Minimally k-factor-critical graphs

Odile Favaron

LRI, Bât, 490, Université de Paris-Sud
91405 Orsay cedex, France
of@lri.fr

Minyong Shi

Institute of Software, Chinese Academy of Sciences
P.O. Box 8718, Beijing 100080, P. R. China
smy@ox.ios.ac.cn

Abstract

A graph G of order n is k-factor-critical, where k is an integer of the same parity as n with $0 \leq k \leq n$, if $G-X$ has a perfect matching for any set X of k vertices of G. A k-factor-critical graph G is called minimal if for any edge $e \in E(G), G-e$ is not k-factor-critical. In this paper we study some properties of minimally k-factor-critical graphs, in particular a bound on the minimum degree, and characterize $(n-4)-$ and minimally ($n-4$)-factor-critical graphs.

1. Introduction

The graphs $G=(V(G), E(G))$ we consider here are undirected, simple and finite of order $|V(G)|=n$. A graph is even if its order is even and odd if its order is odd. The neighborhood of a vertex x is $N(x)=\{y ; y \in V(G)$ and $x y \in E(G)\}$, its closed neighborhood is $N[x]=N(x) \cup\{x\}$, and its degree is the integer $d_{G}(x)=|N(x)|$. The minimum degree of G is $\delta(G)=\min \left\{d_{G}(x) ; x \in V(G)\right\}$. When no confusion may arise, we write V and $d(x)$ instead of $V(G)$ and $d_{G}(x)$. For any set $A \subseteq V, G[A]$ denotes the subgraph induced by A in $G, G-A$ stands for $G[V-A]$. Similarly, if $e=u v$ is an edge of $G, G-e$ or $G-u v$ stands for $(V(G), E(G)-\{e\})$. A claw of G is an induced subgraph isomorphic to the star $K_{1,3}$. If $G-A$ is not connected, that is if A is a cutset of G, we denote by $c_{o}(G-A)$ the number of odd components of $G-A$. A matching F of G is a set of independent edges and a perfect matching is a matching covering all the vertices of G. Clearly if G has a perfect matching F, its order n is even and F consists of $\frac{n}{2}$ edges. We adopt the convention that a graph of order 0 has a perfect matching. A graph G of even order n is q-extendable [9], where
q is an integer with $1 \leq q \leq \frac{n}{2}$, if G is connected, has a perfect matching and every set of q independent edges is contained in a perfect matching. A graph G of order n is k-factor-critical [5], where k is an integer of same parity as n with $0 \leq k \leq n$, if $G-X$ has a perfect matching for any set X of k vertices of G. Graphs which are 0 -factor-critical, 1 -factor-critical, 2 -factor-critical are respectively graphs with a perfect matching, factor-critical graphs as defined in [6], bicritical graphs as defined in [7]. For k and thus n even, a k-factor-critical graph is clearly $\frac{k}{2}$-extendable. A k-factor-critical (q-extendable resp.) graph G is called minimal if for every edge $e \in E(G), G-e$ is not k-factor-critical (q-extendable resp.).

Minimally bicritical graphs have been extensively studied (see [8]). In [1], [2] and [3], Anunchuen and Caccetta gave general properties of minimal q-extendable graphs and characterized q-extendable and minimally q-extendable graphs of even order n for $q=\frac{n}{2}-1$ and $q=\frac{n}{2}-2$.

Our purpose is to study some properties of minimally k-factor-critical graphs and to characterize ($n-4$)- and minimally $(n-4)$-factor-critical graphs.

2. Basic properties of minimally k -factor-critical graphs

Let us first recall some properties of k-factor-critical graphs.
Lemma 1 [2] If G is k-factor-critical for some $1 \leq k<n$ with $n+k$ even, then G is k-connected, $(k+1)$-edge-connected (and thus $\delta \geq k+1$ which is still true when $k=0$), and ($k-2$)-factor-critical if $k \geq 2$.

