Some New Localization Theorems on Hamiltonian Properties

F. Tian^{*} and B. Wei^{\dagger}

Institute of Systems Science, Academia Sinica, Beijing 100080, China

Abstract

Let G be a 2-connected graph with $n \geq 3$ vertices such that for any two vertices u, v at distance two in an induced subgraph $K_{1,3}$ or P_4 of G, the inequality $d(u) + d(v) \geq |N(u) \cup N(v) \cup N(w)| - s$ holds for all $w \in N(u) \cap N(v)$. We prove that (i) if s = 1 and $|N(u) \cap N(v)| \geq 2$, then G is hamiltonian or $K_{p,p+1} \subseteq G \subseteq K_p + \overline{K}_{p+1}$; (ii) if s = 0, then G is either pancyclic, or bipartite graph. This generalizes two localization theorems known before.

1. Introduction

In this paper, we consider only simple finite graphs. Our notations and terminology follow Bondy and Murty[3]. For a graph G, let V and E denote its vertex set and edge set, respectively. Denote by d(u, v) the distance between u and v. $K_{1,3}$ is a graph with 4 vertices in which 3 vertices have degree 1 and the other has degree 3. P_4 is a path with 4 vertices. Let C be a longest cycle of G with a fixed cyclic orientation. For $x \in V(C)$, let x^+ be the successor and x^- be the predecessor of xin the chosen direction on C. A graph G is pancyclic, if for any integer $i, 3 \leq i \leq n$ G has a cycle of length i.

The following results are known.

In [4], Hasratian and Khachatrian proved the following theorem:

Theorem 1. Let G be a connected graph with $n \ge 3$ vertices. If $d(u) + d(v) \ge |N(u) \cup N(v) \cup N(w)|$ for any triple of vertices u, v, w with d(u, v) = 2 and $w \in N(u) \cap N(v)$, then G is hamiltonian.

Recently, Theorem 1 was generalized by the following two theorems in [1] and [2]:

Australasian Journal of Combinatorics 17(1998), pp.61-67

^{*}Supported in part by the National Natural Science Foundation of China.

[†]Supported in part by the National Natural Science Foundation of China and also by a Foundation of the Chinese Educational Committee.

Theorem 2[2]. Let G be a connected graph with $n \ge 3$ vertices. If for any two vertices u, v with d(u, v) = 2 the following conditions hold:

(i) $d(u) + d(v) \ge |N(u) \cup N(v) \cup N(w)| - 1$ for all $w \in N(u) \cap N(v)$,

(ii) $|N(u) \cap N(v)| \ge 2$,

then G is hamiltonian or $K_{p,p+1} \subseteq G \subseteq K_p + \overline{K}_{p+1}$, where $n = 2p + 1, p \ge 2$ and + is the join operation.

Theorem 3[1]. Under the conditions of Theorem 1, G is pancyclic.

In this paper, we obtain the following theorems.

Theorem 4. Let G be a 2-connected graph with $n \ge 3$ vertices. If for any two vertices u, v at distance two in an induced subgraph $K_{1,3}$ or P_4 of G the following conditions hold:

(i) $d(u) + d(v) \ge |N(u) \cup N(v) \cup N(w)| - 1$ for all $w \in N(u) \cap N(v)$,

(ii) $|N(u) \cap N(v)| \ge 2$,

then G is hamiltonian or $K_{p,p+1} \subseteq G \subseteq K_p + \overline{K}_{p+1}$.

Theorem 5. Let G be 2-connected graph with $n \geq 3$ vertices. If for any two vertices u, v at distance two in an induced subgraph $K_{1,3}$ or P_4 of G, the inequality $d(u) + d(v) \geq |N(u) \cup N(v) \cup N(w)|$ holds for any $w \in N(u) \cap N(v)$, then G is either pancyclic or G is a bipartite graph.

