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Abstract 

A graph G of order n is k-factor-critical, where k is an integer of the 
same parity as n with 0 ::; k ::; n, if G - X has a perfect matching 
for any set X of k vertices of G. A k-factor-critical graph G is called 
minimal if for any edge e E E(G), G - e is not k-factor-critical. In this 
paper we study some properties of minimally k-factor-critical graphs, in 
particular a bound on the minimum degree, and characterize (n - 4)
and minimally (n - 4)-factor-critical graphs. 

1. Introduction 

The graphs G = (V(G), E(G)) we consider here are undirected, simple and finite 
of order IV(G)I = n. A graph is even if its order is even and odd if its order is odd. 
The neighborhood of a vertex x is N (x) = {y; Y E V (G) and xy E E (G) }, its closed 
neighborhood is N[x] = N(x) U {x}, and its degree is the integer dc{x) = IN(x)l. 
The minimum degree of G is <5 (G) = min { de (x); x E V ( Gn. When no confusion 
may arise, we write V and d(x) instead of V(G) and dc(x). For any set A ~ V, G[A] 
denotes the subgraph induced by A in G, G - A stands for G[V - A]. Similarly, if 
e = uv is an edge of G, G - e or G - uv stands for (V(G), E(G) - {e}). A claw of G 
is an induced subgraph isomorphic to the star K 1,3. If G - A is not connected, that 
is if A is a cutset of G, we denote by co(G - A) the number of odd components of 
G - A. A matching F of G is a set of independent edges and a perfect matching is 
a matching covering all the vertices of G. Clearly if G has a perfect matching F, its 
order n is even and F consists of ~ edges. We adopt the convention that a graph of 
order 0 has a perfect matching. A graph G of even order n is q-extendable [9], where 
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q is an integer with 1 :::; q :::; ~, if G is connected, has a perfect matching and every 
set of q independent edges is contained in a perfect matching. A graph G of order n 
is k- factor-critical [5], where k is an integer of same parity as n with a :::; k ::; n, if 
G - X has a perfect matching for any set X of k vertices of G. Graphs which are 
a-factor-critical, 1-factor-critical, 2-factor-critical are respectively graphs with a 
perfect matching, factor-critical graphs as defined in [6], bicritical graphs as defined 
in [7]. For k and thus n even, a k-factor-critical graph is clearly ~-extendable. A 
k-factor-critical (q-extendable resp.) graph G is called minimal if for every edge 
e E E(G), G - e is not k-factor-critical (q-extendable resp.). 

Minimally bicritical graphs have been extensively studied (see [8]). In [1], [2] 
and [3], Anunchuen and Caccetta gave general properties of minimal q-extendable 
graphs and characterized q-extendable and minimally q-extendable graphs of even 

n n 
order n for q = "2 - 1 and q = "2 - 2. 

Our purpose is to study some properties of minimally k-factor-critical graphs 
and to characterize (n - 4)- and minimally (n - 4)-factor-critical graphs. 

2. Basic properties of minimally k-factor-critical graphs 
Let us first recall some properties of k-factor-critical graphs. 

Lemma 1 [2] If G is k-factor-critical for some 1 ::; k < n with n + k even, then G 
is k-connected, (k + 1 )-edge-connected (and thus 8 2: k + 1 which is still true when 
k = a), and (k - 2)-factor-critical if k 2: 2. 

Definition: A graph G has Property Qk if co(G - B) ::; IBI- k for every B ~ V 
with IBI ~ k. 

Lemma 2 [2] A graph G is k-factor-critical if and only if it has Property Qk. 

The following Lemma 3 and Theorem 2.1 are simple adaptations of similar results 
for k = 1 or 2 (cf [8]). 

Lemma 3 Let G be a k-factor-critical graph. Then G is minimal if and only if 
for each e = uv E E(G), there exists Be ~ V - {u, v} with IBel = k such that every 
perfect matching of G - Be contains e. 

Proof 1. Let G be a minimally k-factor-critical graph, then for each e = uv E 
E(G), G - e is not k-factor-critical. Therefore, there exists Be ~ V with IBel = k 
such that G - e - Be has no perfect matching. But G - Be has a perfect matching 
since G is k-factor-critical. Hence neither u nor v belong to Be and any perfect 
matching of G - Be contains e. 

