

to a vertex of S. That is, S dominates if UsEsN[s] = V, and the domination number
of G is 1'(G) which equals the minimum cardinality of a dominating set.

The efficient domination number of a graph, for which it is required that each
vertex be dominated at most once and one seeks to dominate as many vertices as
possible, is discussed in [1, 2, 3, 8, 9]. Because each vertex can be dominated at most
once, the vertex set S ~ V we use to dominate as many vertices as possible must be
a packing. Define F(G) = max {I UsES N[s]1 : S is a packing}. Note that if S is
a packing then I USES N[s]1 = ESEs(1 + deg s) because the closed neighborhoods of
distinct vertices in S will be disjoint.

The fractional closed neighborhood order domination, Wf, can be derived as the
linear programming dual of fractional efficient domination, Ff as shown in Figure 2.
(In Figure 2, d denotes the column vector (1 + degvl' 1 + degv2, ... , 1 + degvn).)

The "multicoverage" application of the integer valued parameter W was presented
earlier.

Wf(G) = min Ef=l Xi

subject to: { N ': ~ ~
o

50 5
3" 3"

W(G) = 5
2 2
3" 3"

Efficient domination

Ff(G) = max Ef=l(1 + degvi)xi

subject to: { N ': ~ ~
o

101
3" 3"

F(G) = 4
1 1
3" 3"

Figure 2: Linear programming formulation for Wf and Ff .

In the following theorem the equality follow by duality; two of the inequalities
follow by definition; it is straightforward to see that 1'(G) ~ F(G) (if S be a maximal
packing of G with F(G) = EVESdegv + 1, then N[S] is a dominating set of G with
I'(G) ~ IN[S]I F(G); and to see that W(G) ~ n one simply considers the all ones
function on V).

Theorem 1 [10]. For any graph G of order n, we have I'(G) ~ F(G) ~ Ff(G) =
Wf(G) ~ W(G) ~ n.

Theorem 2 (Automorphism Class Theorem) [10]. Given a graph G = (V, E) and
9 : V -+ [0, (0), let g* : V -+ [0, (0) be defined by g*(v) = EWE[v] g(w)/l[v]1 where [v]
denotes the automorphism class of v. If 9 is a Ff , Wf or Prfunction, respectively,
then so too is g*.

In Section 2 it is shown that deciding if W(G) ~ k is an NP-complete problem
for bipartite graphs and chordal graphs. Section 3 presents a linear-time algorithm
for finding a minimum C LO D-function in an arbitrary tree. Section 4 presents some
theoretical and computational results and Section 5 some concluding remarks.

79

2 N P-completeness

The following dominating set problem is well known to be NP-complete (see Garey
and Johnson [7]), and remains NP-complete for the class of bipartite graphs, as
shown by Dewdney [6], or chordal graphs, as shown by Booth [4J and Booth and
Johnson [5)).
PROBLEM: Dominating set (DOM)

INSTANCE: A graph H = (V, E) and a positive integer k ::; IVI.
QUESTION: Is ')'(G) ::; k (that is, is there a vertex set S ~ V such that 8 is a

dominating set with 181 ::; k)?
We will demonstrate a polynomial time reduction of the problem DO M to show

that the following problem is also NP-complete.

PROBLEM: CLosed neighborhood Order Dominating (CLOD)
INSTANCE: A graph G = (V, E) and a positive integer f ::; IVI.
QUESTION: Is W(G) ::; f (that is, is there an integer valued function 9 : V -t

{O, 1,2,3, ... } such that g(N[v)) ~ IN[vJI for each v E V and w(g) ::; f)?

Theorem 3 Problem CLOD is NP-complete, even when restricted to bipartite or
chordal graphs.

Proof. Any candidate solution 9 can be tested in polynomial time to see if g(N[v)) 2:
IN[vJI = 1 +degv for each v E V. Hence CLOD E NP. To see that CLOD is NP
complete it is next shown that a polynomial time algorithm for C La D could be used
to solve DOMin polynomial time.

Starting with an instance H = (V, E) and k ::; IVI = n and lEI = m for problem
DaM, we can construct the graph G as follows. Starting with a copy of H where
V (H) = {VI, V2, ... , vn }, for each Vi we add deg Vi copies of the path P4' That is,
we create a path Pi,j = ai,j, bi,j' Ci,j, di,j for 1 ::; i ::; nand 1 ::; j ::; deg Vi. Then
we add all edges of the form Ci,jVi. Note that for each Vi E V(H) the corresponding
vertex in G has degree twice what it was in H. That is, dega Vi = 2degH Vi. (See
Figure 3 for an example.) The number of paths we add to H is 2:f=I deg Vi = 2m,
so in forming G from H we have added 8m new vertices and 8m new edges. That
is, IV(G)I = n + 8m and IE(G)I = 9m. Graph G can be constructed from H in time
polynomial in n. We note that if H is bipartite or chordal, then so too is G.