Consider the graph G_1 obtained from K_{n-3} and $\{x, y, z\}$ by adding an edge set $\{xy, yz, yu, yv, xu, zv\}$, where $\{u, v\} \subseteq V(K_{n-3})$. Obviously, G_1 satisfies the conditions of Theorem 4 and Theorem 5, but does not satisfy the conditions of Theorems 1-3, because $|N(x) \cap N(z)| = 1$. Notice that G is 2-connected under the conditions of Theorems 2-3. Therefore, Theorem 4 and Theorem 5 generalize Theorem 2 and Theorem 3, respectively. Also we have the following consequence:

Corollary 1. Let G be a 2-connected graph. If G has neither $K_{1,3}$ nor P_4 as induced subgraph, then G is pancyclic unless G is a cycle with four vertices.

Notice that if G is $K_{1,3}$ -free, then for any $u, v \in V$ with d(u, v) = 2, we have $d(u) + d(v) \ge |N(u) \cup N(v) \cup N(w)| - 1$ for any $w \in N(u) \cap N(v)$. Thus we have

Corollary 2. Let G be a 2-connected, $K_{1,3}$ -free graph. If for any two vertices u, v at distance two in an induced subgraph P_4 of G, $|N(u) \cap N(v)| \ge 2$, then G is hamiltonian.

Corollary 2 generalizes a result of Shi [5].

Corollary 3[5]. Let G be a 2-connected, $K_{1,3}$ -free graph. If for any pair of vertices u, v at distance two in $G, |N(u) \cap N(v)| \ge 2$, then G is hamiltonian.

2. The Proof of Theorem 4

By contradiction, let G be a nonhamiltonian graph that satisfies the conditions of Theorem 4. Clearly, G contains a cycle, since G is 2-connected. Take C a longest cycle with a fixed cyclic orientation. Set $R = G \setminus C$, then $R \neq \emptyset$. Since G is 2connected, there exists some v in R such that $N(v) \cap V(C) \neq \emptyset$. Choose a vertex v in R such that $|N(v) \cap V(C)| = \max\{|N(v') \cap V(C)| : v' \in R\}$. Let $N(v) \cap V(C) = \{w_1, \dots, w_t\}$ $(t \ge 1)$. If t = 1, since G is 2-connected, there is a path connecting w_1 to a vertex, say y, of $V(C) \setminus \{w_1\}$ with all internal vertices in R. Choose such a shortest path $P' = w_1v_1 \cdots v_ky$, where $v_i \in R$ for $1 \le i \le k$. Since C is a longest cycle of G and t = 1, we have $k \ge 2$ and w_1^+, w_1, v_1, v_2 are in an induced subgraph P_4 of G. Thus $|N(w_1^+) \cap N(v_1)| \ge 2$. By the maximality of C, $N(w_1^+) \cap N(v_1) \subseteq V(C)$, so that $|N(v_1) \cap V(C)| \ge 2 > t$, a contradiction. Hence $t \ge 2$. Since C is a longest cycle, it is easy to show that for any $1 \le i < j \le t$, $w_i^+ w_i^+ \notin E$, $w_i^- w_i^- \notin E$.

Let C[x, y) denote the subpath of C from x to y (in the chosen direction). For $C[x^+, y]$ we also write C(x, y] and similarly, $C[x, y) = C[x, y^-]$. Now, set $C_i = C[w_i, w_{i+1}), i < t$ and $C_t = C[w_t, w_1)$. Suppose $w_i^+ w_i^- \in E$, then $w_{i+1}^- w_i \notin E$. Choose $u_i \in V(C_i)$ such that for any $u \in V(C(w_i, u_i]), uw_i \in E$ but $u_i^+ w_i \notin E$. If $w_i^+ w_i^- \notin E$, set $u_i = w_i^+$. Let $U = \{u_1, u_2, \cdots, u_t\}$ and $W = \{w_1, w_2, \cdots, w_t\}$. Since C is a longest cycle, it is easy to check that for any $1 \leq i \leq t, \{v, u_i\}$ is in an induced subgraph $K_{1,3}$ or P_4 of G with $d(v, u_i) = 2$ and $U \cup \{v\}$ is an independent set of G. Hence $|N(v) \cap N(u_i)| \geq 2$ for all i.