2. Conversely, suppose that for each e = uv E E (G), there exists Be ~ V - {u, v} 
with IBel = k such that any perfect matching of G - Be contains e. So, G - e - Be 
has no perfect matching and thus G - e is not k-factor-critical. Therefore, G is 
minimally k-factor-critical. II 

Theorem 2.1 Let G be a k-factor-critical graph. Then G is minimal if and only 
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if for each e = uv E E(G), there exists Be ~ V - {u,v} with IBel ?:: k such that 
co(G - Be - e) = IBel- k + 2 and u and v belong respectively to two different odd 
components of G - Be - e. 

Proof 1. If G is a minimally k-factor-critical graph, then for each e = uv E E(G), 
G - e is not k-factor-critical. By Lemma 2, there exists Be ~ V with IBel ?:: k such 
that co(G - e - Be) > IBel- k and by parity, co(G - Be - e) 2: IBel - k + 2. Since 
G is k-factor-critical, by Lemma 2, co(G - Be) :S IBel - k and thus u and v do 
not belong to Be. But co(G - Be - e) :S co(G - Be) + 2 :S IBel- k + 2. Therefore, 
co(G - Be - e) = IBel- k + 2, co(G - Be) = IBel- k, and e is an edge connecting 
two odd components of G - Be - e. So u and v belong respectively to two different 
odd components of G - Be - e. 

2. Conversely if for each e E E(G) there exists Be ~ V with IBel 2: k and such that 
co(G - Be - e) = IBel- k + 2, then Be contradicts Property Qk for the graph G - e 
and G - e is not k-factor-critical. II 

For n 2: k + 4, the classes of minimally k-factor-critical graphs and of (k + 
2)-factor-critical graphs are both contained in the class of k-factor-critical graphs 
(cf Lemma 1). The next result shows that these two classes are disjoint. 

Theorem 2.2 Let G be a minimally k-factor-critical graph of order n ?:: k + 4. 
Then G is not (k + 2)-factor-critical. 

Proof Let e = uv be an edge of a minimally k-factor-critical graph G of order 
n ?:: k + 4, and Be a subset of V as in Theorem 2.1. 

Case liBel?:: k + 2. Let B = Be, then IBI 2: k + 2 and co(G - B) = IBel - k > 
IBI- (k + 2). 

Case 2 IBel = k + 1. Let B = Be U {u}, then IBI ?:: k + 2 and co(G - B) 2: 
Co (G - Be) + 1 = I Be I - k + 1 = IB I - k > I B I - (k + 2). 

Case 3 IBel = k. If G - Be has more than one even component, let w belong to 
an even component which does not contain the edge e and B = Be U {w, u}. Then 
IBI = k+2 and co(G -B) 2: co(G-Be)+2 = IBel-k+2 = IBI-k > IBI- (k+2). If 
G-Be has just one even component, then G-B~-e has exactly two components, say 
Cu which contains u and Cv which contains v, and both are odd. Since n > k + 2, we 
may assume ICul > 1. By parity, ICu l2: 3. Let w E Cu - {u} and B = Be U {w,u}. 
Then IBI = k+2 and co(G-B) ?:: co(G- Be)+2 = IBel-k+2 = IBI-k > IBI-(k+2). 

In the three cases above, we have IBI 2: k + 2 and co(G - B) > IBI- (k + 2). By 
Lemma 2, G is not (k + 2)-factor-critical. II 

3. Minimally k-factor-critical graphs and degrees 

Theorem 3.1 Let G be a minimally k-factor-critical graph of order n. Then 
for each e = uv E E( G), there exists Be ~ V - {u, v} with IBel = k such that 
dc(u) + dc(v) :S n + IN(u) n N(v) n Bel. In particular, dc(u) + dc(v) :S n + k. 

Proof Since G is a minimally k-factor-critical graph, for each e = uv E E(G), 
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there exists by Lemma 3 a set Se ~ V - {u, v} with ISel = k such that any perfect 
matching of G - Se contains e. 

