Closed Neighborhood Order Dominating Functions

Michael A. Henning*
Department of Mathematics, University of Natal
Pietermaritzburg, 3209 South Africa

Peter J. Slater
Mathematical Sciences
The University of Alabama in Huntsville
Huntsville, Alabama 35899, U.S.A.

Abstract

The linear programmimg formulations of graph domination and graph packing are duals. Likewise, fractional efficient domination for a graph G has as its dual the parameter discussed in this paper, namely the minimum weight of a real-valued function $f: V(G) \rightarrow[0, \infty)$ such that the sum of the weights in each closed neighborhood is at least its cardinality. The fractional and integer "closed neighborhood order domination" parameters, W_{f} and W, are introduced. Deciding if $W(G) \leq k$ is an $N P$ complete problem even for just the class of bipartite graphs or chordal graphs. A linear time algorithm for computing $W(T)$ for an arbitrary tree T is presented. Other theoretical and computational results are presented.

1 Introduction

Assume that the vertex set for each of the graphs G_{1} and G_{2} in Figure 1 on $n=10$ and $n=14$ vertices, respectively, represents a collection of towns, each of which supports its own standard sized fire station. In the event of a major fire in one town, fire fighters from an adjacent town can be expected to respond promptly enough to help. Note that four fire stations can respond to each of the towns $u_{2}, u_{3}, u_{4}, u_{7}$, u_{8} and u_{9} of G_{1}, but only two can respond to u_{1}, u_{5}, u_{6} or u_{10}; and eight stations can respond to town v_{7} or v_{8} of G_{2}, but only two to each other v_{i}. Note that if we

[^0]reduce the number of fire stations in G_{1} from ten to eight and locate two of them at each of u_{2}, u_{4}, u_{7}, and u_{9}, then the same number of fire stations as before can still respond to each u_{i} for $1 \leq i \leq 10$. For G_{2} we can reduce the number of fire stations from 14 to eight, and locate four of them at each of v_{7} and v_{8}. We still have eight stations that can respond to each of v_{7} and v_{8}. Further, the situation improves for each other v_{i} because now four stations can respond instead of only two.

Figure 1: The graphs G_{1} and G_{2}.

This motivates the following definition. Let G be a graph with vertex set V and edge set E. For a function $g: V \rightarrow[0, \infty)$ the weight of g is $w(g)=\sum_{v \in V} g(v)$, and for $S \subseteq V$ we define $g(S)=\sum_{v \in S} g(v)$ so $w(g)=g(V)$. We say a function $g: V \rightarrow\{0,1,2,3, \ldots\}$ is a closed neighborhood order dominating function, or $C L O D$ function, if for each $v \in V$ we have $g(N[v]) \geq \mid N[v| |$, where $N[v]$ denotes the closed neighborhood of $v, N[v]=\{v\} \cup\{u \in V \mid u v \in E\}$. The closed neighborhood order domination number W is defined by $W(G)=\min \{w(g) \mid g$ is a CLOD-function of $G\}$. The fractional version of this parameter is $W_{f}(G)=\min \{w(g) \mid g: V \rightarrow[0, \infty)$ and $g(N[v]) \geq|N[v]|$ for each $v \in V\}$. That is, W and W_{f} are the minimum weights of nonnegative integer and real valued functions, respectively, which dominate in each closed neighborhood at least as well as the all ones assignment g_{1} with $g_{1}(v)=1$ for every $v \in V$. One can easily see that $W\left(G_{1}\right)=W\left(G_{2}\right)=8$.

The parameters W and W_{f} along with closed neighborhood order packing parameters P and P_{f} were introduced in [10] where an Automorphism Class Theorem (ACT) for W_{f} and P_{f} is proven. (See Theorem 2 in this paper.) Packing parameters P and P_{f} are studied in [11].

We shall use standard graph theoretic terminology and notation. For example, for a graph $G=(V, E)$ with vertex set V and edge set E, the open neighborhood of $v \in V$ is $N(v)=\{u \in V \mid u v \in E\}$ and the closed neighborhood of v is $N[v]=\{v\} \cup N(v)$. Here, for $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ we let the closed neighborhood matrix be $N=\left[n_{i, j}\right]$ where $1 \leq i, j \leq n$, and $n_{i, j}=1$ if $i=j$ or if $v_{i} v_{j} \in E$ and $n_{i, j}=0$ otherwise.

Let $G=(V, E)$ be a graph. A packing in G is a set of vertices that are pairwise at distance at least 3 apart in G. That is, if S is a packing in G, then u and v in S implies $d(u, v) \geq 3$ where $d(u, v)$ denotes the distance between u and v. A dominating set $S \subseteq V$ for G is a vertex set with each $v \in V$ either in S or adjacent
to a vertex of S. That is, S dominates if $\cup_{s \in S} N[s]=V$, and the domination number of G is $\gamma(G)$ which equals the minimum cardinality of a dominating set.