Let f = 8m + k. It suffices to show that r(H) ::; k if and only if W (G) ::; f.
First, assume r(H) ::; k, and let S ~ V(H) be a dominating set of H with lSI = k.
Define 9 : V(G) -t {O, 1, 2} by g(bi,j) = g(Ci,j) = 2 and g(ai,j) = g(di,j) = ° for
1 ::; i ::; nand 1 ::; j ::; degvi' and let g(Vi) = 1 if Vi E Sand g(Vi) = 0 if Vi f:- S.
Then g(N[bi,j)) = 4 > IN[bi,jJI; g(N[ai,j)) = g(N[di,j)) = 2 = IN[ai,jJI = IN[di,j]l;
g(N[Ci,j)) = 5 if Vi E S and is 4 if Vi f:- S, and IN[Ci,j] I = 4. Also, in G each Vi is
adjacent to degH Vi of the Ci,j'S, and Vi is adjacent to at least one vertex in S. Hence
we have g(NG[Vi]) ~ 2degHvi + 1 = degavi + 1 = ING[vdl. Thus W(G) ::; w(g) =
8m + I S I = 8m + k = e.

Second, assume W(G) ::; e. Let 9 : V(G) -t {O, 1, 2, ... } satisfy g(N[v)) 2: IN[v]1
for each v E V(G) (that is, 9 is a CLOD-function) and assume that w(g) = W(G).

80

H: G:

Figure 3: H is a (n, m) = (5,5) graph; G is a (n + 8m, 9m) = (45,45) graph.

If any g(ai,j) 2: lone could increase g(bi,j) by g(ai,j) and set g(ai,j) = 0, and the
resulting function would be a CLOD-function of the same weight. Hence we can
assume every g(ai,j) = O. Similarly, we can assume every g(di,j) = O. Note that each
g(bi,j) 2: 2 = IN[ai,j]l· If any g(bi,j) 2: 3 one can modify 9 by increasing g(Ci,j) by
g(bi,j) - 2 and decreasing g(bi,j) to 2. In fact, by "passing weights" from ai,j to bi,j,
from di,j to Ci,j, from bi,j to Ci,j, and from Ci,j to Vi as necessary we can assume that
g(ai,j) = g(di,j) = 0 and g(bi,j) = g(Ci,j) = 2 for 1 ::; i ::; nand 1 ::; j ::; degvi. Thus,
g(V(G) - V(H)) = 8m, and so g(V(H)) :::; £ - 8m = k. Furthermore, for every
vertex v of H, the modified CLOD-function 9 satisfies g(Ne[v] - NH[v]) = degev.
Since g(Ne[v]) 2: degev + 1, we know therefore that g(NH[v]) 2: 1 for every vertex v
of H. Hence every vertex of H has positive weight under 9 or is adjacent to at least
one vertex of H with positive weight under g. Thus, S = {v E V (H) I g(v) > O} is a
dominating set of H. Hence ,(H) :::; lSI::; g(V(H)) ::; k.

So ,(H) ::; k if and only if W(G) :::; £ = 8m + k, and the proof is complete. 0

3 A Linear Algorithm on Trees

Next we present a linear algorithm for finding a minimum closed neighborhood order
dominating function (CLOD-function) f in a nontrivial tree T. The algorithm roots
the tree T and associates various variables with the vertices of T as it proceeds. For
any vertex v different from the root, the variable Required(v) denotes the amount
of domination still required by v. For any vertex v, the variable MinValue(v)
denotes the miminum value that may be assigned to v so that its children are (closed
neighborhood order) dominated. The variable C hildSum(v) denotes the sum of the
values assigned by f to the children of v, while the variable Sum(v) denotes the sum
of the values assigned by f to v and the children of v.

81

Algorithm C LO D :

Input: A nontrivial, rooted tree T = (V, E) on n vertices with the vertices labeled
from 1 to n so label (w) > label (y) if the level of vertex w is less than the level of
vertex y . [Note: the root of T is labeled n.]

