Minus k-subdomination in graphs III

Johannes H. Hattingh
Department of Mathematics and Computer Science
Georgia State University
Atlanta, Georgia, U.S.A.

Alice A. McRae
Department of Computer Science
Appalachian State University
Boone, North Carolina, U.S.A.

Elna Ungerer
Department of Mathematics
Rand Afrikaans University
Johannesburg, Gauteng, South Africa

Abstract

Let $G=(V, E)$ be a graph. For any real valued function $f: V \rightarrow \mathbf{R}$ and $S \subseteq V$, let $f(S)=\sum_{u \in S} f(u)$. The weight of f is defined as $f(V)$. We will also denote $f(N[v])$ by $f[v]$, where $v \in V$. A minus k-subdominating function ($k S F$) for G is defined in [1] as a function $f: V \rightarrow\{-1,0,1\}$ such that $f[v] \geq 1$ for at least k vertices of G. The minus k-subdomination number of a graph G, denoted by $\gamma_{k s}^{-101}(G)$, is equal to $\min \{f(V) \mid f$ is a minus $k S F$ of $G\}$. Hattingh and Ungerer show in [5] that if T is a tree of order $n \geq 2$ and k is an integer such that $1 \leq k \leq n-1$, then $\gamma_{k s}^{-101}(T) \geq k-n+2$: In this paper, we characterise trees which achieve the lower bound, and show that the decision problem corresponding to the computation of this parameter is NP-complete.

1 Introduction

Let $G=(V, E)$ be a graph and let v be a vertex in V. The open neighbourhood of v is defined as the set of vertices adjacent to v, i.e., $N(v)=\{u \mid u v \in E\}$. The closed neighbourhood of v is $N[v]=N(v) \cup\{v\}$.

For any real valued function $f: V \rightarrow \mathbf{R}$ and $S \subseteq V$, let $f(S)=\sum_{u \in S} f(u)$. The weight of f is defined as $f(V)$. We will also denote $f(N[v])$ by $f[v]$, where $v \in V$.

A minus dominating function is defined in [3] as a function $f: V \rightarrow\{-1,0,1\}$ such that $f[v] \geq 1$ for every $v \in V$. The minus domination number of a graph G is $\gamma^{-}(G)=\min \{f(V) \mid f$ is a minus dominating function on $G\}$. A minus k subdomination function (kSF) for G is defined in [1] as a function $f: V \rightarrow\{-1,0,1\}$ such that $f[v] \geq 1$ for at least k vertices of G. The minus k-subdomination number of a graph G, denoted by $\gamma_{k s}^{-101}(G)$, is equal to $\min \{f(V) \mid f$ is a minus $k S F$ of $G\}$. Let f be a $k S F$ for the graph G. The set of vertices covered by f is defined as $C_{f}=\{v \in V \mid f[v] \geq 1\}$, while the set P_{f} is defined as $\{v \in V \mid f(v)=1\}$.

The motivation for studying these variations of the domination number is rich and varied from a modelling perspective. By assigning the values $-1,0$ or +1 to the vertices of a graph, we can model negative or neutral responses of preferences in such things as political voting or social behaviours. By examining these parameters, we study situations in which, in spite of the presence of negative vertices, the closed neighbourhoods of at least k of the vertices are required to maintain a positive sum, i.e. at least k groups of voters vote positively.

A remote vertex v of a graph G is a vertex which is adjacent to an endvertex of G. Hattingh and Ungerer show in [5] that if T is a tree of order $n \geq 2$ and k is an integer such that $1 \leq k \leq n-1$, then $\gamma_{k s}^{-101}(T) \geq k-n+2$. In Section 1 of this paper, we characterise those trees which achieve this lower bound. Then, in Section 2, we show that the decision problem corresponding to the computation of this parameter is NP-complete.

2 The characterisation

Hattingh and Ungerer ([5]) established the following result.
Theorem 1 [5] If T is a tree of order $n \geq 2$ and k is an integer such that $1 \leq k \leq$ $n-1$, then

$$
\gamma_{k s}^{-101}(T) \geq k-n+2 .
$$

Moreover, this bound is best possible.
However, trees which achieve the lower bound were not characterised in [5]. The following result provides a solution to this problem.