If N(u) n N(v) ~ Se then IN(u) n N(v) n Sel = IN(u) n N(v)1 and thus dG(u) + 
dG(v) = IN(u) U N(v)1 + IN(u) n N(v)1 ::; n + IN(u) n N(v) n Sel. Otherwise, let 
F be a perfect matching of G - Se. For each w E N(u) n N(v) - Se, there exists 
w' E V - Se - {u, v} such that ww' E E(F). If w' E N(u) U N(v), say w' E N(v), 
then F' = (F - {uv, ww'}) U {uw, vw'} is a perfect matching of G - Se which does not 
contain e, in contradiction to the definition of Se. Hence w' rt N(u) U N(v). Since 
F is a matching, we have IN(u) U N(v)1 ::; n - I(N(u) n N(v)) \ Sel = n -IN(u) n 
N(v)1 + IN(u) n N(v) n Sel. Therefore, dG(u) + dG(v) ::; n + IN(u) n N(v) n Sel .• 

Corollary 3.2 Let G be a k-factor-critical graph of order n and maximum degree 
.6. (G) = n - 1. Then G is minimal if and only if G contains one vertex of degree 
n - 1 and n - 1 vertices of degree k + 1. 

Proof Let G be a k-factor-critical graph of order n, and u E V such that dG(u) = 
n - 1. Then for any v E V \ {u}, we have e = uv E E(G). 

If G is minimal, then for any v E V\ {u}, by Theorem 2.3, dG(u) +dG(v) ::; n+k. 
So dG(v) ~ n+k- (n-l) = k+l. By Lemma 1, 6"(G) ;::: k+l and thus dG(v) = k+l. 

Conversely, if G has n - 1 vertices of degree k + 1, then for any e E E ( G), we 
have 6"(G - e) < k + 1 and thus G - e is not k-factor-critical. • 

Theorem 3.3 In a minimally k-factor-critical graph G of order n ;::: k+4, 6"(G) ::; 
n+k n+k 
-2- - 1. If moreover n;::: k + 6, then 6"(G) ::; -2- - 2. 

Proof Let G be k-factor-critical of order n 2:: k + 4. By [4], if 6"(G) 2:: n; k then 

G is k-hamiltonian, i.e. G - X contains a hamiltonian cycle for every set of at most 
k vertices of G. Let e be any edge of G and X any set of k vertices of G. Since 
G - X contains an even hamiltonian cycle, G - X - e contains a hamiltonian path of 
even order, and thus a perfect matching. Therefore G - e is k-factor-critical. Hence 

if G is minimally k-factor-critical then 6"(G) ::; n; k - 1, which is the first part of 

the theorem. To show the second part, we give another and direct proof of the first 
part, without using the result of [4], in order to point out all the possible cases of 

equality 6"(G) = n; k - 1. Since G is a minimally k-factor-critical graph, for each 

e = uv E E( G) there exists by Theorem 2.1 a set Be ~ V - {u, v} with IBel 2:: k 
such that co(G - e - Be) = IBel- k + 2. Let C l , C2 ,"', Cp, Cu and Cv be the odd 
components of G - e - Be, where p = IBel- k, Cu is the component which contains 
u and Cv the component which contains v. We may assume ICll ~ IC2 1 ::; ... ::; ICpl 
and ICul ::; ICvl. We note that 6"(G) ::; IBel + IC11-1 and that 6"(G) ::; IBel + ICu l-l 
if ICul > 1 (i.e. by parity ICul ;::: 3), 6"(G) ::; IBel + 1 if ICul = 1. 

Case 1. IBel;::: k + 2 i.e. p;::: 2. 
Since ICpl ;::: .. , ;::: ICll and ICvl ;::: ICul 2:: 1, we have n ;::: IBel + (IBel- k)IC11 +2, 

that is n ;::: IBel+(IBel-k)+2(IC11-1)+(IBel-k-2)(IC11-1)+2, with IBel-k-2 2:: 0 
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n+k 
and IC11-1 ~ O. Hence 2(IBel+IC11) ::; n+k and 8(G) ::; IBel+IC11-1 ::; -2--1. 

The equality 8(G) = n; k - 1 implies here that n = IBel + (IBel - k)ICll + 2, 

(IBel-k-2)(ICl l-1) = 0, ICll = IC2 1 = ... = ICpl, ICul = ICvl = 1, and G -Be-e 
contains no even component. If ICll > 1, that is IC11 ~ 3, then IBel = k + 2 and 

n+k 
n ~ IBel +8 = k + 10. On the other hand, -2- -1 = 8(G) ::; IBel + 1 = k + 3 and 

thus n ::; k + 8, which yields a contradiction. Hence ICll = IC2 1 = ... = ICpl = 1, 
n+k . 

n = 21Bel - k + 2 ~ k + 6 and IBel = -2- - 1 = 8(G). So for 1 ::; 't ::; p, the only 

vertex Zi of Ci is adjacent to every vertex of Be, and each vertex u, v is adjacent to at 

least IBel-1 vertices of Be. Therefore in this first case, the equality 8( G) = n; k -1 

implies n ~ k + 6, IN(u) \ N[v]1 ::; 1 and IN(v) \ N[u] I ::; 1. 