The efficient domination number of a graph, for which it is required that each vertex be dominated at most once and one seeks to dominate as many vertices as possible, is discussed in $[1,2,3,8,9]$. Because each vertex can be dominated at most once, the vertex set $S \subseteq V$ we use to dominate as many vertices as possible must be a packing. Define $F(G)=\max \left\{\left|\cup_{s \in S} N[s]\right|: S\right.$ is a packing $\}$. Note that if S is a packing then $\left|\cup_{s \in S} N[s]\right|=\sum_{s \in S}(1+\operatorname{deg} s)$ because the closed neighborhoods of distinct vertices in S will be disjoint.

The fractional closed neighborhood order domination, W_{f}, can be derived as the linear programming dual of fractional efficient domination, F_{f} as shown in Figure 2. (In Figure 2, \mathbf{d} denotes the column vector $\left(1+\operatorname{deg} v_{1}, 1+\operatorname{deg} v_{2}, \ldots, 1+\operatorname{deg} v_{n}\right)$.) The "multicoverage" application of the integer valued parameter W was presented earlier.

CLOD

$W_{f}(G)=\min \sum_{i=1}^{n} x_{i}$
subject to: $\left\{\begin{aligned} N \cdot \mathbf{x} & \geq \mathrm{d} \\ x_{i} & \geq 0\end{aligned}\right.$

Efficient domination

$F_{f}(G)=\max \sum_{i=1}^{n}\left(1+\operatorname{deg} v_{i}\right) x_{i}$
subject to: $\left\{\begin{aligned} N \cdot \mathbf{x} & \leq \mathbf{1} \\ x_{i} & \geq 0\end{aligned}\right.$

Figure 2: Linear programming formulation for W_{f} and F_{f}.

In the following theorem the equality follow by duality; two of the inequalities follow by definition; it is straightforward to see that $\gamma(G) \leq F(G)$ (if S be a maximal packing of G with $F(G)=\sum_{v \in S} \operatorname{deg} v+1$, then $N[S]$ is a dominating set of G with $\gamma(G) \leq|N[S]|=F(G)$; and to see that $W(G) \leq n$ one simply considers the all ones function on V).
Theorem 1 [10]. For any graph G of order n, we have $\gamma(G) \leq F(G) \leq F_{f}(G)=$ $W_{f}(G) \leq W(G) \leq n$.
Theorem 2 (Automorphism Class Theorem) [10]. Given a graph $G=(V, E)$ and $g: V \rightarrow[0, \infty)$, let $g^{*}: V \rightarrow[0, \infty)$ be defined by $g^{*}(v)=\sum_{w \in[v]} g(w) /|[v]|$ where $[v]$ denotes the automorphism class of v. If g is a F_{f}, W_{f} or P_{f}-function, respectively, then so too is g^{*}.

In Section 2 it is shown that deciding if $W(G) \leq k$ is an $N P$-complete problem for bipartite graphs and chordal graphs. Section 3 presents a linear-time algorithm for finding a minimum $C L O D$-function in an arbitrary tree. Section 4 presents some theoretical and computational results and Section 5 some concluding remarks.

2 NP-completeness

The following dominating set problem is well known to be $N P$-complete (see Garey and Johnson [7]), and remains $N P$-complete for the class of bipartite graphs, as shown by Dewdney [6], or chordal graphs, as shown by Booth [4] and Booth and Johnson [5]).

PROBLEM: Dominating set (DOM)

INSTANCE: A graph $H=(V, E)$ and a positive integer $k \leq|V|$.
QUESTION: Is $\gamma(G) \leq k$ (that is, is there a vertex set $S \subseteq V$ such that S is a dominating set with $|S| \leq k)$?
We will demonstrate a polynomial time reduction of the problem $D O M$ to show that the following problem is also NP-complete.
PROBLEM: CLosed neighborhood Order Dominating (CLOD)
INSTANCE: A graph $G=(V, E)$ and a positive integer $\ell \leq|V|$.
QUESTION: Is $W(G) \leq \ell$ (that is, is there an integer valued function $g: V \rightarrow$ $\{0,1,2,3, \ldots\}$ such that $g(N[v]) \geq|N[v]|$ for each $v \in V$ and $w(g) \leq \ell)$?

Theorem 3 Problem CLOD is NP-complete, even when restricted to bipartite or chordal graphs.

Proof. Any candidate solution g can be tested in polynomial time to see if $g(N[v]) \geq$ $|N[v]|=1+\operatorname{deg} v$ for each $v \in V$. Hence $C L O D \in N P$. To see that $C L O D$ is $N P-$ complete it is next shown that a polynomial time algorithm for $C L O D$ could be used to solve $D O M$ in polynomial time.