If for some $i, 1 \leq i \leq t, N(v) \cap N(u_i) \cap V(G \setminus C) \neq \emptyset$, then we can get a cycle longer than C. Hence we may assume that for each $1 \leq i \leq t, N(v) \cap N(u_i) \cap V(G \setminus C) = \emptyset$. Thus $N(v) \cap N(u_i) \subseteq W$ for all $1 \leq i \leq t$. Since $\{v, u_i\}$ is in an induced subgraph $K_{1,3}$ or P_4 of G, $d(v, u_i) = 2$ and $w_i \in N(v) \cap N(u_i)$, we have $d(v) + d(u_i) \geq |N(v) \cup N(u_i) \cup N(w_i)| - 1$ by the hypothesis of Theorem 4. Thus for any $1 \leq i \leq t, |N(v) \cap N(u_i)| \geq |N(v) \cup N(u_i) \cup N(w_i)| - |N(v) \cup N(u_i)| - 1 =$ $|N(w_i) \setminus (N(v) \cup N(u_i))| - 1$.

If $|C_{i-1}| \neq 2$ and $w_i^+ w_i^- \notin E$, we have $\{v, w_i^-\} \cup N_U(w_i) \subseteq N(w_i) \setminus (N(v) \cup N(u_i))$. If $|C_{i-1}| = 2$ or $w_i^+ w_i^- \in E$, we have $\{v\} \cup N_U(w_i) \subseteq N(w_i) \setminus (N(v) \cup N(u_i))$. Hence we obtain

 $|N_U(w_i)| + 1 + q_i \leq |N(w_i) \setminus (N(v) \cup N(u_i))| \leq |N(v) \cap N(u_i)| + 1 \leq |N_W(u_i)| + 1$ for any $i, 1 \leq i \leq t$, where $q_i = 1$, if $|C_{i-1}| \geq 3$ and $w_i^+ w_i^- \notin E$; otherwise, $q_i = 0$. Therefore,

 $\Sigma_{i=1}^{t}(|N_{U}(w_{i})|+q_{i}) \leq \Sigma_{i=1}^{t}|N_{W}(u_{i})|.$ (1)

Note that both $\sum_{i=1}^{k} |N_U(w_i)|$ and $\sum_{i=1}^{k} |N_W(u_i)|$ represent the number of edges with one end in U and the other in W. From the inequality (1), we obtain that for all $i, 1 \leq i \leq t, q_i = 0$.

If there exists some i, say i = s, such that $|C_s| \ge 3$, then $w_1^+ w_1^- \in E$ by $q_1 = 0$. Since C is a longest cycle of G, $|C_1| \ge 3$ and $w_2^+ w_2^- \in E$. For the same reason, we can get for any $i, s - 1 \ge i \ge 2$, $|C_i| \ge 3$ and $w_{i+1}^+ w_{i+1}^- \in E$, in turn. Because $|N(v) \cap N(u_i)| \ge 2$, there exists some $j, 2 \le j \le s$ such that $w_j u_1 \in E$. Thus we can get a cycle $C' = w_j u_1 u_1^+ \cdots w_j^- w_j^+ \cdots w_1^- w_1^+ \cdots u_1^- w_1 v w_j$ and |C|' > |C|, a contradiction.

Hence $|C_i| = 2$ for all $i, 1 \leq i \leq t$. Since C is a longest cycle, there is no path joining two vertices of $U \cup \{v\}$ with all internal vertices in $V(G \setminus C)$. When there exists a vertex $v'(\neq v) \in V(G \setminus C)$ such that $vv' \in E$ or $u_iv' \in E$ for some $1 \leq i \leq t$, since G is 2-connected and $|C_i| = 2$ for all i, we can easily get a cycle which is longer than C, a contradiction. Thus when $V(G \setminus C) \neq \{v\}$, then for any $v'(\neq v) \in V(G \setminus C)$

we have $N_C(v') \subseteq W$. Hence there exists some j such that $\{v, v'\} \cup N_U(w_j) \subseteq N(w_j) \setminus (N(v) \cup N(u_j))$ and $\{v\} \cup N_U(w_i) \subseteq N(w_i) \setminus (N(v) \cup N(u_i))$ for any $i \neq j$. Similar to the proof of inequality (1), we obtain $\sum_{i=1}^t |N_U(w_i)| + 1 \leq \sum_{i=1}^t |N_W(u_i)|$, which is impossible since both $\sum_{i=1}^k |N_U(w_i)|$ and $\sum_{i=1}^k |N_W(u_i)|$ represent the number of edges with one end in U and the other in W. Hence $V(G \setminus C) = \{v\}$.