Definition: A graph G has Property Q_{k} if $c_{o}(G-B) \leq|B|-k$ for every $B \subseteq V$ with $|B| \geq k$.
Lemma 2 [2] A graph G is k-factor-critical if and only if it has Property Q_{k}.
The following Lemma 3 and Theorem 2.1 are simple adaptations of similar results for $k=1$ or $2(\operatorname{cf}[8])$.
Lemma 3 Let G be a k-factor-critical graph. Then G is minimal if and only if for each $e=u v \in E(G)$, there exists $S_{e} \subseteq V-\{u, v\}$ with $\left|S_{e}\right|=k$ such that every perfect matching of $G-S_{e}$ contains e.
Proof 1. Let G be a minimally k-factor-critical graph, then for each $e=u v \in$ $E(G), G-e$ is not k-factor-critical. Therefore, there exists $S_{e} \subseteq V$ with $\left|S_{e}\right|=k$ such that $G-e-S_{e}$ has no perfect matching. But $G-S_{e}$ has a perfect matching since G is k-factor-critical. Hence neither u nor v belong to S_{e} and any perfect matching of $G-S_{e}$ contains e.
2. Conversely, suppose that for each $e=u v \in E(G)$, there exists $S_{e} \subseteq V-\{u, v\}$ with $\left|S_{e}\right|=k$ such that any perfect matching of $G-S_{e}$ contains e. So, $G-e-S_{e}$ has no perfect matching and thus $G-e$ is not k-factor-critical. Therefore, G is minimally k-factor-critical.
Theorem 2.1 Let G be a k-factor-critical graph. Then G is minimal if and only
if for each $e=u v \in E(G)$, there exists $B_{e} \subseteq V-\{u, v\}$ with $\left|B_{e}\right| \geq k$ such that $c_{o}\left(G-B_{e}-e\right)=\left|B_{e}\right|-k+2$ and u and v belong respectively to two different odd components of $G-B_{e}-e$.
Proof 1. If G is a minimally k-factor-critical graph, then for each $e=u v \in E(G)$, $G-e$ is not k-factor-critical. By Lemma 2 , there exists $B_{e} \subseteq V$ with $\left|B_{e}\right| \geq k$ such that $c_{o}\left(G-e-B_{e}\right)>\left|B_{e}\right|-k$ and by parity, $c_{o}\left(G-B_{e}-e\right) \geq\left|B_{e}\right|-k+2$. Since G is k-factor-critical, by Lemma $2, c_{o}\left(G-B_{e}\right) \leq\left|B_{e}\right|-k$ and thus u and v do not belong to B_{e}. But $c_{o}\left(G-B_{e}-e\right) \leq c_{o}\left(G-B_{e}\right)+2 \leq\left|B_{e}\right|-k+2$. Therefore, $c_{o}\left(G-B_{e}-e\right)=\left|B_{e}\right|-k+2, c_{o}\left(G-B_{e}\right)=\left|B_{e}\right|-k$, and e is an edge connecting two odd components of $G-B_{e}-e$. So u and v belong respectively to two different odd components of $G-B_{e}-e$.
2. Conversely if for each $e \in E(G)$ there exists $B_{e} \subseteq V$ with $\left|B_{e}\right| \geq k$ and such that $c_{o}\left(G-B_{e}-e\right)=\left|B_{e}\right|-k+2$, then B_{e} contradicts Property Q_{k} for the graph $G-e$ and $G-e$ is not k-factor-critical.

For $n \geq k+4$, the classes of minimally k-factor-critical graphs and of $(k+$ 2)-factor-critical graphs are both contained in the class of k-factor-critical graphs (cf Lemma 1). The next result shows that these two classes are disjoint.

Theorem 2.2 Let G be a minimally k-factor-critical graph of order $n \geq k+4$. Then G is not $(k+2)$-factor-critical.
Proof Let $e=u v$ be an edge of a minimally k-factor-critical graph G of order $n \geq k+4$, and B_{e} a subset of V as in Theorem 2.1.
Case $1 \quad\left|B_{e}\right| \geq k+2$. Let $B=B_{e}$, then $|B| \geq k+2$ and $c_{o}(G-B)=\left|B_{e}\right|-k>$ $|B|-(k+2)$.
Case $2\left|B_{e}\right|=k+1$. Let $B=B_{e} \cup\{u\}$, then $|B| \geq k+2$ and $c_{o}(G-B) \geq$ $c_{o}\left(G-B_{e}\right)+1=\left|B_{e}\right|-k+1=|B|-k>|B|-(k+2)$.
Case $3\left|B_{e}\right|=k$. If $G-B_{e}$ has more than one even component, let w belong to an even component which does not contain the edge e and $B=B_{e} \cup\{w, u\}$. Then $|B|=k+2$ and $c_{o}(G-B) \geq c_{o}\left(G-B_{e}\right)+2=\left|B_{e}\right|-k+2=|B|-k>|B|-(k+2)$. If $G-B_{e}$ has just one even component, then $G-B_{e}-e$ has exactly two components, say C_{u} which contains u and C_{v} which contains v, and both are odd. Since $n>k+2$, we may assume $\left|C_{u}\right|>1$. By parity, $\left|C_{u}\right| \geq 3$. Let $w \in C_{u}-\{u\}$ and $B=B_{e} \cup\{w, u\}$. Then $|B|=k+2$ and $c_{o}(G-B) \geq c_{o}\left(G-B_{e}\right)+2=\left|B_{e}\right|-k+2=|B|-k>|B|-(k+2)$.