Starting with an instance $H=(V, E)$ and $k \leq|V|=n$ and $|E|=m$ for problem $D O M$, we can construct the graph G as follows. Starting with a copy of H where $V(H)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$, for each v_{i} we add $\operatorname{deg} v_{i}$ copies of the path P_{4}. That is, we create a path $P_{i, j}=a_{i, j}, b_{i, j}, c_{i, j}, d_{i, j}$ for $1 \leq i \leq n$ and $1 \leq j \leq \operatorname{deg} v_{i}$. Then we add all edges of the form $c_{i, j} v_{i}$. Note that for each $v_{i} \in V(H)$ the corresponding vertex in G has degree twice what it was in H. That is, $d e g_{G} v_{i}=2 d e g_{H} v_{i}$. (See Figure 3 for an example.) The number of paths we add to H is $\sum_{i=1}^{n} \operatorname{deg} v_{i}=2 m$, so in forming G from H we have added $8 m$ new vertices and $8 m$ new edges. That is, $|V(G)|=n+8 m$ and $|E(G)|=9 m$. Graph G can be constructed from H in time polynomial in n. We note that if H is bipartite or chordal, then so too is G.

Let $\ell=8 m+k$. It suffices to show that $\gamma(H) \leq k$ if and only if $W(G) \leq \ell$. First, assume $\gamma(H) \leq k$, and let $S \subseteq V(H)$ be a dominating set of H with $|S|=k$. Define $g: V(G) \rightarrow\{0,1,2\}$ by $g\left(b_{i, j}\right)=g\left(c_{i, j}\right)=2$ and $g\left(a_{i, j}\right)=g\left(d_{i, j}\right)=0$ for $1 \leq i \leq n$ and $1 \leq j \leq \operatorname{deg} v_{i}$, and let $g\left(v_{i}\right)=1$ if $v_{i} \in S$ and $g\left(v_{i}\right)=0$ if $v_{i} \notin S$. Then $g\left(N\left[b_{i, j}\right]\right)=4>\left|N\left[b_{i, j}\right]\right| ; g\left(N\left[a_{i, j}\right]\right)=g\left(N\left[d_{i, j}\right]\right)=2=\left|N\left[a_{i, j}\right]\right|=\left|N\left[d_{i, j}\right]\right|$; $g\left(N\left[c_{i, j}\right]\right)=5$ if $v_{i} \in S$ and is 4 if $v_{i} \notin S$, and $\left|N\left[c_{i, j}\right]\right|=4$. Also, in G each v_{i} is adjacent to $\operatorname{deg}_{H} v_{i}$ of the $c_{i, j}$'s, and v_{i} is adjacent to at least one vertex in S. Hence we have $g\left(N_{G}\left[v_{i}\right]\right) \geq 2 \operatorname{deg}_{H} v_{i}+1=\operatorname{deg}_{G} v_{i}+1=\left|N_{G}\left[v_{i}\right]\right|$. Thus $W(G) \leq w(g)=$ $8 m+|S|=8 m+k=\ell$.

Second, assume $W(G) \leq \ell$. Let $g: V(G) \rightarrow\{0,1,2, \ldots\}$ satisfy $g(N[v]) \geq|N[v]|$ for each $v \in V(G)$ (that is, g is a $C L O D$-function) and assume that $w(g)=W(G)$.

G :

Figure 3: H is a $(n, m)=(5,5)$ graph; G is a $(n+8 m, 9 m)=(45,45)$ graph.

If any $g\left(a_{i, j}\right) \geq 1$ one could increase $g\left(b_{i, j}\right)$ by $g\left(a_{i, j}\right)$ and set $g\left(a_{i, j}\right)=0$, and the resulting function would be a $C L O D$-function of the same weight. Hence we can assume every $g\left(a_{i, j}\right)=0$. Similarly, we can assume every $g\left(d_{i, j}\right)=0$. Note that each $g\left(b_{i, j}\right) \geq 2=\left|N\left[a_{i, j}\right]\right|$. If any $g\left(b_{i, j}\right) \geq 3$ one can modify g by increasing $g\left(c_{i, j}\right)$ by $g\left(b_{i, j}\right)-2$ and decreasing $g\left(b_{i, j}\right)$ to 2 . In fact, by "passing weights" from $a_{i, j}$ to $b_{i, j}$, from $d_{i, j}$ to $c_{i, j}$, from $b_{i, j}$ to $c_{i, j}$, and from $c_{i, j}$ to v_{i} as necessary we can assume that $g\left(a_{i, j}\right)=g\left(d_{i, j}\right)=0$ and $g\left(b_{i, j}\right)=g\left(c_{i, j}\right)=2$ for $1 \leq i \leq n$ and $1 \leq j \leq \operatorname{deg} v_{i}$. Thus, $g(V(G)-V(H))=8 m$, and so $g(V(H)) \leq \ell-8 m=k$. Furthermore, for every vertex v of H, the modified CLOD-function g satisfies $g\left(N_{G}[v]-N_{H}[v]\right)=d e g_{G} v$. Since $g\left(N_{G}[v]\right) \geq \operatorname{deg}_{G} v+1$, we know therefore that $g\left(N_{H}[v]\right) \geq 1$ for every vertex v of H. Hence every vertex of H has positive weight under g or is adjacent to at least one vertex of H with positive weight under g. Thus, $S=\{v \in V(H) \mid g(v)>0\}$ is a dominating set of H. Hence $\gamma(H) \leq|S| \leq g(V(H)) \leq k$.

So $\gamma(H) \leq k$ if and only if $W(G) \leq \ell=8 m+k$, and the proof is complete.