Output: A minimum CLOD-function f : V -t {O, 1, 2, ... }.

Begin
For i +- 1 to n do

1. If vertex i is a leaf and i < n

then

ChildSum(i) +- ° .and MinValue(i) +- °
else

ChildSum(i) +- (sum of the values assigned by f to the children of
vertex i)

MinValue(i) +- (maximum of the values Required(w) among all the
children w of vertex i).

2. If i < n then f(i) +- MinValue(i)

else f(i) +- max (MinValue(i), IN[i]1 - ChildSum(i)).

3. Sum(i) +- ChildSum(i) + f(i).

4. If i < n then Required(i) +- max (0, IN[iJI- Sum(i)).

End for
End CLOD

We now verify the validity of Algorithm CLOD.

Theorem 4 Algorithm CLOD produces a minimum CLOD-function in a nontrivial
tree.

Proof. Let T (V, E) be a nontrivial tree of order n, and let f be the function
produced by Algorithm CLOD. Then f : V -t {O, 1,2, ... }.

Claim 1 Whe11 Algorithm CLOD assigns a value f(r') to the root r' of a subtree
(or tree) T', the following two conditions will hold:

1. For any vertex vET' - {r'}, f(N[v]) 2: IN[vll.

2. The value f(r') assigned to r' is the minimum value it can receive given the
values of its descendants under f.

82

Proof. We proceed by induction on the order in which the vertices were labeled.
The first vertex assigned a value will be a leaf. Vacuously, the first condition holds.
In the case of a leaf i, ChildSum(i) = 0 and MinValue(i) = O. Thus the leaf i will
be assigned the value 0 in Step 2 of the algorithm and the second condition holds.

N ext we assume that Algorithm C LO D assigns values to the first k vertices so
that Conditions 1 and 2 hold. We show that these conditions hold after the (k + l)st
vertex is assigned a value.

We begin with Condition 1. Before the (k + l)st vertex is assigned a value, we can
assume by the inductive hypothesis that all its descendants, other than its children,
satisfy Condition 1. These descendants will continue to satisfy Condition 1 after the
(k + 1)st vertex is assigned a value. We show that any child w of vertex k + 1 will
also satisfy Condition 1. We note firstly that the value assigned to vertex k + 1 in
Step 2 is at least MinValue(k + 1), and in Step 1 of the algorithm MinValue(k + 1)
is at least the value Required(w) (~ 0), so f(k + 1) ~ Required(w) ~ O. If w has
Sum(w) ~ IN[w]1, then f(N[wD = f(k+1)+Sum(w) ~ Sum(w) ~ IN[wll. On the
other hand, if Sum(w) < IN[wll, then, in Step 4, Required(w) = IN[wll- Sum(w),
so f(N[w]) = f(k + 1) + Sum(w) ~ Required(w) + Sum(w) = IN[wll. Thus, all
descendants of the (k + 1)st vertex will satisfy Condition 1.

Now consider Condition 2. The value assigned to r' in Step 2 is MinValue(r') if
the vertex r' is not the root of T and is at least Min Value(r') if r' is the root of T.
We show that for f to be a CLOD-function of T, the value for f(r') must be at least
MinValue(r'). We may assume that MinValue(r') > 0 for otherwise the result is
immediate. Let w be a child of rl for which MinValue(r') = Required(w) in the
else statement in Step 1. Since MinValue(r') > 0, it follows that Required(w) =
IN[wll- Sum(w) in Step 4. If r' was assigned a value less than MinValue(r'), then
f(N[w]) = f(r')+Sum(w) < MinValue(r')+Sum(w) = Required(w)+Sum(w) =
IN[wll. It follows that for f to be a CLOD-function of T, the value for f(r') must
be at least MinValue(r'). Hence if r' is not the root of T, then the vertex r'
satisfies Condition 2. If r' is the root of T, then in Step 2 the value assigned to
r' is the larger of MinValue(r') and IN[r'JI - ChildSum(r'). If r' was assigned a
value less than IN[r'll - ChildSum(r'), then f(N[r'D = f(r') + ChildSum(r') <
(IN[r'll - ChildSum(r')) + ChildSum(r') = IN[r'll. It follows that for f to be a
CLOD-function of T, the value for f(r') must be at least IN[r'll - ChildSum(r').
Hence if r' is the root of T, then r' satisfies Condition 2. This completes the proof
of the claim. 0

Since f(N[n]) = f(n) + ChildSum(n) ~ IN[nll, an immediate consequence of
Claim 1 is that the function f produced by Algorithm CLOD is a CLOD-function
for T.

