, w\}$ such that $y \notin N(u) \cup N(v)$. Since d(u) = n - 2 and $x, y \notin N(u) - \{u\}$, we have x = y. Hence, $N(x) \subseteq V \setminus \{u, v, w\}$ and thus $d(x) \leq n - 4$, a contradiction.

Therefore, there are exactly two vertices, say u and v, of degree n-2. If u and v are not adjacent then $N(u) \setminus \{v\} = N(v) \setminus \{u\} = V \setminus \{u, v\}$. If they are adjacent and if $N(u) \setminus \{v\} \neq N(v) \setminus \{u\}$, then $N(u) = V \setminus \{u'\}$ and $N(v) = V \setminus \{v'\}$ for some vertices $u' \neq v'$. By considering the edge uv', a similar argument as above yields a contradiction.

Conversely, by the hypothesis we have $\delta(G) = n-3$ and G is claw-free. By Theorem 4.1, G is (n-4)-factor-critical. Moreover, for any $e = uv \in E(G)$, if d(u) = n-3 or d(v) = n-3, we have $\delta(G-e) < n-3$ and G-e is not (n-4)-factorcritical. Otherwise, we are in the third case with $uv \in E(G)$, $N(u) \setminus \{v\} = N(v) \setminus \{u\}$ and $V \setminus (N(u) \cup N(v)) = \{x\}$ for some vertex x of G. If w is any vertex in $N(u) \cap N(v)$ and since d(x) = n-3, then $\{u, v, w, x\}$ induced a subgraph of G-e which isomorphic to $K_{1,3}$. By Theorem 4.1, G - e is not (n-4)-factor-critical. Therefore, G is a minimally (n-4)-factor-critical graph.

In [2] and [3], Anunchuen and Cacetta determined all the $(\frac{n}{2}-2)$ - and minimally $(\frac{n}{2}-2)$ -extendable graphs of even order $n \ge 6$. Since for n even, every (n-4)-factorcritical graph is $(\frac{n}{2}-2)$ -extendable, we expected to find in Theorem 4.1 a subclass of non-bipartite $(\frac{n}{2}-2)$ -extendable graphs (some p-extendable graphs are bipartite whereas k-factor-critical graphs are never bipartite). Surprisingly, for $n \ge 10$, we found all of them, that is

Corollary 4.3 A non-bipartite graph of even order $n \ge 10$ is $(\frac{n}{2} - 2)$ -extendable if and only if it is (n - 4)-factor-critical.

In consequence

<u>Corollary 4.4</u> A non-bipartite graph of even order $n \ge 10$ is minimally $(\frac{n}{2} - 2)$ -extendable if and only if it is minimally (n-4)-factor-critical.

This last corollary allows us to get from Theorem 4.2 all the non-bipartite minimally $(\frac{n}{2}-2)$ -extendable graphs of order $n \ge 10$ which were obtained in [2] after a long proof (the bipartite ones are easily obtained from the bipartite $(\frac{n}{2}-2)$ -extendable graphs which are all the bipartite graphs of even order n and minimum degree $\ge \frac{n}{2} - 1$).

References

- N. Anunchuen and L. Caccetta, On minimally k-extendable graphs, Australasian Journal of Combinatorics 9 (1994) 153-168.
- [2] N. Anunchuen and L. Caccetta, On (n-2)-extendable graphs, JCMCC 16 (1994) 115-128.
- [3] N. Anunchuen and L. Caccetta, On (n-2)-extendable graphs II, JCMCC 20 (1996) 65-80.
- [4] G. Chartrand, S. F. Kapoor and D. R. Lick, n-hamiltonian graphs, J. Combin. Theory 9, No. 3 (1970) 308-312.
- [5] O. Favaron, On k-factor-critical graphs, Discussiones Mathematicae Graph Theory 16 (1996) 41-51.
- [6] T. Gallai, Neuer Beweis eines Tutte'schen Satzes, Magyar Tud. Akad. Mat. Kutató Int. Közl. 8 (1963) 135-139.
- [7] L. Lovász, On the structure of factorizable graphs, Acta Math. Acad. Sci. Hungar. 23 (1972) 179-195.
- [8] L. Lovász and M. D. Plummer, Matching theory, Ann. Discrete Math. 29 (1986).
- [9] M. D. Plummer, On n-extendable graphs, Discrete Math. 31 (1980) 201-210.

(Received 26/11/96)