3 A Linear Algorithm on Trees

Next we present a linear algorithm for finding a minimum closed neighborhood order dominating function (CLOD-function) f in a nontrivial tree T. The algorithm roots the tree T and associates various variables with the vertices of T as it proceeds. For any vertex v different from the root, the variable Required(v) denotes the amount of domination still required by v. For any vertex v, the variable $\operatorname{MinValue}(v)$ denotes the miminum value that may be assigned to v so that its children are (closed neighborhood order) dominated. The variable ChildSum (v) denotes the sum of the values assigned by f to the children of v, while the variable $\operatorname{Sum}(v)$ denotes the sum of the values assigned by f to v and the children of v.

Algorithm $C L O D$:
Input: A nontrivial, rooted tree $T=(V, E)$ on n vertices with the vertices labeled from 1 to n so $\operatorname{label}(w)>\operatorname{label}(y)$ if the level of vertex w is less than the level of vertex y. [Note: the root of T is labeled n.]

Output: A minimum CLOD-function $f: V \rightarrow\{0,1,2, \ldots\}$.

Begin

For $i \leftarrow 1$ to n do

1. If vertex i is a leaf and $i<n$
then

$$
\text { ChildSum }(i) \leftarrow 0 \text { and MinValue }(i) \leftarrow 0
$$

else

$$
\begin{aligned}
\text { ChildSum }(i) \leftarrow & (\text { sum of the values assigned by } f \text { to the children of } \\
& \text { vertex } i) \\
\text { MinValue }(i) \leftarrow & (\text { maximum of the values Required }(w) \text { among all the } \\
& \text { children } w \text { of vertex } i) .
\end{aligned}
$$

2. If $i<n$ then $f(i) \leftarrow \operatorname{MinValue}(i)$
else $f(i) \leftarrow \max (\operatorname{MinValue}(i),|N[i]|-$ ChildSum $(i))$.
3. $\operatorname{Sum}(i) \leftarrow \operatorname{ChildSum}(i)+f(i)$.
4. If $i<n$ then Required $(i) \leftarrow \max (0,|N[i]|-\operatorname{Sum}(i))$.

End for

End $C L O D$
We now verify the validity of Algorithm $C L O D$.
Theorem 4 Algorithm CLOD produces a minimum CLOD-function in a nontrivial tree.

Proof. Let $T=(V, E)$ be a nontrivial tree of order n, and let f be the function produced by Algorithm $C L O D$. Then $f: V \rightarrow\{0,1,2, \ldots\}$.

Claim 1 When Algorithm CLOD assigns a value $f\left(r^{\prime}\right)$ to the root r^{\prime} of a subtree (or tree) T^{\prime}, the following two conditions will hold:

1. For any vertex $v \in T^{\prime}-\left\{r^{\prime}\right\}, f(N[v]) \geq|N[v]|$.
2. The value $f\left(r^{\prime}\right)$ assigned to r^{\prime} is the minimum value it can receive given the values of its descendants under f.

Proof. We proceed by induction on the order in which the vertices were labeled. The first vertex assigned a value will be a leaf. Vacuously, the first condition holds. In the case of a leaf $i, \operatorname{ChildSum}(i)=0$ and $\operatorname{MinValue}(i)=0$. Thus the leaf i will be assigned the value 0 in Step 2 of the algorithm and the second condition holds.

Next we assume that Algorithm CLOD assigns values to the first k vertices so that Conditions 1 and 2 hold. We show that these conditions hold after the $(k+1)$ st vertex is assigned a value.

We begin with Condition 1. Before the $(k+1)$ st vertex is assigned a value, we can assume by the inductive hypothesis that all its descendants, other than its children, satisfy Condition 1 . These descendants will continue to satisfy Condition 1 after the $(k+1)$ st vertex is assigned a value. We show that any child w of vertex $k+1$ will also satisfy Condition 1 . We note firstly that the value assigned to vertex $k+1$ in Step 2 is at least MinValue $(k+1)$, and in Step 1 of the algorithm MinValue $(k+1)$ is at least the value Required $(w)(\geq 0)$, so $f(k+1) \geq \operatorname{Required}(w) \geq 0$. If w has $\operatorname{Sum}(w) \geq|N[w]|$, then $f(N[w])=f(k+1)+\operatorname{Sum}(w) \geq \operatorname{Sum}(w) \geq|N[w]|$. On the other hand, if $\operatorname{Sum}(w)<|N[w]|$, then, in Step 4, Required $(w)=|N[w]|-\operatorname{Sum}(w)$, so $f(N[w])=f(k+1)+\operatorname{Sum}(w) \geq \operatorname{Required}(w)+\operatorname{Sum}(w)=|N[w]|$. Thus, all descendants of the $(k+1)$ st vertex will satisfy Condition 1 .