Notice that for any i with $1 \leq i \leq t$ we can get a cycle $C' = w_i v w_{i+1} u_{i+1} \cdots w_i$ such that |C'| = |C|, $u_i \in V(G \setminus C')$ and $N(u_i) \cap V(C') \neq \emptyset$. Using the same arguments as before, we can derive that $N(u_i) = W$ for any $1 \leq i \leq t$. Hence $K_{p,p+1} \subseteq G \subseteq \overline{K}_{p+1} + K_p$ and n = 2p + 1.

Therefore, the proof of Theorem 4 is complete.

3. The Proof of Theorem 5

Notice that for any two distinct vertices u, v with d(u, v) = 2, if $|N(u)| + |N(v)| \ge |N(u) \cup N(v) \cup N(w)|$, where $w \in N(u) \cap N(v)$, then $|N(u) \cap N(v)| \ge |N(w) \setminus (N(u) \cup N(v))| \ge 2$, since $\{u, v\} \subseteq (N(w) \setminus (N(u) \cup N(v)))$. Thus by Theorem 4, G has a hamiltonian cycle C, since otherwise G is a supergraph of $K_{p,p+1}$ and therefore does not satisfy the condition of Theorem 5. If G has no C_3 , then choose $v \in V(G)$ such that $d(v) = \max\{d(u) : u \in V(G)\}$. When d(v) = 2, then |C| = 4, that is, G is bipartite. When $d(v) \ge 3$, then v^-, v, v^+ are contained in an induced subgraph $K_{1,3}$ of G. Since $d(v^-) + d(v^+) \ge |N(v^-) \cup N(v^+) \cup N(v)|$ and $N(v) \cap (N(v^-) \cup N(v^+)) = \emptyset$, we can easily get that G is bipartite.

Therefore, in the rest of this section, we may assume that G contains at least one triangle. For an integer $i \geq 3$, we define $C_i \triangle C_{i+1} = x_1 x_2 \cdots x_{i+1} x_1$ to indicate a cycle with $x_{j-1}x_{j+1} \in E$ for some $1 \leq j \leq i+1$. First we claim that G has a $C_4 \triangle C_5$.

Let $C_3 = x_1 x_2 x_3 x_1$ be a triangle in G. By contradiction, assume that there is no $C_4 \triangle C_5$ in G. Since G is 2- connected, we may assume that there exist $u \neq v \in V(G \setminus C_3)$ such that $x_1 u \in E, x_3 v \in E$. Then $uv \notin E$, since otherwise we have a $C_4 \triangle C_5$ in G, a contradiction. If u, x_1, x_3, v are in an induced subgraph P_4 of G, then $|N(u) \cap N(x_3)| \ge 2$ and $|N(v) \cap N(x_1)| \ge 2$. When there exists some $w \in V(G) \setminus \{x_1, x_2, x_3, u, v\}$ such that $w \in N(u) \cap N(x_3)$ or $w \in N(v) \cap N(x_1)$, then we can get a $C_4 \triangle C_5$ in G, contrary to the assumption. When $(V(G) \setminus \{x_1, x_2, x_3, u, v\}) \cap$ $N(u) \cap N(x_3) = \emptyset$ and $(V(G) \setminus \{x_1, x_2, x_3, u, v\}) \cap N(v) \cap N(x_1) = \emptyset$, then $x_2 u \in E$ and $x_2 v \in E$. Thus we can also get a $C_4 \triangle C_5$, contrary to the assumption.