In the three cases above, we have $|B| \geq k+2$ and $c_{o}(G-B)>|B|-(k+2)$. By Lemma 2, G is not ($k+2$)-factor-critical.

3. Minimally \mathbf{k}-factor-critical graphs and degrees

Theorem 3.1 Let G be a minimally k-factor-critical graph of order n. Then for each $e=u v \in E(G)$, there exists $S_{e} \subseteq V-\{u, v\}$ with $\left|S_{e}\right|=k$ such that $d_{G}(u)+d_{G}(v) \leq n+\left|N(u) \cap N(v) \cap S_{e}\right|$. In particular, $d_{G}(u)+d_{G}(v) \leq n+k$.
Proof Since G is a minimally k-factor-critical graph, for each $e=u v \in E(G)$,
there exists by Lemma 3 a set $S_{e} \subseteq V-\{u, v\}$ with $\left|S_{e}\right|=k$ such that any perfect matching of $G-S_{e}$ contains e.

If $N(u) \cap N(v) \subseteq S_{e}$ then $\left|N(u) \cap N(v) \cap S_{e}\right|=|N(u) \cap N(v)|$ and thus $d_{G}(u)+$ $d_{G}(v)=|N(u) \cup N(v)|+|N(u) \cap N(v)| \leq n+\left|N(u) \cap N(v) \cap S_{e}\right|$. Otherwise, let F be a perfect matching of $G-S_{e}$. For each $w \in N(u) \cap N(v)-S_{e}$, there exists $w^{\prime} \in V-S_{e}-\{u, v\}$ such that $w w^{\prime} \in E(F)$. If $w^{\prime} \in N(u) \cup N(v)$, say $w^{\prime} \in N(v)$, then $F^{\prime}=\left(F-\left\{u v, w w^{\prime}\right\}\right) \cup\left\{u w, v w^{\prime}\right\}$ is a perfect matching of $G-S_{e}$ which does not contain e, in contradiction to the definition of S_{e}. Hence $w^{\prime} \notin N(u) \cup N(v)$. Since F is a matching, we have $|N(u) \cup N(v)| \leq n-\left|(N(u) \cap N(v)) \backslash S_{e}\right|=n-\mid N(u) \cap$ $N(v)\left|+\left|N(u) \cap N(v) \cap S_{e}\right|\right.$. Therefore, $d_{G}(u)+d_{G}(v) \leq n+\left|N(u) \cap N(v) \cap S_{e}\right|$.
Corollary 3.2 Let G be a k-factor-critical graph of order n and maximum degree $\overline{\Delta(G)=n-1}$. Then G is minimal if and only if G contains one vertex of degree $n-1$ and $n-1$ vertices of degree $k+1$.
Proof Let G be a k-factor-critical graph of order n, and $u \in V$ such that $d_{G}(u)=$ $n-1$. Then for any $v \in V \backslash\{u\}$, we have $e=u v \in E(G)$.

If G is minimal, then for any $v \in V \backslash\{u\}$, by Theorem $2.3, d_{G}(u)+d_{G}(v) \leq n+k$. So $d_{G}(v) \leq n+k-(n-1)=k+1$. By Lemma $1, \delta(G) \geq k+1$ and thus $d_{G}(v)=k+1$.

Conversely, if G has $n-1$ vertices of degree $k+1$, then for any $e \in E(G)$, we have $\delta(G-e)<k+1$ and thus $G-e$ is not $k-$ factor-critical.