To show that the CLOD-function f obtained by Algorithm CLOD is minimum,
let 9 be any minimum CLOD-function for the rooted tree T. If f -I g, then we
will show that 9 can be transformed into a new minimum CLOD-function g' that
will differ from f in fewer values than 9 did. This process will continue until f = g.
Suppose, then, that f -I g. Let v be the lowest labeled vertex for which f(v) -I g(v).
Then all descendants of v are assigned the same value under 9 as under f. Hence it
follows from Condition 2 of Claim 1 that f(v) < g(v). Here the vertex v is not the

83

root of T, for otherwise f(V) < g(V) = W(T), which is impossible. Let w be the
parent of v. Since all vertices at a lower level than v are assigned the same value
under 9 as under f, Claim 1 implies that every vertex x at the same level as v has
f(x) :S g(x). Let g' be the function produced by the following algorithm:

Algorithm 1

Begin

1. Set g'(x) = g(x) for all x E V.

2. Perform the following changes:
while (g'(v) > f(v)) and (g'(w) < f(w)) do

INC(g'(w))

DEC(g'(v))

end do

3. Perform the following changes:
while (g'(v) > f(v)) and (g'(parent(w)) < f(parent(w))) do

I NC(g'(parent(w)))

DEC(g'(v))

end do

End

Claim 2 The function g' produced by Algorithm 1 is a minimum C LO D-function
of T that differs from f in fewer values than does g.

Proof. The only vertices that have their closed neighborhood sums decremented are
the children of v. However, these closed neighborhood sums under g' are at least as
large as under f. Thus, since 9 and f are CLOD-functions, so too is g'. Furthermore,
since 9 is minimum CLOD-function, so too is g'. It remains to show that g' differs
from f in fewer values than does g.

The only possible vertices whose values under 9 and g' differ are v, w, and
parent(w). By Algorithm 1, if g(w) = f(w), then g'(w) = f(w), and if g(parent(w))
= f(parent(w)), then g'(parent(w)) = f(parent(w)). We show that g'(v) = f(v).
If this is not the case, then g' (v) > f (v). It follows then from Algorithm 1 that
g' (w) 2 f (w) and g' (parent(w)) 2 f (parent(w)). By the ordering scheme, the value
assigned to each child of wunder g, and therefore under g', is greater than or equal
to its value under f. Thus, since g'(v) > f(v), the sum of the values assigned to the
children ofw under g' is greater than under f. Consequently, g'(N[w]) 2 f(N[w])+l.
So the vertex v and all its neighbors, including w, will have smaller neighborhood
sums under f than under g'. Hence, the function obtained from g' by reassign
ing to the vertex v the value g' (v) - 1, and leaving the values of all other vertices
unchanged, is a CLOD-function. This, however, contradicts the minimality of g'.
Hence g' (v) = f (v). This completes the proof of Claim 2 and of Theorem 4. 0

84

4 Examples and bounds

In Figure 1 we have two examples where W(G) < IV(G)I n. We first show that
W(G) and n can differ by an arbitrary amount. In fact, W(G)/n can be arbitrarily
small. Consider the tree Tj,k in Figure 4 created as follows. A vertex u is given
) neighbors, N(u) = {Vl' V2, ... ,Vj}. Each Vi is made adjacent to k end-vertices.
Thus IV(Tj,k) I =)k +) + 1. The function 9 : V(Tj,k) -+ {O, 2, k} with f(u) = k,
f(vi) = 2 for 1 :s; i :S;), and f(x) = ° for each end-vertex x is a CLOD-function with
w(g) = W(Tj,k) = 2) + k. (Note that F(Tj,k) = 2) + k also.) For a fixed k, letting)
get large makes W(Tj,k)/IV(Tj,k) I = (2) + k)/(jk +) + 1) approach 2/(k + 1). Thus
we have the next proposition.

Wj,l Wj,2 Wj,k

u

Figure 4: The tree Tj,k'

Proposition 1 The ratio W(G)/IV(G)I can be made arbitrarily small, even for
trees.

For the cycle Cn with n = 3k + rand ° :s; r :s; 2 we have F(Cn) = 3k, but by
letting g(v) = 1/3 for every V E V(Cn) we get Ff(Cn) = n, and so W(Cn) = n. More
generally, if G is regular of degree r define 9 : V(G) -+ [0,00) by g(v) = l/(r + 1)
for every v E V(G), and we see that Ff(G) = n. Thus we have the following result.