Theorem 2 Let $n \geq 2$ and let $1 \leq k \leq n-1$ be an integer. Then, for a tree T of order n, $\gamma_{k s}^{-101}(T)=k-n+2$ if and only if
(a) Thas a vertex v adjacent to at least k endvertices, or
(b) T has a vertex v with $\operatorname{deg}(v)=k$ and at least $k-1$ neighbours of v are endvertices, or
(c) T has two adjacent vertices u and v with $\operatorname{deg}(u)=2$ and $\operatorname{deg}(v)=k-1$ where all the other neighbours of v are endvertices, or
(d) T has two adjacent vertices u and v with $\operatorname{deg}(u)+\operatorname{deg}(v)=k+1$ or $k+2$ such that u and v together are adjacent to at least $k-2$ endvertices, or
(e) T has a vertex w of degree three and two of the neighbours of w together are adjacent to exactly $k-3$ other vertices, all of which are endvertices.

Proof. Let T be a tree of order n such that $\gamma_{k s}^{-101}(T)=k-n+2$ and let f be a $k S F$ of T such that $f(V(T))=\gamma_{k s}^{-101}(T)$. Let $M=\{v \in V(T) \mid f(v)=-1\}, Z=$ $\{v \in V(T) \mid f(v)=0\}$ and $P=\{v \in V(T) \mid f(v)=1\}$. Note that, since $k \geq 1, P \neq \emptyset$. Before proceeding further, we prove that $|M| \geq n-k-1$. For suppose to the contrary that $|M| \leq n-k-2$. Then, using the fact that $|P|=f(V(T))+|M|$, it follows that $|P| \leq(k-n+2)+(n-k-2)=0$, which is a contradiction. Hence, $|M|=n-k+s$ where $s \geq-1$ is an integer. Furthermore, $|P|=(k-n+2)+(n-k+s)=s+2$. Also, since $|Z|=n-(|M|+|P|)$, we have $|Z|=n-(n-k+2 s+2)=k-2 s-2$.

We now show that $s \leq 0$. Let $M_{c}=C_{f} \cap M, Z_{c}=C_{f} \cap Z$ and $P_{c}=C_{f} \cap P$. Suppose $\left|M_{c}\right|=s+t$ where t is an integer and let $H=\left\langle M_{c} \cup P\right\rangle$. Then H is a forest, since T is a tree. Say H has ℓ components. Then $q(H)=p(H)-\ell=(s+t)+(s+2)-$ $\ell=2 s+t+2-\ell \leq 2 s+t+1$. Since $M_{c} \subseteq C_{f}$, each vertex of M_{c} must be adjacent to at least two vertices of P. Hence, $2 s+2 t=2(s+t)=2\left|M_{c}\right| \leq q(H) \leq 2 s+t+1$, which implies that $t \leq 1$. Furthermore, since $k \leq\left|C_{f}\right|=\left|M_{c}\right|+\left|Z_{c}\right|+\left|P_{c}\right|=s+t+\left|Z_{c}\right|+\left|P_{c}\right|$, we have $k-s-t \leq\left|Z_{c}\right|+\left|P_{c}\right| \leq(k-2 s-2)+(s+2)=k-s$, whence $t \geq 0$. Let $\left|P_{c}\right|=r$.

We first consider the case when $t=0$. Then $\left|Z_{c}\right|+\left|P_{c}\right| \geq k-s$, so that $k-s-r \leq$ $\left|Z_{c}\right| \leq k-2 s-2$. Hence, $s+2 \leq r=\left|P_{c}\right| \leq|P| \leq s+2$, so that $\left|P_{c}\right|=s+2$, which implies that $P_{c}=P$. If $q(\langle P\rangle)=0$, then there are no edges joining vertices in M_{c} to vertices in P; hence $\left|M_{c}\right|=s=0$. If $q(\langle P\rangle)=1$, say u and v are adjacent, then there can be one edge from M_{c} to u and one to v. But T is a tree, thus no vertex in M_{c} is adjacent to both u and v and thus $\left|M_{c}\right|=s=0$, i.e. $M_{c}=\emptyset$.