Theorem 3.3 In a minimally k-factor-critical graph G of order $n \geq k+4, \delta(G) \leq$ $\frac{n+k}{2}-1$. If moreover $n \geq k+6$, then $\delta(G) \leq \frac{n+k}{2}-2$.
Proof Let G be k-factor-critical of order $n \geq k+4$. By [4], if $\delta(G) \geq \frac{n+k}{2}$ then G is k-hamiltonian, i.e. $G-X$ contains a hamiltonian cycle for every set of at most k vertices of G. Let e be any edge of G and X any set of k vertices of G. Since $G-X$ contains an even hamiltonian cycle, $G-X-e$ contains a hamiltonian path of even order, and thus a perfect matching. Therefore $G-e$ is k-factor-critical. Hence if G is minimally k-factor-critical then $\delta(G) \leq \frac{n+k}{2}-1$, which is the first part of the theorem. To show the second part, we give another and direct proof of the first part, without using the result of [4], in order to point out all the possible cases of equality $\delta(G)=\frac{n+k}{2}-1$. Since G is a minimally k-factor-critical graph, for each $e=u v \in E(G)$ there exists by Theorem 2.1 a set $B_{e} \subseteq V-\{u, v\}$ with $\left|B_{e}\right| \geq k$ such that $c_{o}\left(G-e-B_{e}\right)=\left|B_{e}\right|-k+2$. Let $C_{1}, C_{2}, \cdots, C_{p}, C_{u}$ and C_{v} be the odd components of $G-e-B_{e}$, where $p=\left|B_{e}\right|-k, C_{u}$ is the component which contains u and C_{v} the component which contains v. We may assume $\left|C_{1}\right| \leq\left|C_{2}\right| \leq \cdots \leq\left|C_{p}\right|$ and $\left|C_{u}\right| \leq\left|C_{v}\right|$. We note that $\delta(G) \leq\left|B_{e}\right|+\left|C_{1}\right|-1$ and that $\delta(G) \leq\left|B_{e}\right|+\left|C_{u}\right|-1$ if $\left|C_{u}\right|>1$ (i.e. by parity $\left|C_{u}\right| \geq 3$), $\delta(G) \leq\left|B_{e}\right|+1$ if $\left|C_{u}\right|=1$.
Case 1. $\left|B_{e}\right| \geq k+2$ i.e. $p \geq 2$.
Since $\left|C_{p}\right| \geq \cdots \geq\left|C_{1}\right|$ and $\left|C_{v}\right| \geq\left|C_{u}\right| \geq 1$, we have $n \geq\left|B_{e}\right|+\left(\left|B_{e}\right|-k\right)\left|C_{1}\right|+2$, that is $n \geq\left|B_{e}\right|+\left(\left|B_{e}\right|-k\right)+2\left(\left|C_{1}\right|-1\right)+\left(\left|B_{e}\right|-k-2\right)\left(\left|C_{1}\right|-1\right)+2$, with $\left|B_{e}\right|-k-2 \geq 0$
and $\left|C_{1}\right|-1 \geq 0$. Hence $2\left(\left|B_{e}\right|+\left|C_{1}\right|\right) \leq n+k$ and $\delta(G) \leq\left|B_{e}\right|+\left|C_{1}\right|-1 \leq \frac{n+k}{2}-1$. The equality $\delta(G)=\frac{n+k}{2}-1$ implies here that $n=\left|B_{e}\right|+\left(\left|B_{e}\right|-k\right)\left|C_{1}\right|+2$, $\left(\left|B_{e}\right|-k-2\right)\left(\left|C_{1}\right|-1\right)=0,\left|C_{1}\right|=\left|C_{2}\right|=\cdots=\left|C_{p}\right|,\left|C_{u}\right|=\left|C_{v}\right|=1$, and $G-B_{e}-e$ contains no even component. If $\left|C_{1}\right|>1$, that is $\left|C_{1}\right| \geq 3$, then $\left|B_{e}\right|=k+2$ and $n \geq\left|B_{e}\right|+8=k+10$. On the other hand, $\frac{n+k}{2}-1=\delta(G) \leq\left|B_{e}\right|+1=k+3$ and thus $n \leq k+8$, which yields a contradiction. Hence $\left|C_{1}\right|=\left|C_{2}\right|=\cdots=\left|C_{p}\right|=1$, $n=2\left|B_{e}\right|-k+2 \geq k+6$ and $\left|B_{e}\right|=\frac{n+k}{2}-1=\delta(G)$. So for $1 \leq i \leq p$, the only vertex z_{i} of C_{i} is adjacent to every vertex of B_{e}, and each vertex u, v is adjacent to at least $\left|B_{e}\right|-1$ vertices of B_{e}. Therefore in this first case, the equality $\delta(G)=\frac{n+k}{2}-1$ implies $n \geq k+6,|N(u) \backslash N[v]| \leq 1$ and $|N(v) \backslash N[u]| \leq 1$.
Case 2. $\left|B_{e}\right|=k+1$ i.e. $p=1$.
Subcase $2.1 \quad\left|C_{1}\right| \leq\left|C_{u}\right|$.
If $\left|C_{1}\right| \geq \frac{n-k}{4}$ then $\left|B_{e}\right|+\left|C_{1}\right| \leq n-\left|C_{u}\right|-\left|C_{v}\right| \leq n-2\left|C_{1}\right| \leq n-\frac{n-k}{2}=\frac{n+k}{2}$. Hence $\delta(G) \leq\left|B_{e}\right|+\left|C_{1}\right|-1 \leq \frac{n+k}{2}-1$. The equality $\delta(G)=\frac{n+k}{2}-1$ requires $\left|C_{u}\right|=\left|C_{v}\right|=\left|C_{1}\right|=\frac{n-k}{4}$, and $\left|B_{e}\right|+\left|C_{1}\right|=n-\left|C_{u}\right|-\left|C_{v}\right|$ and thus $G-B_{e}-e$ has no even component. Therefore $n=\left|B_{e}\right|+3\left|C_{1}\right|=k+1+\frac{3(n-k)}{4}$, that is $n=k+4$.