Case 2. IBel = k + 1 i.e. p = 1. 

Subcase 2.1 ICll::; ICul. 
n-k n-k n+k 

IfICll ~ -4- then IBel+ICll ::; n-ICul-ICvl::; n-2lCd ::; n--
2

- = -2-' 

n+k . n+k 
Hence 8(G) ::; IBel + IC11-1 ::; -2- - 1. The equalIty 8(G) = -2- - 1 requires 

n-k 
ICul = IGvl = IG11 = -4-' and IBel+IG11 = n-IGul-IGvl and thus G-Be-e has 

3(n- k) 
no even component. Therefore n = IBel + 31Gd = k + 1 + 4 ' that is n = k + 4. 

n - k n - k - 2 n + 3k - 2 
IfICr/<-4-Le.IC11::; 4 ,then8(G)::;IBel+IGl l-1::; 4 < 

n+k 1 . h .. r -2 - - ,WIt a stnct mequa Ity. 

Subcase 2.2 ICul < IGll and thus by parity, ICll ~ ICul + 2. 

2.2.1 If ICul = 1 then n ~ IBel + ICul + ICvl + IGll ~ k + 6 and thus 8(G) ::; 
n+k . n+k . 

IBel + 1 = k + 2 ::; -2- - 1. The equalIty 8(G) = -2- - 1 reqUIres n = k + 6, 

ICul = ICvl = 1, ICll = 3, G - Gl - e has no e~en component, u and v are adjacent 
to every vertex of Be, and each of the three vertices of G1 is adjacent to at least k of 
the k + 1 vertices of Be. In particular, N(u) \ N[v] = N(v) \ N[u] = 0. 

2.2.2 Suppose now ICul ~ 3 (thus n ~ k + 12). 
n-k-2 n-k-2 

If ICul ~ 4 ' then IBel + ICul ::; n - ICll - IGvl ::; n - 2 - 2 = 
n+k n+k. 
-2- -1 and 8(G) < -2- - 1, stnctly. 

n - k - 4 n - k n + 3k 
If ICul ::; 4 ,then IBel + ICul ::; k + 1 + -4- -1 = -4 - and 8(G) ::; 

n+ 3k n + k . 
-- - 1 < -- - 1 stnctly. 

4 2' 
n-k 

Case 3. IBel = k i.e. p = 0 and thus ICul ::; -2-' 
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n+k 
Sub case 3.1 If ICul > 1 then J(G) ~ IBel + ICul- 1 ~ -2- - 1. The equality 

n+k n-k n-k 
J(G) = -2- - 1 requires ICul = ICvl = -2- and thus -2- is odd 2:: 3 and 

n - k 2:: 6, G - Be - e has no even component, Cu and Cv are cliques, every vertex of 
Cu \ {u} and of Cv \ {v} is adjacent to all the vertices of Be, U (v resp.) is adjacent 
to all the vertices of Be except perhaps to one of them. 

n+k . 
Subcase 3.2 If ICul = 1 then J(G) ::; IBel + 1 = k + 1 ~ -2- -1 SInce n 2:: k +4. 

The equality J(G) = n; k - 1 requires n = k + 4, ICul = ICvl = 1 and G - Be - e 

contains one even component of order 2, or ICul = 1, IGvl = 3 and G-Be-e contains 
no even component. 

To summarize the study, when n 2:: k + 6 the only possible cases of equality 

J(G) = n + k _ 1 occur in 1, 2.2.1 and 3.1. Hence if a minimally k-factor-critical 
2 . 

graph G with n ~ k + 6 satisfies J( G) = n; k - 1, each edge e = uv is of one of the 

three encountered types, Type 1 described in Case 1, Type 2 described in Case 2.2.1, 
Type 3 described in Case 3.1. Recall that if e = uv is of Type 1 then IN(u)\N[v]1 ::; 1 
and IN(v) \ N[u] I ~ 1; if e is of Type 2 then N(u) \ N[v] = N(v) \ N[u] = 0; if e 
is of Type 3 then there exist two disjoint triangles K3(U) and K3(V) such that uv is 
the only edge of G between K3(U) and K3(V). 