We now consider the case when $t=1$. Then $\left|Z_{c}\right|+\left|P_{c}\right| \geq k-s-1$, so that $k-s-r-1 \leq\left|Z_{c}\right| \leq k-2 s-2$. Hence, $\left|P_{c}\right|=r \geq s+1$. If $q(\langle P\rangle) \geq 1$, then $q(H) \geq 1+2(s+1)=2 s+3$, contradicting the fact that $q(H) \leq 2 s+2$. Hence, $\langle P\rangle \cong \bar{K}_{s+2}$. In this case each vertex in M_{c} must be adjacent to two vertices in P which gives $2 s+4$ edges, a contradiction. Therefore, $M_{c}=\emptyset$ and $s=-1$.

Case 1. $s=-1$.
In this case $|M|=n-k-1,|Z|=k$ and $|P|=1$. Let $P=\{v\}$. Then $M_{c}=\emptyset$ implies that $\left|Z_{c}\right|=k$ or $\left|Z_{c}\right|=k-1$ and $\left|P_{c}\right|=1$. If $\left|Z_{c}\right|=k$, then $Z_{c}=Z$ and every vertex of Z is therefore adjacent to v and only v. Thus, case (a) occurs. If $\left|Z_{c}\right|=k-1$, and $P_{c}=P$, then each vertex of Z_{c} is adjacent to v, Z_{c} is an independent set and the vertex in $Z-Z_{c}$ is adjacent to exactly one vertex in $Z_{c} \cup\{v\}$. Furthermore, since $v \in C_{f}, v$ is not adjacent to any of the vertices in M. Hence, each vertex in M is either adjacent to vertices in M or adjacent to the vertex in $Z-Z_{c}$. If the vertex in $Z-Z_{c}$ is adjacent to v, case (b) occurs. If the vertex $Z-Z_{c}$ is adjacent to exactly one vertex in Z_{c}, case (c) occurs.

Case $2 s=0$.
In this case $|M|=n-k,|Z|=k-2,|P|=2$ and we must have $k \geq 2$. Since $M_{c}=\emptyset$, we have $Z=Z_{c}$ and $P=P_{c}$. Let $P=\{u, v\}$.

Case $2.1\langle P\rangle \cong K_{2}$.
Then u is adjacent to at most one vertex of M and the same is true for v. Since $Z=Z_{c}$, each vertex of Z must be adjacent to either u or v (but not both) and to no other vertex of T. Thus, case (d) occurs.

Case $2.2\langle P\rangle \cong \bar{K}_{2}$.
Since $\langle P\rangle \cong \bar{K}_{2}, u$ and v are not adjacent to any of the vertices of M. Note that $M \neq \emptyset$, since $n-k \geq 1$. It follows that some vertex of M must be adjacent to some vertex of Z, say w. Since $w \in C_{f}, w$ must be adjacent to both u and v. Note also that $|N[w] \cap M|=1$. Since $Z_{c}=Z$, each vertex of $Z-\{w\}$ must be adjacent to u or v (but not both) and to no other vertex of T. Thus, case (e) occurs.

Conversely, the previous proof suggests in each case a $k S F f$ of T such that $f(V(T))=k-n+2$. Also, Theorem 1 shows that $\gamma_{k s}^{-101}(T) \geq k-n+2$. Our result follows.

This result supplements the following result of Dunbar, Hedetniemi, Henning and McRae (see [3]).

Theorem 3 [3] If T is a tree, then $\gamma_{n s}^{-101}(T) \geq 1$. Furthermore, equality holds if and only if T is a star.

3 Complexity results

Let $r \leq 1$ be a fixed positive rational number (in lowest terms). Consider the decision problem

PARTIAL MINUS DOMINATING FUNCTION (PMDF)

INSTANCE: A graph G and an integer ℓ.
QUESTION: Is there a function $f: V(G) \rightarrow\{-1,0,1\}$ of weight ℓ or less for G such that $\left|C_{f}\right| \geq r|V(G)|$?

In this section we show that PMDF is NP-complete by describing a polynomial transformation from the following NP-complete problem (see [4]):
EXACT COVER BY 3-SETS (X3C)
INSTANCE: A set $X=\left\{x_{1}, \ldots, x_{3 q}\right\}$ and a set $\mathcal{C}=\left\{C_{1}, \ldots, C_{m}\right\}$ where $C_{j} \subseteq X$ and $\left|C_{j}\right|=3$ for $j=1, \ldots, m$.
QUESTION: Is there a subcollection \mathcal{C}^{\prime} of \mathcal{C} such that each element of X occurs in exactly one member of \mathcal{C}^{\prime} ? (\mathcal{C}^{\prime} is an exact cover of X.)