Now consider Condition 2. The value assigned to r^{\prime} in Step 2 is MinValue(r^{\prime}) if the vertex r^{\prime} is not the root of T and is at least $\operatorname{MinValue}\left(r^{\prime}\right)$ if r^{\prime} is the root of T. We show that for f to be a $C L O D$-function of T, the value for $f\left(r^{\prime}\right)$ must be at least $\operatorname{MinValue}\left(r^{\prime}\right)$. We may assume that $\operatorname{MinValue}\left(r^{\prime}\right)>0$ for otherwise the result is immediate. Let w be a child of r^{\prime} for which $\operatorname{MinValue}\left(r^{\prime}\right)=\operatorname{Required}(w)$ in the else statement in Step 1. Since $\operatorname{MinValue}\left(r^{\prime}\right)>0$, it follows that $\operatorname{Required}(w)=$ $|N[w]|-\operatorname{Sum}(w)$ in Step 4. If r^{\prime} was assigned a value less than MinValue $\left(r^{\prime}\right)$, then $f(N[w])=f\left(r^{\prime}\right)+\operatorname{Sum}(w)<\operatorname{MinValue}\left(r^{\prime}\right)+\operatorname{Sum}(w)=\operatorname{Required}(w)+\operatorname{Sum}(w)=$ $|N[w]|$. It follows that for f to be a $C L O D$-function of T, the value for $f\left(r^{\prime}\right)$ must be at least MinValue $\left(r^{\prime}\right)$. Hence if r^{\prime} is not the root of T, then the vertex r^{\prime} satisfies Condition 2. If r^{\prime} is the root of T, then in Step 2 the value assigned to r^{\prime} is the larger of MinValue $\left(r^{\prime}\right)$ and $\left|N\left[r^{\prime}\right]\right|-\operatorname{ChildSum}\left(r^{\prime}\right)$. If r^{\prime} was assigned a value less than $\left|N\left[r^{\prime}\right]\right|-\operatorname{ChildSum}\left(r^{\prime}\right)$, then $f\left(N\left[r^{\prime}\right]\right)=f\left(r^{\prime}\right)+\operatorname{ChildSum}\left(r^{\prime}\right)<$ $\left(\left|N\left[r^{\prime}\right]\right|-\operatorname{ChildSum}\left(r^{\prime}\right)\right)+\operatorname{ChildSum}\left(r^{\prime}\right)=\left|\dot{N}\left[r^{\prime}\right]\right|$. It follows that for f to be a $C L O D$-function of T, the value for $f\left(r^{\prime}\right)$ must be at least $\left|N\left[r^{\prime}\right]\right|-\operatorname{ChildSum}\left(r^{\prime}\right)$. Hence if r^{\prime} is the root of T, then r^{\prime} satisfies Condition 2. This completes the proof of the claim.

Since $f(N[n])=f(n)+\operatorname{ChildSum}(n) \geq|N[n]|$, an immediate consequence of Claim 1 is that the function f produced by Algorithm $C L O D$ is a $C L O D$-function for T.

To show that the $C L O D$-function f obtained by Algorithm $C L O D$ is minimum, let g be any minimum $C L O D$-function for the rooted tree T. If $f \neq g$, then we will show that g can be transformed into a new minimum $C L O D$-function g^{\prime} that will differ from f in fewer values than g did. This process will continue until $f=g$. Suppose, then, that $f \neq g$. Let v be the lowest labeled vertex for which $f(v) \neq g(v)$. Then all descendants of v are assigned the same value under g as under f. Hence it follows from Condition 2 of Claim 1 that $f(v)<g(v)$. Here the vertex v is not the
root of T, for otherwise $f(V)<g(V)=W(T)$, which is impossible. Let w be the parent of v. Since all vertices at a lower level than v are assigned the same value under g as under f, Claim 1 implies that every vertex x at the same level as v has $f(x) \leq g(x)$. Let g^{\prime} be the function produced by the following algorithm:

Algorithm 1 :

Begin

1. Set $g^{\prime}(x)=g(x)$ for all $x \in V$.
2. Perform the following changes:
while $\left(g^{\prime}(v)>f(v)\right)$ and $\left(g^{\prime}(w)<f(w)\right)$ do
$\operatorname{INC}\left(g^{\prime}(w)\right)$
$\operatorname{DEC}\left(g^{\prime}(v)\right)$
end do
3. Perform the following changes:
while $\left(g^{\prime}(v)>f(v)\right)$ and $\left(g^{\prime}(\operatorname{parent}(w))<f(\operatorname{parent}(w))\right)$ do
$\operatorname{INC}\left(g^{\prime}(\operatorname{parent}(w))\right)$
$D E C\left(g^{\prime}(v)\right)$
end do

End

Claim 2 The function g^{\prime} produced by Algorithm 1 is a minimum CLOD-function of T that differs from f in fewer values than does g.
Proof. The only vertices that have their closed neighborhood sums decremented are the children of v. However, these closed neighborhood sums under g^{\prime} are at least as large as under f. Thus, since g and f are $C L O D$-functions, so too is g^{\prime}. Furthermore, since g is minimum $C L O D$-function, so too is g^{\prime}. It remains to show that g^{\prime} differs from f in fewer values than does g.