Let G be a minimally k-factor-critical graph of order n 2:: k + 6 and J(G) = 
n; k _ 1. If G contains an edge e = uv of Type 1, let x E Be n N(u). Using the 

notation of Case 1, we have {Zl' Z2} ~ N(x) \ N[u], so the edge ux is not of Type 1 
or 2 and thus must be of Type 3. But as in Type 1 each Zi, 1 ~ i ::; p, is adjacent 
to every vertex of Be, and u is adjacent to every vertex of Be except perhaps to at 
most one, we cannot find two disjoint triangles K3(X) and K3(U) joined by the only 
edge ux, a contradiction. Hence no edge of G is of Type 1. 

If G contains an edge e = uv of Type 2 (which implies n = k + 6), let x be a 
vertex of Be adjacent to some vertex ZI of C1• Since Zl E N(x) \ N[u], the edge ux is 
not of Type 2 and must be of Type 3. The triangle K3(U) does not contain v since 
x is adjacent to v, and is of the kind utw with t, w E Be. Hence K3(X) contains no 
vertex of C1 since each vertex of G1 is adjacent to at least one of t, w, and K3(X) is 
contained in Be. This gives a contradiction since u is adjacent to every vertex of Be. 

Therefore every edge of G must be of Type 3. Let e = uv be such an edge and 
x, y two vertices of Cu \ {u}. Since N(x) \ {y} = N(y) \ {x} = (Cu \ {x,y}) U Be, 
the edge xy cannot be of Type 3. 

Hence no minimally k-factor-critical graph of order n 2:: k + 6 satisfies J(G) = 
n ; k _ 1. This completes the proof of the theorem. • 

Corollary 3.4 Let G be a minimally k-factor-critical graph of order n. If k = 
n - 2, n - 4 or n - 6, then J (G) = k + 1. 
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Proof: The only (n - 2)-factor-critical graph of order n is K n , which proves the 
corollary for k = n - 2. For k = n - 4 or n - 6, this is a consequence of Theorem 3.3 
and the property 8 (G) ~ k + 1 recalled in Lemma 1. III 

Problem: It is clear from the Ear Decomposition of 1-factor-critical graphs (cf [8]) 
that every minimally 1-factor-critical graphs has minimum degree 2. 

Is it true that every minimally k-factor-critical graph G has minimum degree 
8(G) = k + 1 ? 

4. Minimally (n - 4) - factor-critical graphs 

Theorem 4.1 A graph G of order n ~ 6 is (n - 4)-factor-critical if and only if G 
is claw-free and 8(G) ~ n - 3. 

Proof Let G be a (n-4)-factor-critical graph. By Lemma 1, 8(G) ~ k+1 = n-3. 
If there exists a set Y of four vertices inducing a claw, then G[Y] has no perfect 
matching, contradicting G is (n - 4)-factor-critical. 

Conversely, let Y be any subgraph of G induced by exactly four vertices. Since 
G is claw-free and 8(G) 2:: n - 3, Y =I- K 1,3 and 8(Y) 2:: 1 which implies that Y has 
a perfect matching. II 

Let us remark that the condition for a graph G of order n to be claw-free and have 
minimum degree 8( G) ~ n - 3 is equivalent to the condition to have independence 
number a(G) ::; 2 and 8(G) ~ n - 3. 

Theorem 4.2 A graph G of order n ~ 6 is minimally (n - 4)-factor-critical if and 
only if it is claw-free and satisfies one of the following three conditions: 

(1) G is (n - 3)-regular. 
(2) G contains one vertex of degree n - 1 and n - 1 vertices of degree n - 3. 
(3) G contains n - 2 vertices of degree n - 3 and two vertices of degree n - 2, 

say u and v, which are such that N(u) \ {v} = N(v) \ {u}. 

Proof Let G be a minimally (n - 4)-factor-critical graph. By Theorem 4.1 and 
Corollary 3.4, G is claw-free and 8(G) = n - 3. 