If u, x_1, x_3, v are not contained in an induced subgraph P_4 of G, then $ux_3 \in E$ or $vx_1 \in E$, say $ux_3 \in E$. For the same reason, $x_2v \notin E$ and $(V(G) \setminus \{x_1, x_2, x_3, u, v\}) \cap N(u) \cap N(v) = \emptyset$. Thus $x_2u \in E$, since otherwise, u, v, x_2 are contained in an induced subgraph $K_{1,3}$ of G and $d(u)+d(v) \leq |N(u)\cup N(v)\cup N(x_3)|-1$, a contradiction. Since G is 2-connected, we may assume that there exists some $w \in V(G) \setminus \{x_1, x_2, x_3, u, v\}$ such that $uw \in E$. By the assumption, w, u, x_3, v are contained in an induced subgraph P_4 of G and $N(v) \cap \{x_1, x_2, u, w\} = \emptyset$. Since $|N(u) \cap N(v)| \geq 2$, there exists some $z \in V(G) \setminus \{x_1, x_2, x_3, w\}$ such that $zu \in E$ and $zv \in E$. Thus we can get a $C_4 \triangle C_5$ in G.

Now, we shall prove that if G has a $C_i \triangle C_{i+1}$, then G has either a $C_{i+1} \triangle C_{i+2}$ or

a $C_{i+2} \triangle C_{i+3}$ for any $i, n-3 \ge i \ge 4$. By contradiction, assume that there exists some $i, 4 \le i \le n-3$ such that there is neither $C_{i+1} \triangle C_{i+2}$ nor $C_{i+2} \triangle C_{i+3}$ in G. We Choose $v \in V(G \setminus C_{i+1})$ such that $d_{C_{i+1}}(v) = \max\{d_{C_{i+1}}(y) : y \in V(G \setminus C_{i+1})\}$. Let $C_i \triangle C_{i+1} = x_1 x_2 \cdots x_{i+1} x_1$ and $W = N(v) \cap V(C_{i+1}) = \{w_1, w_2, \cdots, w_t\}$ in order around C_{i+1} . Thus we may assume that for any $v' \in V(G \setminus C_{i+1})$ and $x \in V(C_{i+1})$, $\{xv', v'x^+\} \not\subseteq E$, since otherwise, we can get a $C_{i+1} \triangle C_{i+2}$ in G, contrary to the assumption. Let $u_j = w_j^+$ for $1 \le j \le t$ and $U = \{u_1, u_2, \cdots, u_t\}$. We distinguish the following three cases:

Case 1. $t \geq 3$.

Case 1.1. For all $1 \leq j \leq t$, $w_i^+ w_i^- \in E$.

Then $w_t^+ w_1 \notin E$ by the assumption. Choose $u \in V(C(w_t, w_1^-))$ such that $uw_1 \notin E$ but for any $u' \in V(C(u, w_1), u'w_1 \in E$. Since $|N(u^+) \cap N(v)| \ge 2$, there exists some $z \in V(G \setminus C_{i+1})$ or $z \in W \setminus \{w\}$ such that $z \in N(u^+) \cap N(v)$. If $z \in V(G \setminus C_{i+1})$, then we can get a $C_{i+2} \triangle C_{i+3}$ in G. If $z \in W$ then we can get a $C_{i+1} \triangle C_{i+2}$ by $t \ge 3$ in G, both are contrary to the assumption.

Case 1.2. For all $1 \le j \le t$, $w_j^+ w_j^- \notin E$.

Without loss of generality, we may assume that $x_1x_3 \in E$. Thus $x_2v \notin E$.

If $x_1v \notin E$, then $x_2, x_3 \notin U$. By the assumption, $U \cup \{v\}$ is an independent set of G and $N(u_j) \cap N(v) \subseteq W$ for any $j, 1 \leq j \leq t$. Since $d(v, u_j) = 2$ and $w_j \in N(u_j) \cap N(v)$, we have $d(v) + d(u_j) \geq |N(v) \cap N(u_j) \cap N(w_j)|$. Thus for any $j, 1 \leq j \leq t$,

 $|N(v) \cap N(u_j)| \ge |N(v) \cap N(u_j) \cap N(w_j)| - |N(v) \cup N(u_j)| = |N(w_j) \setminus (N(v) \cup N(u_j))|.$ Since $\{v\} \cup N_U(w_j) \subseteq N(w_j) \setminus (N(v) \cup N(u_j))$, we obtain $|N_U(w_j)| + 1 \le |N(w_j) \setminus (N(v) \cup N(u_j))| \le |N(v) \cap N(u_j)| = |N_W(u_j)|$ for any $j, 1 \le j \le t$.