If $\left|C_{1}\right|<\frac{n-k}{4}$ i.e. $\left|C_{1}\right| \leq \frac{n-k-2}{4}$, then $\delta(G) \leq\left|B_{e}\right|+\left|C_{1}\right|-1 \leq \frac{n+3 k-2}{4}<$ $\frac{n+k}{2}-1$, with a strict inequality.
Subcase $2.2\left|C_{u}\right|<\left|C_{1}\right|$ and thus by parity, $\left|C_{1}\right| \geq\left|C_{u}\right|+2$.
2.2.1 If $\left|C_{u}\right|=1$ then $n \geq\left|B_{e}\right|+\left|C_{u}\right|+\left|C_{v}\right|+\left|C_{1}\right| \geq k+6$ and thus $\delta(G) \leq$ $\left|B_{e}\right|+1=k+2 \leq \frac{n+k}{2}-1$. The equality $\delta(G)=\frac{n+\bar{k}}{2}-1$ requires $n=k+6$, $\left|C_{u}\right|=\left|C_{v}\right|=1,\left|C_{1}\right|=3, G-C_{1}-e$ has no even component, u and v are adjacent to every vertex of B_{e}, and each of the three vertices of C_{1} is adjacent to at least k of the $k+1$ vertices of B_{e}. In particular, $N(u) \backslash N[v]=N(v) \backslash N[u]=\emptyset$.
2.2.2 Suppose now $\left|C_{u}\right| \geq 3$ (thus $n \geq k+12$).

If $\left|C_{u}\right| \geq \frac{n-k-2}{4}$, then $\left|B_{e}\right|+\left|C_{u}\right| \leq n-\left|C_{1}\right|-\left|C_{v}\right| \leq n-\frac{n-k-2}{2}-2=$ $\frac{n+k}{2}-1$ and $\delta(G)<\frac{n+k}{2}-1$, strictly.

If $\left|C_{u}\right| \leq \frac{n-k-4}{4}$, then $\left|B_{e}\right|+\left|C_{u}\right| \leq k+1+\frac{n-k}{4}-1=\frac{n+3 k}{4}$ and $\delta(G) \leq$ $\frac{n+3 k}{4}-1<\frac{n+k}{2}-1$, strictly.
Case 3. $\left|B_{e}\right|=k$ i.e. $p=0$ and thus $\left|C_{u}\right| \leq \frac{n-k}{2}$.