If $r=1$, then PMDF is the NP-complete problem MINUS DOMINATING FUNCTION (see [2]). Hence, we also assume that $r<1$. For two real numbers a and b, we say that a divides b if there is an integer k such that $b=k a$.

Theorem 4 PMDF is NP-complete, even for bipartite graphs.
Proof. It is obvious that PMDF is in NP. To show that PMDF is an NP-complete problem, we will establish a polynomial transformation from the NP-complete problem X3C. Let $X=\left\{x_{1}, \ldots, x_{3 q}\right\}$ and $\mathcal{C}=\left\{C_{1}, \ldots, C_{m}\right\}$ be an arbitrary instance of X 3 C where $C_{j} \subseteq X$ and $\left|C_{j}\right|=3$ for $1 \leq j \leq m$. We will construct a bipartite graph G and an integer ℓ such that this instance of X3C will have an exact cover if and only if there is a function $f: V(G) \rightarrow\{-1,0,1\}$ of weight at most ℓ such that $\left|C_{f}\right| \geq r|V(G)|$.

The (bipartite) graph G is constructed as follows. Corresponding to each $x_{i} \in X$ associate the path $x_{i}, w_{i}, v_{i}, u_{i}$. Corresponding to each set C_{j} associate the path
c_{j}, d_{j}, e_{j}. The construction of G is completed by adding a set, denoted by U, of $\left\lceil\frac{3 m+12 q}{r}\right\rceil-(3 m+12 q)$ isolated vertices and the edges $\left\{x_{i} c_{j} \mid x_{i} \in C_{j}\right\}$. Lastly, set $\ell={ }^{r} 4 m+16 q-2\left\lfloor\frac{3 m+12 q}{r}\right\rfloor+\left\lceil\frac{3 m+12 q}{r}\right\rceil$. It is easy to see that the construction of G can be accomplished in polynomial time.

Before proceeding further, we prove
Claim 1 If a and r are positive real numbers such that r does not divide a, then $0<r-\left(a-r\left\lfloor\frac{a}{r}\right\rfloor\right)<r$, while $a+x \geq r\left\lceil\frac{a}{r}\right\rceil$ if and only if $x \geq r-\left(a-r\left\lfloor\frac{a}{r}\right\rfloor\right)$.

Proof. Note that $a=r\left\lfloor\frac{a}{r}\right\rfloor+\left(a-r\left\lfloor\frac{a}{r}\right\rfloor\right)$. Since $a-r\left\lfloor\frac{a}{r}\right\rfloor$ is the remainder of a after division by r and a is not divisable by r, it follows that $0<a-r\left\lfloor\frac{a}{r}\right\rfloor<r$, so that $0<r-\left(a-r\left\lfloor\frac{a}{r}\right\rfloor\right)<r$.

Then $a+x \geq r\left\lceil\frac{a}{r}\right\rceil$ if and only if $x \geq r\left\lceil\frac{a}{r}\right\rceil-a$ if and only if $x \geq r\left\lceil\frac{a}{r}\right\rceil-r\left\lfloor\frac{a}{r}\right\rfloor-(a-$ $\left.r\left\lfloor\frac{a}{r}\right\rfloor\right)$ if and only if $x \geq r\left(\left\lceil\frac{a}{r}\right\rceil-\left\lfloor\frac{a}{r}\right\rfloor\right)-\left(a-r\left\lfloor\frac{a}{r}\right\rfloor\right)$ if and only if $x \geq r-\left(a-r\left\lfloor\frac{a}{r}\right\rfloor\right)$.