Therefore, $\sum_{j=1}^{t} |N_V(w_j)| + t \leq \sum_{j=1}^{t} |N_W(u_j)|$, a contradiction.

If $x_1v \in E$, that is, $w_1 = x_1$, then set $W' = W \setminus \{w_1\}$ and $U' = U \setminus \{u_1\}$. By the assumption, $u_2w_2^- \notin E$, $U' \cup \{v\}$ is an independent set of G and $N(u_j) \cap N(v) \subseteq W$ for each $j, 2 \leq j \leq t$. For the same reason as above, we can get that for any $j, 2 \leq j \leq t$, $|N(v) \cap N(u_j)| \geq |N(w_j) \setminus (N(v) \cup N(u_j))|$. Since $\{v, w_2^-\} \cup N_{U'}(w_2) \subseteq N(w_2) \setminus (N(v) \cup N(u_2))$, we obtain

 $|N_{U'}(w_2)| + 2 \le |N(w_2) \setminus (N(v) \cup N(u_2))| \le |N(v) \cap N(u_2)| \le |N_W(u_2)|$ and for any $3 \le j \le t$ we have

 $|N_{U'}(w_j)| + 1 \le |N(w_j) \setminus (N(v) \cup N(u_j))| \le |N(v) \cap N(u_j)| \le |N_W(u_j)|.$

Therefore, $\sum_{j=2}^{t} |N_{U'}(w_j) + t \leq \sum_{j=2}^{t} |N_W(u_j)| \leq \sum_{j=2}^{t} |N_{W'}(u_j)| + (t-1)$, a contradiction.

Case 1.3. There exists some $j, 1 \leq j \leq t$ such that $w_j^+ w_j^- \notin E$, denote by W' the set of all such vertices of W.

Then by the preceding proof, $W \setminus W' \neq \emptyset$. By the assumption, for all $w \in W'$, $N(v) \cap N(w) \cap V(G \setminus C_{i+1}) = \emptyset$. When $|W'| \leq t-2$, then by the assumption, $U' = \{u^+ : u \in W'\}$ is an independent set of G and $N(u) \cap N(v) \in W'$ for any $u \in U'$. Using the same method as before, we can get a contradiction. When |W'| = t-1, say $x_1 = w_1 \in W \setminus W'$, that is, $x_2x_{i+1} \in E$. Set $U' = U \setminus \{u_1\}$. Then by the assumption, $N(u_j) \cap N(v) \subseteq W$ for any $j, 2 \leq j \leq t$. Since $u_2w_2^- \notin E$ and $w_2^- \notin U' \cup N(v)$, using the same method as before, we can get a contradiction.

Case 2. t = 2, that is, $W = \{w_1, w_2\}$ and $U = \{u_1, u_2\}$.

If $w_j^+ w_j^- \notin E$ for j = 1 or j = 2, then $|N(v) \cap N(u_j)| \ge |N(w_j) \setminus (N(u_j) \cup N(v))| \ge 3$ 3 and $|N(v) \cap N(w_j^-)| \ge |N(w_j) \setminus (N(w_j^-) \cup N(v))| \ge 3$. Thus $N(v) \cap N(u_j) \cap V(G \setminus C_{i+1}) \ne \emptyset$ and $N(v) \cap N(w_j^-) \cap V(G \setminus C_{i+1}) \ne \emptyset$. Since there exists some $q, 1 \le q \le i+1$ such that $x_{q-1}x_{q+1} \in E$ and $\{x_{q-1}, x_{q+1}\} \ne \{w_j^-, w_j^+\}$, we can get a $C_{i+2} \triangle C_{i+3}$ in G, contrary to the assumption.