Subcase 3.1 If $\left|C_{u}\right|>1$ then $\delta(G) \leq\left|B_{e}\right|+\left|C_{u}\right|-1 \leq \frac{n+k}{2}-1$. The equality $\delta(G)=\frac{n+k}{2}-1$ requires $\left|C_{u}\right|=\left|C_{v}\right|=\frac{n-k}{2}$ and thus $\frac{n-k}{2}$ is odd ≥ 3 and $n-k \geq 6, \stackrel{2}{G}-B_{e}-e$ has no even component, $\stackrel{2}{C}_{u}$ and C_{v} are cliques, every vertex of $C_{u} \backslash\{u\}$ and of $C_{v} \backslash\{v\}$ is adjacent to all the vertices of B_{e}, u (v resp.) is adjacent to all the vertices of B_{e} except perhaps to one of them.
Subcase 3.2 If $\left|C_{u}\right|=1$ then $\delta(G) \leq\left|B_{e}\right|+1=k+1 \leq \frac{n+k}{2}-1$ since $n \geq k+4$. The equality $\delta(G)=\frac{n+k}{2}-1$ requires $n=k+4,\left|C_{u}\right|=\left|C_{v}\right|=1$ and $G-B_{e}-e$ contains one even component of order 2 , or $\left|C_{u}\right|=1,\left|C_{v}\right|=3$ and $G-B_{e}-e$ contains no even component.

To summarize the study, when $n \geq k+6$ the only possible cases of equality $\delta(G)=\frac{n+k}{2}-1$ occur in $1,2.2 .1$ and 3.1. Hence if a minimally k-factor-critical graph G with $n \geq k+6$ satisfies $\delta(G)=\frac{n+k}{2}-1$, each edge $e=u v$ is of one of the three encountered types, Type 1 described in Case 1, Type 2 described in Case 2.2.1, Type 3 described in Case 3.1. Recall that if $e=u v$ is of Type 1 then $|N(u) \backslash N[v]| \leq 1$ and $|N(v) \backslash N[u]| \leq 1$; if e is of Type 2 then $N(u) \backslash N[v]=N(v) \backslash N[u]=\emptyset$; if e is of Type 3 then there exist two disjoint triangles $K_{3}(u)$ and $K_{3}(v)$ such that $u v$ is the only edge of G between $K_{3}(u)$ and $K_{3}(v)$.

Let G be a minimally k-factor-critical graph of order $n \geq k+6$ and $\delta(G)=$ $\frac{n+k}{2}-1$. If G contains an edge $e=u v$ of Type 1 , let $x \in B_{e} \cap N(u)$. Using the notation of Case 1 , we have $\left\{z_{1}, z_{2}\right\} \subseteq N(x) \backslash N[u]$, so the edge $u x$ is not of Type 1 or 2 and thus must be of Type 3. But as in Type 1 each $z_{i}, 1 \leq i \leq p$, is adjacent to every vertex of B_{e}, and u is adjacent to every vertex of B_{e} except perhaps to at most one, we cannot find two disjoint triangles $K_{3}(x)$ and $K_{3}(u)$ joined by the only edge $u x$, a contradiction. Hence no edge of G is of Type 1.

If G contains an edge $e=u v$ of Type 2 (which implies $n=k+6$), let x be a vertex of B_{e} adjacent to some vertex z_{1} of C_{1}. Since $z_{1} \in N(x) \backslash N[u]$, the edge $u x$ is not of Type 2 and must be of Type 3 . The triangle $K_{3}(u)$ does not contain v since x is adjacent to v, and is of the kind $u t w$ with $t, w \in B_{e}$. Hence $K_{3}(x)$ contains no vertex of C_{1} since each vertex of C_{1} is adjacent to at least one of t, w, and $K_{3}(x)$ is contained in B_{e}. This gives a contradiction since u is adjacent to every vertex of B_{e}.

Therefore every edge of G must be of Type 3 . Let $e=u v$ be such an edge and x, y two vertices of $C_{u} \backslash\{u\}$. Since $N(x) \backslash\{y\}=N(y) \backslash\{x\}=\left(C_{u} \backslash\{x, y\}\right) \cup B_{e}$, the edge $x y$ cannot be of Type 3 .

Hence no minimally k-factor-critical graph of order $n \geq k+6$ satisfies $\delta(G)=$ $\frac{n+k}{2}-1$. This completes the proof of the theorem.
Corollary 3.4 Let G be a minimally k-factor-critical graph of order n. If $k=$ $n-2, n-4$ or $n-6$, then $\delta(G)=k+1$.