Proposition 2 For every r-regular graph of order n, n = Ff(G) = Wf(G) = W(G).

Let G be a graph of order n and size m with vertex set V(G) = {VI, V2, ... ,vn}'
Intuitively, when G is not regular it seems that it would be better to place higher
weights on the vertices of large degree in order to better reach the amount of dom
ination required. Specifically, each Vi must be dominated by a weight of 1 + deg Vi

in N[Vi], so the total amount of domination required is 2:i=1 (1 + deg Vi) = n + 2m.
However, for the graph G shown in Figure 5, W(G) = 29 and the unique CLOD
function 9 with w(g) = 29 is illustrated. We note that while g(v) = 5 we have
g(u) = g(w) = ° for the vertices u and W of maximum degree .6.(G) = 4. We do get
the following degree sequence bound for W (G) .

85

o o o o

2 2 2 2

2 2 o v o

o
2

o 5
2

o

2 2 2 2

o o o o

Figure 5: The graph G.

Theorem 5 Let G = (V, E) be a graph of order n and size m, the degrees di of
whose vertices Vi satisfy d1 ~ d2 ~ ••• ~ dn . If t is the largest integer for which

(d1 + 1)2 + (d2 + 1)2 + ... + (dt + 1)2 + k(dt+l + 1) ~ n + 2m,

for some k with 0 ~ k ~ dt +1' then W(G) ~ Wf(G) ~ d1 + d2 + ... dt + t + k.

Proof. Let 9 : V -+ [0,00) be a CLOD-function satisfying w(g) = W(G). We
consider the total amount of domination done by g, namely the sum N = L::: L::: 9 (u) ,
where the outer sum is over all v E V and the inner sum is over all U E N[v]. Since
L:::uEN[v] g(u) = g(N[v]) ~ deg v + 1 for each v E V,

N ~ L (deg v + 1) = n + 2m. (1)
vEV

The sum N counts the value g(u) exactly deg u + 1 times for each U E V, so

t n

N = L(degu+ l)g(u) = L(di + l)g(vi) + L (di + l)g(vi). (2)
uEV i=l i=t+l

Suppose g(Vi) ~ di + 1 for all i and assume that W(G) < d1 + d2 + ... dt + t + k.
Then

t t n

L(di + 1) + k > W(G) = w(g) = Lg(Vi) + L g(Vi)' (3)
i=l i=1 i=t+1

Since each g(Vi) ~ di + 1, and d1 ~ d2 ~ .• , ~ dn , the sum in (2) is a maximum
when g(Vi) = di + 1 for 1 ~ i ~ t, i.e., when 2::;=1 g(Vi) = 2::;=1(di + 1). This would
imply, by (3), that L.:?=t+l g(Vi) < k. Thus, by (2),

N < 2::~=1(di + 1)2 + (dt+1 + 1) L.:?=t+1 g(Vi)

< 2::!=1(di + 1)2 + (dt+l + l)k

~ n+2m, (by assumption)

86

which contradicts equation (1). Hence if each g(Vi) ::; di + 1 then the result follows.
Because w(g) = W(G), if g(v) > 0 and one decreases g(v) then we no longer have

a CLOD-function. That is, there must be a vertex U E N[v] such that g(N[u]) =
deg u + 1. Observe that if g(v) > degv + 1 then we must have degu > degv.

Assume that we have vertices Vi with g(Vi) > di + 1. For each such Vi select
one ui E N[Vi] such that g(N[UiD = deg Ui + 1. As noted, deg Ui > deg Vi, so Ui
corresponds to a Vj where j < i. Also, we might have some Ui = Uh with h =I- i. Let
g* : V -+ [0,00) be the function with w(g*) = w(g) obtained from 9 as follows. For
each Vi with g(Vi) > di + 1 let g*(Vi) = 0 and increase the function value at Ui by
g(Vi)' We have w(g) = w(g*) and each g*(Vi) ::; di + 1, and E?=l(di + l)g*(vi) >
E?=l(di + l)g(vi)' Finally, if w(g*) = w(g) = W(G) < d1 + d2 + ... dt + t + k, then
N = E?=l(di + l)g(vi) < E?=l(di + l)g*(vi) < n + 2m, a contradiction, completing
the proof. 0

To illustrate Theorem 5, consider the graph G1 of order n = 10 and size m = 11
shown in Figure 1. The graph G1 has degree sequence d1, d2 , • •• , d lO , where di =
3 for 1 ::; i ::; 6 and di = 1 for 7 ::; i ::; 10. The largest integer t for which
E~=l(di + 1)2 + k(dt+1 + 1) ::;-n + 2m = 32, where 0::; k ::; dHb is t = 2 with k = O.
Hence applying Theorem 5, we get W(G) :2: d1 + d2 + 2 + 0 = 8. As observed earlier,
W(Gd ::; 8, whence W(G1) = 8.