The only possible vertices whose values under g and g^{\prime} differ are v, w, and parent (w). By Algorithm 1, if $g(w)=f(w)$, then $g^{\prime}(w)=f(w)$, and if $g($ parent $(w))$ $=f($ parent $(w))$, then $g^{\prime}($ parent $(w))=f(\operatorname{parent}(w))$. We show that $g^{\prime}(v)=f(v)$. If this is not the case, then $g^{\prime}(v)>f(v)$. It follows then from Algorithm 1 that $g^{\prime}(w) \geq f(w)$ and $g^{\prime}(\operatorname{parent}(w)) \geq f(\operatorname{parent}(w))$. By the ordering scheme, the value assigned to each child of w under g, and therefore under g^{\prime}, is greater than or equal to its value under f. Thus, since $g^{\prime}(v)>f(v)$, the sum of the values assigned to the children of w under g^{\prime} is greater than under f. Consequently, $g^{\prime}(N[w]) \geq f(N[w])+1$. So the vertex v and all its neighbors, including w, will have smaller neighborhood sums under f than under g^{\prime}. Hence, the function obtained from g^{\prime} by reassigning to the vertex v the value $g^{\prime}(v)-1$, and leaving the values of all other vertices unchanged, is a $C L O D$-function. This, however, contradicts the minimality of g^{\prime}. Hence $g^{\prime}(v)=f(v)$. This completes the proof of Claim 2 and of Theorem 4.

4 Examples and bounds

In Figure 1 we have two examples where $W(G)<|V(G)|=n$. We first show that $W(G)$ and n can differ by an arbitrary amount. In fact, $W(G) / n$ can be arbitrarily small. Consider the tree $T_{j, k}$ in Figure 4 created as follows. A vertex u is given j neighbors, $N(u)=\left\{v_{1}, v_{2}, \ldots, v_{j}\right\}$. Each v_{i} is made adjacent to k end-vertices. Thus $\left|V\left(T_{j, k}\right)\right|=j k+j+1$. The function $g: V\left(T_{j, k}\right) \rightarrow\{0,2, k\}$ with $f(u)=k$, $f\left(v_{i}\right)=2$ for $1 \leq i \leq j$, and $f(x)=0$ for each end-vertex x is a $C L O D$-function with $w(g)=W\left(T_{j, k}\right)=2 j+k$. (Note that $F\left(T_{j, k}\right)=2 j+k$ also.) For a fixed k, letting j get large makes $W\left(T_{j, k}\right) /\left|V\left(T_{j, k}\right)\right|=(2 j+k) /(j k+j+1)$ approach $2 /(k+1)$. Thus we have the next proposition.

Figure 4: The tree $T_{j, k}$.

Proposition 1 The ratio $W(G) /|V(G)|$ can be made arbitrarily small, even for trees.

For the cycle C_{n} with $n=3 k+r$ and $0 \leq r \leq 2$ we have $F\left(C_{n}\right)=3 k$, but by letting $g(v)=1 / 3$ for every $v \in V\left(C_{n}\right)$ we get $F_{f}\left(C_{n}\right)=n$, and so $W\left(C_{n}\right)=n$. More generally, if G is regular of degree r define $g: V(G) \rightarrow[0, \infty)$ by $g(v)=1 /(r+1)$ for every $v \in V(G)$, and we see that $F_{f}(G)=n$. Thus we have the following result.

Proposition 2 For every r-regular graph of order $n, n=F_{f}(G)=W_{f}(G)=W(G)$.
Let G be a graph of order n and size m with vertex set $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Intuitively, when G is not regular it seems that it would be better to place higher weights on the vertices of large degree in order to better reach the amount of domination required. Specifically, each v_{i} must be dominated by a weight of $1+\operatorname{deg} v_{i}$ in $N\left[v_{i}\right]$, so the total amount of domination required is $\sum_{i=1}^{n}\left(1+\operatorname{deg} v_{i}\right)=n+2 m$. However, for the graph G shown in Figure 5, $W(G)=29$ and the unique $C L O D$ function g with $w(g)=29$ is illustrated. We note that while $g(v)=5$ we have $g(u)=g(w)=0$ for the vertices u and w of maximum degree $\Delta(G)=4$. We do get the following degree sequence bound for $W(G)$.

Figure 5: The graph G.

Theorem 5 Let $G=(V, E)$ be a graph of order n and size m, the degrees d_{i} of whose vertices v_{i} satisfy $d_{1} \geq d_{2} \geq \cdots \geq d_{n}$. If t is the largest integer for which

$$
\left(d_{1}+1\right)^{2}+\left(d_{2}+1\right)^{2}+\cdots+\left(d_{t}+1\right)^{2}+k\left(d_{t+1}+1\right) \leq n+2 m,
$$

for some k with $0 \leq k \leq d_{t+1}$, then $W(G) \geq W_{f}(G) \geq d_{1}+d_{2}+\ldots d_{t}+t+k$.
Proof. Let $g: V \rightarrow[0, \infty)$ be a CLOD-function satisfying $w(g)=W(G)$. We consider the total amount of domination done by g, namely the sum $N=\sum \sum g(u)$, where the outer sum is over all $v \in V$ and the inner sum is over all $u \in N[v]$. Since $\sum_{u \in N[v]} g(u)=g(N[v]) \geq \operatorname{deg} v+1$ for each $v \in V$,

$$
\begin{equation*}
N \geq \sum_{v \in V}(\operatorname{deg} v+1)=n+2 m . \tag{1}
\end{equation*}
$$