Proof: The only ($n-2$)-factor-critical graph of order n is K_{n}, which proves the corollary for $k=n-2$. For $k=n-4$ or $n-6$, this is a consequence of Theorem 3.3 and the property $\delta(G) \geq k+1$ recalled in Lemma 1.
Problem: It is clear from the Ear Decomposition of 1-factor-critical graphs (cf [8]) that every minimally 1 -factor-critical graphs has minimum degree 2 .

Is it true that every minimally k-factor-critical graph G has minimum degree $\delta(G)=k+1$?

4. Minimally ($\mathrm{n}-4$)-factor-critical graphs

Theorem 4.1 A graph G of order $n \geq 6$ is $(n-4)$-factor-critical if and only if G is claw-free and $\delta(G) \geq n-3$.
Proof Let G be a ($n-4$)-factor-critical graph. By Lemma $1, \delta(G) \geq k+1=n-3$. If there exists a set Y of four vertices inducing a claw, then $G[Y]$ has no perfect matching, contradicting G is $(n-4)$-factor-critical.

Conversely, let Y be any subgraph of G induced by exactly four vertices. Since G is claw-free and $\delta(G) \geq n-3, Y \neq K_{1,3}$ and $\delta(Y) \geq 1$ which implies that Y has a perfect matching.

Let us remark that the condition for a graph G of order n to be claw-free and have minimum degree $\delta(G) \geq n-3$ is equivalent to the condition to have independence number $\alpha(G) \leq 2$ and $\delta(G) \geq n-3$.

Theorem 4.2 A graph G of order $n \geq 6$ is minimally ($n-4$)-factor-critical if and only if it is claw-free and satisfies one of the following three conditions:
(1) $\quad G$ is $(n-3)$-regular.
(2) G contains one vertex of degree $n-1$ and $n-1$ vertices of degree $n-3$.
(3) G contains $n-2$ vertices of degree $n-3$ and two vertices of degree $n-2$, say u and v, which are such that $N(u) \backslash\{v\}=N(v) \backslash\{u\}$.
Proof Let G be a minimally $(n-4)$-factor-critical graph. By Theorem 4.1 and Corollary 3.4, G is claw-free and $\delta(G)=n-3$.

If $\Delta(G)=n-3$ then G is $(n-3)$-regular.
If $\Delta(G)=n-1$ then by Corollary 3.2, G contains one vertex of degree $n-1$ and $n-1$ vertices of degree $k+1=n-3$.

If $\Delta(G)=n-2$ then each vertex of G has degree $n-2$ or $n-3$. If n is odd, then $n-2$ is also odd and G has an even number of vertices of degree $n-2$. If n is even, then $n-3$ is odd and G has an even number of vertices of degree $n-3$ and thus also an even number of vertices of degree $n-2$. Therefore, G contains at least two vertices of degree $n-2$. Suppose G has three vertices of degree $n-2$, say u, v and w.
Case 1 Two of them, say u and v are not adjacent.
Then $N(u)=N(v)=V-\{u, v\}$ and $w \in N(u)$. Let $e=u w$. Since $G-e$ is not ($n-4$)-factor-critical and $\delta(G-e) \geq n-3, G-e$ has an induced subgraph H isomorphic to $K_{1,3}$ by Theorem 4.1. Since G is claw-free, H must contain u and w
as two pendant vertices. There are only two vertices v and w which are not adjacent to u in $G-e$, so the only other possible pendant vertex is v. But H can not be $K_{1,3}$ since $v w \in E(G-e)$, a contradiction.
Case $2 u v, u w$ and $v w \in E(G)$. Let $e=u w$. As in Case $1, G-e$ has an induced subgraph H isomorphic to $K_{1,3}$ and u and w are two pendant vertices of H. If x is the third pendant vertex of H, then $x \in V(G)-\{u, v, w\}$ and $x \notin N(u) \cup N(w)$. Considering similarly the edge $u v$, there exists $y \in V(G)-\{u, v, w\}$ such that $y \notin$ $N(u) \cup N(v)$. Since $d(u)=n-2$ and $x, y \notin N(u)-\{u\}$, we have $x=y$. Hence, $N(x) \subseteq V \backslash\{u, v, w\}$ and thus $d(x) \leq n-4$, a contradiction.