Suppose $\mathcal{C}^{\prime} \subseteq \mathcal{C}$ is an exact cover for X. Suppose first that r divides $3 m+12 q$. Let $S=\left\{d_{1}, \ldots, d_{m}, v_{1}, \ldots, v_{3 q}\right\} \cup\left\{c_{j} \mid C_{j} \in \mathcal{C}^{\prime}\right\}$. Define $f: V(G) \rightarrow\{-1,0,1\}$ by

$$
f(v)= \begin{cases}1 & \text { if } v \in S \\ -1 & \text { if } v \in U \\ 0 & \text { otherwise. }\end{cases}
$$

Then $f[v] \geq 1$ for all $v \in V(G)-U$. Also, since $|V(G)-U|=3 m+12 q=$ $r \frac{3 m+12 q}{r}=r\left\lceil\frac{3 m+12 q}{r}\right\rceil=r|V(G)|$, it follows that $\left|C_{f}\right| \geq r|V(G)|$. Furthermore, $f(V(G))=|S|-|U|=m+3 q+q-\left(\frac{3^{r}+12 q}{r}-(3 m+12 q)\right)=4 m+16 q-\frac{3 m+12 q}{r}=$ $4 m+16 q-2\left\lfloor\frac{3 m+12 q}{r}\right\rfloor+\left\lceil\frac{3 m+12 q}{r}\right\rceil$. Hence, f is a function of weight ℓ such that $\left|C_{f}\right| \geq r|V(G)|$. Now suppose that r does not divide $3 m+12 q$. Let u be an arbitrary vertex of U and let $S=\left\{d_{1}, \ldots, d_{m}, v_{1}, \ldots, v_{3 q}, u\right\} \cup\left\{c_{j} \mid C_{j} \in \mathcal{C}^{\prime}\right\}$. Define $f: V(G) \rightarrow\{-1,0,1\}$ by

$$
f(v)= \begin{cases}1 & \text { if } v \in S \\ -1 & \text { if } v \in U-\{u\} \\ 0 & \text { otherwise }\end{cases}
$$

Then $f[v] \geq 1$ for all $v \in V(G)-(U-\{u\})$. Also, $|V(G)-(U-\{u\})|=3 m+12 q+1$. Let $a=3 m+12 q$ and $x=1$. Since $x=1 \geq r>r-\left(a-r\left\lfloor\frac{a}{r}\right\rfloor\right)$, we have, by Claim $1,3 m+12 q+1 \geq r\left\lceil\frac{3 m+12 q}{r}\right\rceil=r|V(G)|$, so that $\left|C_{f}\right| \geq r|V(G)|$. Also, $f(V(G))=$ $|S|-(|U|-1)=m+3 q+1+q-\left(\left\lceil\frac{3 m+12 q}{r}\right\rceil-(3 m+12 q)-1\right)=4 m+16 q-\left\lceil\frac{3 m+12 q}{r}\right\rceil+2=$ $4 m+16 q-\left\lceil\frac{3 m+12 q}{r}\right\rceil+2\left(\left\lceil\frac{3 m+12 q}{r}\right\rceil-\left\lfloor\frac{3 m+12 q}{r}\right\rfloor\right)=4 m+16 q-2\left\lfloor\frac{3 m+12 q}{r}\right\rfloor+\left\lceil\frac{3 m+12 q}{r}\right\rceil=\ell$. Hence, f is a function of weight ℓ such that $\left|C_{f}\right| \geq r|V(G)|$.

We now prove the converse. Among all functions $f: V(G) \rightarrow\{-1,0,1\}$ for which $f(V(G)) \leq \ell$ and $\left|C_{f}\right| \geq r|V(G)|$, choose one, say f, for which $f(U)$ is a minimum. The minimality of $f(U)$ implies that $f(u) \in\{-1,1\}$ for all $u \in U$.

Claim 2

$$
\left|C_{f}\right| \geq \begin{cases}3 m+12 q & \text { if } r \text { divides } 3 m+12 q \\ 3 m+12 q+1 & \text { if } r \text { does not divide } 3 m+12 q\end{cases}
$$

Proof. Suppose first that r divides $3 m+12 q$. Then $r|V(G)|=r\left\lceil\frac{3 m+12 q}{r}\right\rceil=$ $r \frac{3 m+12 q}{r}=3 m+12 q$. But $\left|C_{f}\right| \geq r|V(G)|$, so that $\left|C_{f}\right| \geq 3 m+12 q$. Suppose now that r does not divide $3 m+12 q$. Then Claim 1 implies that $r\left\lceil\frac{3 m+12 q}{r}\right\rceil>3 m+12 q$. But $\left|C_{f}\right| \geq r|V(G)|=r\left\lceil\frac{3 m+12 q}{r}\right\rceil$, so that $\left|C_{f}\right| \geq 3 m+12 q+1$.
Claim 3 If u is an endvertex of G, then $u \in C_{f}$.
Proof. Suppose, to the contrary, that u is an endvertex of G such that $u \notin C_{f}$. Let v be the vertex adjacent to u. Since $u \notin C_{f}, f(u)+f(v) \leq 0$, whence $f(u)=f(v)=-1$, or $f(u)=-1$ and $f(v) \geq 0$, or $f(u)=0$ and $f(v) \leq 0$, or $f(u)=1$ and $f(v)=-1$.