If ~(G) = n - 3 then Gis (n - 3)-regular. 
If ~(G) = n - 1 then by Corollary 3.2, G contains one vertex of degree n - 1 and 

n - 1 vertices of degree k + 1 = n - 3. 
If ~(G) n - 2 then each vertex of G has degree n - 2 or n - 3. If n is odd, 

then n - 2 is also odd and G has an even number of vertices of degree n - 2. If n is 
even, then n - 3 is odd and G has an even number of vertices of degree n - 3 and 
thus also an even number of vertices of degree n 2. Therefore, G contains at least 
two vertices of degree n - 2. Suppose G has three vertices of degree n - 2, say u, v 
and w. 

Case 1 Two of them, say u and v are not adjacent. 
Then N(u) = N(v) = V - {u,v} and w E N(u). Let e = uw. Since G - e is 

not (n - 4)-factor-critical and 8(G - e) 2:: n - 3, G - e has an induced subgraph H 
isomorphic to K 1,3 by Theorem 4.1. Since G is claw-free, H must contain u and w 
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as two pendant vertices. There are only two vertices v and w which are not adjacent 
to u in G - e, so the only other possible pendant vertex is v. But H can not be K1,3 

since vw E E(G - e), a contradiction. 

Case 2 UV, uw and vw E E(G). Let e = uw. As in Case 1, G - e has an induced 
subgraph H isomorphic to K 1,3 and u and ware two pendant vertices of H. If x is 
the third pendant vertex of H, then x E V (G) - {u, v, w} and x tJ. N ( u) U N ( w ). 
Considering similarly the edge uv, there exists y E V(G) - {u, v, w} such that y tJ 
N(u) U N(v). Since d(u) = n - 2 and x,y tJ N(u) - {u}, we have x = y. Hence, 
N(x) ~ V \ {u, v, w} and thus d(x) :::; n - 4, a contradiction. 

Therefore, there are exactly two vertices, say u and v, of degree n - 2. If u and 
v are not adjacent then N(u) \ {v} = N(v) \ {u} = V \ {u, v}. If they are adjacent 
and if N(u) \ {v} =I- N(v) \ {u}, then N(u) = V\ {u/} and N(v) = V\ {v'} for some 
vertices u' =I- v'. By considering the edge uv', a similar argument as above yields a 
contradiction. 

Conversely, by the hypothesis· we have 8(G) = n - 3 and G is claw-free. By 
Theorem 4.1, G is (n - 4)-factor-critical. Moreover, for any e = uv E E(G), if 
d(u) = n-3 or d(v) = n-3, we have 8(G-e) < n-3 and G-e is not (n-4)-factor
critical. Otherwise, we are in the third case with uv E E (G), N (u) \ { v} = N (v) \ { u} 
and V \ (N ( u) UN ( v )) = {x} for some vertex x of G. If w is any vertex in N ( u) n N ( v ) 
and since d(x) = n-3, then {u, v, w, x} induced a subgraph of G -e which isomorphic 
to K 1,3. By Theorem 4.1, G - e is not (n - 4)-factor-critical. Therefore, G is a 
minimally (n 4)-factor-critical graph. III 

In [2] and [3], Anunchuen and Cacetta determined all the (~- 2)- and minimally 

(~-2)-extendable graphs of even order n ~ 6. Since for n even, every (n-4)-factor

critical graph is (~ - 2)-extendable, we expected to find in Theorem 4.1 a subclass 

of non-bipartite (~- 2)-extendable graphs (some p-extendable graphs are bipartite 

whereas k-factor-critical graphs are never bipartite). Surprisingly, for n ~ 10, we 
found all of them, that is 

Corollary 4.3 A non-bipartite graph of even order n :2: 10 is (~ - 2)-extendable 

if and only if it is (n - 4)-factor-critical. 

In consequence 

Corollary 4.4 A non-bipartite graph of even order n ~ 10 is minimally (~ -

2)-extendable if and only if it is minimally (n - 4)-factor-critical. 

This last corollary allows us to get from Theorem 4.2 all the non-bipartite min

imally (~ - 2) -extendable graphs of order n ~ 10 which were obtained in [2] af-

ter a long proof (the bipartite ones are easily obtained from the bipartite (~ -

2)-extendable graphs which are all the bipartite graphs of even order nand mini-
n 

mum degree ~ "2 - 1). 
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