Therefore, there are exactly two vertices, say u and v, of degree $n-2$. If u and v are not adjacent then $N(u) \backslash\{v\}=N(v) \backslash\{u\}=V \backslash\{u, v\}$. If they are adjacent and if $N(u) \backslash\{v\} \neq N(v) \backslash\{u\}$, then $N(u)=V \backslash\left\{u^{\prime}\right\}$ and $N(v)=V \backslash\left\{v^{\prime}\right\}$ for some vertices $u^{\prime} \neq v^{\prime}$. By considering the edge $u v^{\prime}$, a similar argument as above yields a contradiction.

Conversely, by the hypothesis we have $\delta(G)=n-3$ and G is claw-free. By Theorem 4.1, G is $(n-4)$-factor-critical. Moreover, for any $e=u v \in E(G)$, if $d(u)=n-3$ or $d(v)=n-3$, we have $\delta(G-e)<n-3$ and $G-e$ is not $(n-4)$-factorcritical. Otherwise, we are in the third case with $u v \in E(G), N(u) \backslash\{v\}=N(v) \backslash\{u\}$ and $V \backslash(N(u) \cup N(v))=\{x\}$ for some vertex x of G. If w is any vertex in $N(u) \cap N(v)$ and since $d(x)=n-3$, then $\{u, v, w, x\}$ induced a subgraph of $G-e$ which isomorphic to $K_{1,3}$. By Theorem 4.1, $G-e$ is not $(n-4)$-factor-critical. Therefore, G is a minimally $(n-4)$-factor-critical graph.

In [2] and [3], Anunchuen and Cacetta determined all the $\left(\frac{n}{2}-2\right)-$ and minimally $\left(\frac{n}{2}-2\right)$-extendable graphs of even order $n \geq 6$. Since for n even, every ($n-4$)-factorcritical graph is $\left(\frac{n}{2}-2\right)$-extendable, we expected to find in Theorem 4.1 a subclass of non-bipartite $\left(\frac{n}{2}-2\right)$-extendable graphs (some p-extendable graphs are bipartite whereas k-factor-critical graphs are never bipartite). Surprisingly, for $n \geq 10$, we found all of them, that is
Corollary 4.3 A non-bipartite graph of even order $n \geq 10$ is $\left(\frac{n}{2}-2\right)$-extendable if and only if it is $(n-4)$-factor-critical.

In consequence
Corollary 4.4 A non-bipartite graph of even order $n \geq 10$ is minimally $\left(\frac{n}{2}-\right.$ 2)-extendable if and only if it is minimally $(n-4)$-factor-critical.

This last corollary allows us to get from Theorem 4.2 all the non-bipartite minimally $\left(\frac{n}{2}-2\right)$-extendable graphs of order $n \geq 10$ which were obtained in [2] after a long proof (the bipartite ones are easily obtained from the bipartite $\left(\frac{n}{2}-\right.$ 2)-extendable graphs which are all the bipartite graphs of even order n and minimum degree $\geq \frac{n}{2}-1$)

References

[1] N. Anunchuen and L. Caccetta, On minimally k-extendable graphs, Australasian Journal of Combinatorics 9 (1994) 153-168.
[2] N. Anunchuen and L. Caccetta, On ($n-2$)-extendable graphs, JCMCC 16 (1994) 115-128.
[3] N. Anunchuen and L. Caccetta, On ($n-2$)-extendable graphs - II, JCMCC 20 (1996) 65-80.
[4] G. Chartrand, S. F. Kapoor and D. R. Lick, n-hamiltonian graphs, J. Combin. Theory 9, No. 3 (1970) 308-312.
[5] O. Favaron, On k-factor-critical graphs, Discussiones Mathematicae - Graph Theory 16 (1996) 41-51.
[6] T. Gallai, Neuer Beweis eines Tutte'schen Satzes, Magyar Tud. Akad. Mat. Kutató Int. Közl. 8 (1963) 135-139.
[7] L. Lovász, On the structure of factorizable graphs, Acta Math. Acad. Sci. Hungar. 23 (1972) 179-195.
[8] L. Lovász and M. D. Plummer, Matching theory, Ann. Discrete Math. 29 (1986).
[9] M. D. Plummer, On n-extendable graphs, Discrete Math. 31 (1980) 201-210.