The sum N counts the value $g(u)$ exactly $\operatorname{deg} u+1$ times for each $u \in V$, so

$$
\begin{equation*}
N=\sum_{u \in V}(\operatorname{deg} u+1) g(u)=\sum_{i=1}^{t}\left(d_{i}+1\right) g\left(v_{i}\right)+\sum_{i=t+1}^{n}\left(d_{i}+1\right) g\left(v_{i}\right) . \tag{2}
\end{equation*}
$$

Suppose $g\left(v_{i}\right) \leq d_{i}+1$ for all i and assume that $W(G)<d_{1}+d_{2}+\ldots d_{t}+t+k$. Then

$$
\begin{equation*}
\sum_{i=1}^{t}\left(d_{i}+1\right)+k>W(G)=w(g)=\sum_{i=1}^{t} g\left(v_{i}\right)+\sum_{i=t+1}^{n} g\left(v_{i}\right) . \tag{3}
\end{equation*}
$$

Since each $g\left(v_{i}\right) \leq d_{i}+1$, and $d_{1} \geq d_{2} \geq \cdots \geq d_{n}$, the sum in (2) is a maximum when $g\left(v_{i}\right)=d_{i}+1$ for $1 \leq i \leq t$, i.e., when $\sum_{i=1}^{t} g\left(v_{i}\right)=\sum_{i=1}^{t}\left(d_{i}+1\right)$. This would imply, by (3), that $\sum_{i=t+1}^{n} g\left(v_{i}\right)<k$. Thus, by (2),

$$
\begin{aligned}
N & \leq \sum_{i=1}^{t}\left(d_{i}+1\right)^{2}+\left(d_{t+1}+1\right) \sum_{i=t+1}^{n} g\left(v_{i}\right) \\
& <\sum_{i=1}^{t}\left(d_{i}+1\right)^{2}+\left(d_{t+1}+1\right) k \\
& \leq n+2 m, \quad \text { (by assumption) }
\end{aligned}
$$

which contradicts equation (1). Hence if each $g\left(v_{i}\right) \leq d_{i}+1$ then the result follows.
Because $w(g)=W(G)$, if $g(v)>0$ and one decreases $g(v)$ then we no longer have a CLOD-function. That is, there must be a vertex $u \in N[v]$ such that $g(N[u])=$ $\operatorname{deg} u+1$. Observe that if $g(v)>\operatorname{deg} v+1$ then we must have $\operatorname{deg} u>\operatorname{deg} v$.

Assume that we have vertices v_{i} with $g\left(v_{i}\right)>d_{i}+1$. For each such v_{i} select one $u_{i} \in N\left[v_{i}\right]$ such that $g\left(N\left[u_{i}\right]\right)=\operatorname{deg} u_{i}+1$. As noted, $\operatorname{deg} u_{i}>\operatorname{deg} v_{i}$, so u_{i} corresponds to a v_{j} where $j<i$. Also, we might have some $u_{i}=u_{h}$ with $h \neq i$. Let $g^{*}: V \rightarrow[0, \infty)$ be the function with $w\left(g^{*}\right)=w(g)$ obtained from g as follows. For each v_{i} with $g\left(v_{i}\right)>d_{i}+1$ let $g^{*}\left(v_{i}\right)=0$ and increase the function value at u_{i} by $g\left(v_{i}\right)$. We have $w(g)=w\left(g^{*}\right)$ and each $g^{*}\left(v_{i}\right) \leq d_{i}+1$, and $\sum_{i=1}^{n}\left(d_{i}+1\right) g^{*}\left(v_{i}\right)>$ $\sum_{i=1}^{n}\left(d_{i}+1\right) g\left(v_{i}\right)$. Finally, if $w\left(g^{*}\right)=w(g)=W(G)<d_{1}+d_{2}+\ldots d_{t}+t+k$, then $N=\sum_{i=1}^{n}\left(d_{i}+1\right) g\left(v_{i}\right)<\sum_{i=1}^{n}\left(d_{i}+1\right) g^{*}\left(v_{i}\right)<n+2 m$, a contradiction, completing the proof.

To illustrate Theorem 5, consider the graph G_{1} of order $n=10$ and size $m=11$ shown in Figure 1. The graph G_{1} has degree sequence $d_{1}, d_{2}, \ldots, d_{10}$, where $d_{i}=$ 3 for $1 \leq i \leq 6$ and $d_{i}=1$ for $7 \leq i \leq 10$. The largest integer t for which $\sum_{i=1}^{t}\left(d_{i}+1\right)^{2}+k\left(d_{t+1}+1\right) \leq n+2 m=32$, where $0 \leq k \leq d_{t+1}$, is $t=2$ with $k=0$. Hence applying Theorem 5 , we get $W(G) \geq d_{1}+d_{2}+2+0=8$. As observed earlier, $W\left(G_{1}\right) \leq 8$, whence $W\left(G_{1}\right)=8$.