Case 1. $f(u)=f(v)=-1$. Then $u, v \notin C_{f}$ and since $\left|C_{f}\right| \geq 3 m+12 q$, there exist distinct vertices x and y in U such that $f(x)=f(y)=1$. Define $g: V(G) \rightarrow$ $\{-1,0,1\}$ by

$$
g(w)= \begin{cases}f(w) & \text { if } w \in V(G)-\{u, v, x, y\} \\ 1 & \text { if } w \in\{u, v\} \\ -1 . & \text { otherwise }\end{cases}
$$

Then $u, v \in C_{g}, g[w]=f[w]+2$ (where $\left.w \in N(v)-\{u\}\right)$ and $x, y \notin C_{g}$, so that $\left|C_{g}\right| \geq$ $\left|C_{f}\right|$. Hence, g is a function such that $\left|C_{g}\right| \geq r|V(G)|$ and $g(V(G)) \stackrel{y}{=} f(V(G)) \leq \bar{\ell}$. However, $g(U)<f(U)$, which contradicts our choice of f.

Case 2. $f(u)=-1$ and $f(v) \geq 0$. Then $u \notin C_{f}$ and since $\left|C_{f}\right| \geq 3 m+12$, there exists $x \in U$ such that $f(x)=1$. Define $g: V(G) \rightarrow\{-1,0,1\}$ by

$$
g(w)= \begin{cases}f(w) & \text { if } w \in V(G)-\{u, x\} \\ 1 & \text { if } w=u \\ -1 & \text { otherwise }\end{cases}
$$

Again g is a function such that $\left|C_{g}\right| \geq r|V(G)|, g(V(G)) \leq \ell$, but $g(U)<f(U)$, which contradicts our choice of f.

Case 3. $f(u)=0$ and $f(v) \leq 0$ or $f(u)=1$ and $f(v)=-1$. Then $u \notin C_{f}$ and since $\left|C_{f}\right| \geq 3 m+12$, there exists $x \in U$ such that $f(x)=1$. Define $g: V(G) \rightarrow$ $\{-1,0,1\}$ by

$$
g(w)= \begin{cases}f(w) & \text { if } w \in V(G)-\{v, x\} \\ 1 & \text { if } w=v \\ -1 & \text { otherwise }\end{cases}
$$

Again g is a function such that $\left|C_{g}\right| \geq r|V(G)|, g(V(G)) \leq \ell$, but $g(U)<f(U)$, which contradicts our choice of f.
Claim 4 If v is a remote vertex of G, then $v \in C_{f}$.
Proof. Suppose, to the contrary, that $v \notin C_{f}$. Let $N(v)=\{u, w\}$ where $\operatorname{deg}(u)=1$. Then $f(u)+f(v)+f(w) \leq 0$. Claim 3 implies that $f(u)+f(v) \geq 1$, whence $f(w)=-1$. Since $v \notin C_{f}$, it follows that $f(u)+f(v) \leq 1$, so that $f(u)+f(v)=1$. Furthermore, $\left|C_{f}\right| \geq 3 m+12 q$ implies that there is an $x \in U$ such that $f(x)=1$. Define $g: V(G) \rightarrow\{-1,0,1\}$ by

$$
g(y)= \begin{cases}f(y) & \text { if } y \in V(G)-\{x, w\} \\ 1 & \text { if } y=w \\ -1 & \text { otherwise }\end{cases}
$$

Then g is a function such that $\left|C_{g}\right| \geq r|V(G)|, g(V(G)) \leq \ell$, but $g(U)<f(U)$, which contradicts our choice of f.
Claim 5 If w is a vertex (which is not an endvertex) adjacent to a remote vertex then, without loss of generality, we may assume that $f(w) \geq 0$.