We conclude this section by considering the complete multipartite graph G ~
K n1 ,n2, ... ,nk with n = nl +n2+" ·+nk vertices, independent vertex sets Sl, S2,"" Sk
with ISil = ni, and all edges uv with U E Si, V E Sj and i =I- j.

Proposition 3 W,(Kn1 ,n2, ... ,nk) = W(Kn1 ,n2, ... ,nk) = n.

Proof. If any vertex V in a graph G has degv = n -1 then W,(G) 2:: IN[v]1 = n, so
we can assume ni 2:: 2 for 1 ::; i ::; k. Let 9 : V(Kn1 ,n2, ... ,nk) -+ [0,00) be a CLOD
function with w(g) = W,(Kn1 ,n2, ... ,nk)' By the Automorphism Class Theorem we can
assume that u, V E Si implies g(u) = g(v) = ai, say, for 1 ::; i ::; k.

If all ai = 1, then w(g) = n. Suppose some ai > 1, and let v E Si. We show
that w(g) :2: n. We have EXEN[v] g(x) 2:: IN[vll ~ n - ni + 1. Therefore g(V - Si) 2::
n - ni + 1 - ai, and g(V) = w(g) 2:: n - ni + 1 - ai + ni . ai. If w(g) < n, then
- ni + 1-ai + ni . ai < 0 implies ni (ai -1) < ai -1 and ni < 1, a contradiction. Finally,
suppose some ai < 1 and every aj ::; 1. Then for V E Si we have EXEN[v] g(x) ::;
ai + n - ni < n - ni + 1 = IN[v]l, a contradiction. 0

5 Open problems

In the course of this investigation we encountered a number of problems which we
have yet to settle. A partial listing of these problems follows.

l. A graph G = (V, E) is efficiently dominatable if there is a dominating set S ~ V
such that for each v E V we have IN[v] n SI = 1. Is it true that a tree T of
order n is efficiently dominatable if and only if W(T) = n?

87

2. More generally, is it true that F(T) = W(T) for all trees T?

3. Is it true that, given a graph G of order n, the problem of deciding whether
W(G) < n is NP-complete? (Note that in [2] it is shown that deciding if
F(G) = n is NP-complete.)

4. Given a positive integer n, determine the minimum of the ratios W~G) among
all graphs G of order n.

References
[1] D.W. Bange, A.E. Barkauskas, and P.J. Slater, Disjoint dominating sets in trees,

Sandia Laboratories Report, SAND78-1087J, 1978.

[2] D.W. Bange, A.E. Barkauskas, and P.J. Slater, Efficient dominating sets in
graphs, Applications of Discrete Math., SIAM, Philadelphia, 1988, 189-199.

[3] D.W. Bange, A.E. Barkauskas, L. Host, and P.J. Slater, Efficient near-domination
of grid graphs, Congressus Numerantium 58 (1987), 83-92.

[4] K.S. Booth, Dominating sets in chordal graphs, Research Report CS-80-34, Uni
versity of Waterloo, 1980.

[5] K.S. Booth and J.H. Johnson, Dominating sets in chordal graphs, SIAM J. Com
put. 11(1982), 191-199.

[6] A.K. Dewdney, Fast Turing reductions between problems in N P, Report 71,
University of Western Ontario, 1981.

[7] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness, W.H. Freeman and Company, New York (1979).

l8] D.L. Grinstead and P.J. Slater, Fractional domination and fractional packing in
graphs, Congress us Numerantium 71 (1990), 153-172.

[9] D.L. Grinstead and P.J. Slater, A recurrence template for several domination
related parameters in series-parallel graphs, Discrete Applied Math. 54 (1994),
151-168.

[10J P.J. Slater, Closed neighborhood order domination and packing, Congressus
Numerantium 97 (1993), 33-43.

[11] P.J. Slater, Packing into closed neighborhoods, Bull. Inst. Gombin. Applic. 13
(1995), 23-33.

(Received 30/10/96)

88