We conclude this section by considering the complete multipartite graph $G \cong$ $K_{n_{1}, n_{2}, \ldots, n_{k}}$ with $n=n_{1}+n_{2}+\cdots+n_{k}$ vertices, independent vertex sets $S_{1}, S_{2}, \ldots, S_{k}$ with $\left|S_{i}\right|=n_{i}$, and all edges $u v$ with $u \in S_{i}, v \in S_{j}$ and $i \neq j$.

Proposition $3 W_{f}\left(K_{n_{1}, n_{2}, \ldots, n_{k}}\right)=W\left(K_{n_{1}, n_{2}, \ldots, n_{k}}\right)=n$.
Proof. If any vertex v in a graph G has $\operatorname{deg} v=n-1$ then $W_{f}(G) \geq|N[v]|=n$, so we can assume $n_{i} \geq 2$ for $1 \leq i \leq k$. Let $g: V\left(K_{n_{1}, n_{2}, \ldots, n_{k}}\right) \rightarrow[0, \infty)$ be a CLODfunction with $w(g)=W_{f}\left(K_{n_{1}, n_{2}, \ldots, n_{k}}\right)$. By the Automorphism Class Theorem we can assume that $u, v \in S_{i}$ implies $g(u)=g(v)=a_{i}$, say, for $1 \leq i \leq k$.

If all $a_{i}=1$, then $w(g)=n$. Suppose some $a_{i}>1$, and let $v \in S_{i}$. We show that $w(g) \geq n$. We have $\sum_{x \in N[v]} g(x) \geq|N[v]|=n-n_{i}+1$. Therefore $g\left(V-S_{i}\right) \geq$ $n-n_{i}+1-a_{i}$, and $g(V)=w(g) \geq n-n_{i}+1-a_{i}+n_{i} \cdot a_{i}$. If $w(g)<n$, then $-n_{i}+1-a_{i}+n_{i} \cdot a_{i}<0$ implies $n_{i}\left(a_{i}-1\right)<a_{i}-1$ and $n_{i}<1$, a contradiction. Finally, suppose some $a_{i}<1$ and every $a_{j} \leq 1$. Then for $v \in S_{i}$ we have $\sum_{x \in N[v]} g(x) \leq$ $a_{i}+n-n_{i}<n-n_{i}+1=|N[v]|$, a contradiction.

5 Open problems

In the course of this investigation we encountered a number of problems which we have yet to settle. A partial listing of these problems follows.

1. A graph $G=(V, E)$ is efficiently dominatable if there is a dominating set $S \subseteq V$ such that for each $v \in V$ we have $|N[v] \cap S|=1$. Is it true that a tree T of order n is efficiently dominatable if and only if $W(T)=n$?
2. More generally, is it true that $F(T)=W(T)$ for all trees T ?
3. Is it true that, given a graph G of order n, the problem of deciding whether $W(G)<n$ is $N P$-complete? (Note that in [2] it is shown that deciding if $F(G)=n$ is $N P$-complete.)
4. Given a positive integer n, determine the minimum of the ratios $\frac{W(G)}{n}$ among all graphs G of order n.

References

[1] D.W. Bange, A.E. Barkauskas, and P.J. Slater, Disjoint dominating sets in trees, Sandia Laboratories Report, SAND78-1087J, 1978.
[2] D.W. Bange, A.E. Barkauskas, and P.J. Slater, Efficient dominating sets in graphs, Applications of Discrete Math., SIAM, Philadelphia, 1988, 189-199.
[3] D.W. Bange, A.E. Barkauskas, L. Host, and P.J. Slater, Efficient near-domination of grid graphs, Congressus Numerantium 58 (1987), 83-92.
[4] K.S. Booth, Dominating sets in chordal graphs, Research Report CS-80-34, University of Waterloo, 1980.
[5] K.S. Booth and J.H. Johnson, Dominating sets in chordal graphs, SIAM J. Comput. 11(1982), 191-199.
[6] A.K. Dewdney, Fast Turing reductions between problems in $N P$, Report 71, University of Western Ontario, 1981.
[7] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, W.H. Freeman and Company, New York (1979).
[8] D.L. Grinstead and P.J. Slater, Fractional domination and fractional packing in graphs, Congressus Numerantium 71 (1990), 153-172.
[9] D.L. Grinstead and P.J. Slater, A recurrence template for several domination related parameters in series-parallel graphs, Discrete Applied Math. 54 (1994), 151-168.
[10] P.J. Slater, Closed neighborhood order domination and packing, Congressus Numerantium 97 (1993), 33-43.
[11] P.J. Slater, Packing into closed neighborhoods, Bull. Inst. Combin. Applic. 13 (1995), 23-33.

[^0]: *Research supported in part by the University of Natal and the South African Foundation for Research Development.