Proof. Suppose $f(w)=-1$. Let v be the remote vertex adjacent to w and let u be the endvertex adjacent to v. Then, since $v \in C_{f}$ (cf. Claim 4), we have $f(u)=f(v)=1$. Define $g: V(G) \rightarrow\{-1,0,1\}$ by

$$
g(y)= \begin{cases}f(y) & \text { if } y \in V(G)-\{u, v, w\} \\ 0 & \text { if } y \in\{u, w\} \\ 1 & \text { otherwise }\end{cases}
$$

Then g is a function such that $\left|C_{g}\right| \geq r|V(G)|, g(V(G))=f(V(G)), g(U)=f(U)$ and $g(w) \geq 0$. Hence, without loss of generality, we may assume that $f(w) \geq 0$.
Claim 6 If v is a remote vertex, then, without loss of generality, we may assume that $f(v)=1$.
Proof. Suppose $f(v) \leq 0$. Let u be the endvertex adjacent to v. Then, since $u \in C_{f}$, $f(v) \geq 0$, whence $f(v)=0$ and $f(u)=1$. Define $g: V(G) \rightarrow\{-1,0,1\}$ by

$$
g(y)= \begin{cases}f(y) & \text { if } y \in V(G)-\{u, v\} \\ 1 & \text { if } y=v \\ 0 & \text { otherwise }\end{cases}
$$

Then g is a function such that $\left|C_{g}\right| \geq r|V(G)|, g(V(G))=f(V(G)), g(U)=f(U)$ and $g(v)=1$. Hence, without loss of generality, we may assume that $f(v)=1$.
Claim 7 Without loss of generality we may assume that $f\left(x_{i}\right) \geq 0$ for all $i=$ $1, \ldots, 3 q$.
Proof. Suppose that, without loss of generality, there exists $i \in\{1, \ldots, 3 q\}$ such that $f\left(x_{i}\right)=-1$. Claims 5 and 6 imply that $f\left(w_{i}\right) \geq 0$ and $f\left(v_{i}\right)=1$.

We show first that $f\left(w_{i}\right)=1$. For suppose to the contrary that $f\left(w_{i}\right)=0$. Then $w_{i} \notin C_{f}$ and since $\left|C_{f}\right| \geq 3 m+12 q$, there exists $x \in U$ such that $f(x)=1$. Define $g: V(G) \rightarrow\{-1,0,1\}$ by

$$
g(y)= \begin{cases}f(y) & \text { if } y \in V(G)-\left\{x, w_{i}\right\} \\ 1 & \text { if } y=w_{i} \\ -1 & \text { otherwise }\end{cases}
$$

Then g is a function such that $\left|C_{g}\right| \geq r|V(G)|, g(V(G)) \leq \ell$, but $g(U)<f(U)$, which contradicts our choice of f. Hence $f\left(w_{i}\right)=1$. Define $g: V(G) \rightarrow\{-1,0,1\}$ by

$$
g(y)= \begin{cases}f(y) & \text { if } y \in V(G)-\left\{x_{i}, w_{i}\right\} \\ 0 & \text { if } y \in\left\{x_{i}, w_{i}\right\}\end{cases}
$$

Then g is a function such that $\left|C_{g}\right| \geq r|V(G)|, g(V(G))=f(V(G)), g(U)=f(U)$ and $g\left(x_{i}\right) \geq 0$. Hence, without loss of generality, we may assume that $f\left(x_{i}\right) \geq 0$ for all $i=1, \ldots, 3 q$.

Claim $8 x_{i} \in C_{f}$ for all $i=1, \ldots, 3 q$.
Proof. Suppose, to the contrary, that there exists $i \in\{1, \ldots, 3 q\}$ such that $x_{i} \notin C_{f}$. Then, by Claims 5 and 7 , no vertex of $N\left[x_{i}\right]$ is assigned a -1 by f, so that every vertex of $N\left[x_{i}\right]$ is assigned a 0 by f. Since $x_{i} \notin C_{f}$ and $\left|C_{f}\right| \geq 3 m+12 q$, there exists $x \in U$ such that $f(x)=1$. Define $g: V(G) \rightarrow\{-1,0,1\}$ by

$$
g(y)= \begin{cases}f(y) & \text { if } y \in V(G)-\left\{x_{i}, x\right\} \\ 1 & \text { if } y=x_{i} \\ -1 & \text { otherwise }\end{cases}
$$

Then g is a function such that $\left|C_{g}\right| \geq r|V(G)|, g(V(G)) \leq \ell$, but $g(U)<f(U)$, which contradicts our choice of f.

Claims 5, 6 and 7 imply that $w_{i} \in C_{f}$ for all $i=1, \ldots, 3 q$ and that $c_{j} \in C_{f}$ for $j=1, \ldots, m$. This, together with Claims 3 and 4 , show that $V(G)-U \subseteq C_{f}$. Let $R=\left\{c_{1}, \ldots, c_{m}\right\}, S=\left\{x_{1}, \ldots, x_{3 q}\right\}$, and $T=\left\{w_{1}, \ldots, w_{3 q}\right\}$. Let $a=\left|R \cap P_{f}\right|$, $s=\left|S \cap P_{f}\right|$ and $t=\left|T \cap P_{f}\right|$: Since $V(G)-U \subseteq C_{f}$, Claim 2 implies that $\left|U \cap C_{f}\right| \geq\left\lceil\frac{3 m+12 q}{r}\right\rceil-\left\lfloor\frac{3 m+12 q}{r}\right\rfloor$. Since $f(v) \geq 0$ for all $v \in V(G)-U$ and all endvertices of G are covered, $f(V(G)) \geq 3 q+m+a+s+t+\left\lceil\frac{3 m+12 q}{T}\right\rceil-\left\lfloor\frac{3 m+12 q}{r}\right\rfloor-$ $\left(|U|-\left\lceil\frac{3 m+12 q}{r}\right\rceil+\left\lfloor\frac{3 m+12 q}{r}\right\rfloor\right)=3 q+m+a+s+t-|U|+2\left(\left\lceil\frac{3 m+12 q}{r}\right\rceil-\left\lfloor\frac{3 m+12 q}{r}\right\rfloor\right)=$ $3 q+m+a+s+t-\left(\left\lceil\frac{3 m+12}{r}\right\rceil-(3 m+12 q)\right)+2\left(\left\lceil\frac{3 m+12 q}{r}\right\rceil-\left\lfloor\frac{3 m+12 q}{r}\right\rfloor\right)=15 q+4 m+(a+$ $s+t)-2\left\lfloor\frac{3 m+12 q}{r}\right\rfloor+\left\lceil\frac{3 m+12 q}{r}\right\rceil$. But $f(V(G)) \leq \ell=4 m+16 q-2\left\lfloor\frac{3 m+12 q}{r}\right\rfloor+\left\lceil\frac{3 m+12 q}{r}\right\rceil$, so that $a+s+t \leq q$, i.e. $a \leq q-(s+t)$. Hence, at most $3 q-3(s+t)$ vertices of S are adjacent to a vertex of $R \cap P_{f}, s$ vertices in S are assigned a 1 by f and t vertices of S are adjacent to a vertex of $T \cap P_{f}$. Hence, at most $3 q-2(s+t)$ vertices of S are either adjacent to a vertex of $(R \cup T) \cap P_{f}$ or assigned a 1 by f. If $s+t>0$, then there is a vertex in S, say x, such that $f[x]=0$, contradicting Claim 8. Hence, $s+t=0$ and $a \leq q$. Since $x_{i} \in C_{f}$ for all $i=1, \ldots, 3 q, a=q$. It now follows that $\mathcal{C}^{\prime}=\left\{C_{j} \mid f\left(c_{j}\right)=1\right\}$ is an exact cover for X.

References

[1] I. Broere, J.E. Dunbar and J.H. Hattingh, Minus k-subdomination in graphs. To appear in Ars Combin.
[2] J. E. Dunbar, W. Goddard, S.T. Hedetniemi, M. A. Henning, A.A. McRae, The algorithmic complexity of minus domination in graphs. Discrete Appl. Math. 68 (1996) 73-84.
[3] J.E. Dunbar, S.T. Hedetniemi, M.A. Henning and A.A. McRae, Minus domination in graphs. To appear in Computers Math. Appl.
[4] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, New York (1979).
[5] J.H. Hattingh and E. Ungerer, Minus k-subdomination in graphs II. To appear in Discrete Math.