If $w_j^+ w_j^- \in E$ for j = 1, 2, then by the assumption, for j = 1, 2 $N(w_j^+) \cap N(v) \subseteq W$ and $N(w_j^-) \cap N(v) \subseteq W$. Set $y_j = w_j^-$ for j = 1, 2. Let C_1 be the subpath of C_{i+1} from w_1 to y_2 and C_2 be the subpath of C_{i+1} from w_2 to y_1 . Without loss of generality, we may assume $|C_2| \geq |C_1|$. By the assumption, $|C_1| \geq 4$, that is, $|C_{i+1}| \geq 8$. **Case 2.1.** $u_i^+ w_j \in E$, j = 1 or j = 2. Say j = 1.

If $y_2^-w_1 \in E$, then we can get a $C_{i+1} \triangle C_{i+2} = w_2 y_2 u_2 u_2^+ \cdots y_1 u_1 u_1^+ \cdots y_2^- w_1 v w_2$ in G, contrary to the assumption. If $y_2^-w_1 \notin E$, choose $z \in V(C_1)$ such that $z'w_1 \in E$ for any $z' \in C_{i+1}(w_1, z]$ but $z^+w_1 \notin E$. Then by the assumption, $\{v, w_1, z, z^+\}$ is contained in an induced P_4 of G and $N(v) \cap N(z) \in W$. Since d(v, z) = 2, $w_2 z \in E$ by the hypothesis of Theorem 5. Thus we can get a $C_{i+1} \triangle C_{i+2} = w_1 z^- \cdots u_1 y_1 y_1^- \cdots u_2 y_2 y_2^- \cdots z w_2 v w_1$, contrary to the assumption.

Case 2.2. $u_j^+ w_j \notin E$ for j = 1, 2. For the same reason, we may assume that for $j = 1, 2, y_j^- w_j \notin E$.

In this subcase, for $j = 1, 2, \{v, w_j, u_j, u_j^+\}$ is contained in an induced subgraph P_4 of G. Thus by the assumption and the hypothesis of Theorem 5, we have $w_1u_2 \in E, w_2u_1 \in E$ and similarly, $y_1w_2 \in E$ and $w_1y_2 \in E$. Consequently, for $j = 1, 2, N(w_j) \setminus \{v, u_j\} \subseteq N(u_j) \cup N(v)$ and $N(w_j) \setminus \{v, y_j\} \subseteq N(y_j) \cup N(v)$. Also by the assumption, for any vertices x^+, x^- in $V(C_{i+1}) \setminus \{w_1, w_2\}$, we have $x^+x^- \notin E$. Since $|C_{i+1}| \leq n-2$ and G is 2-connected, there exists some $v' \neq v \in V(G \setminus C_{i+1})$ such that $N(v') \cap V(C_{i+1}) \neq \emptyset$. By the choice of $v, d_{C_{i+1}}(v') \leq 2$. Let $x \in V(C_{i+1})$ such that $xv' \in E$.

If $x \in V(C_{i+1}) \setminus W$, then by the assumption and Case 2.1, $x^+x^- \notin E$. Since $d_{C_{i+1}}(v') \leq 2$ and $|N(x) \setminus (N(v') \cup N(x^+))| \geq 3$, $N(v') \cap N(x^+) \cap V(G \setminus C_{i+1}) \neq \emptyset$ by the hypothesis of Theorem 5. Similarly, $N(v') \cap N(x^-) \cap V(G \setminus C_{i+1}) \neq \emptyset$. Thus we can get a $C_{i+2} \triangle C_{i+3}$ in G, contrary to the assumption.

If $x = w_j$ for j = 1 or j = 2, say j = 1, then $v' \in N(u_1) \cup N(v)$. When $u_1v' \in E$, then we can get a $C_{i+1} \triangle C_{i+2}$ in G, contrary to the assumption. When $v' \in N(v)$, then by the assumption and the hypothesis of Theorem 5, $d_{C_{i+1}}(v') = 2$. By the preceding case, we may assume $w_2v' \in E$. Thus we can get a $C_{i+2} \triangle C_{i+3} = w_1u_1u_1^+ \cdots y_2u_2 \cdots y_1w_2vv'w_1$, contrary to the assumption.

Case 3. t = 1. Then by the choice of v, for any $v' \in V(G \setminus C_{i+1}), d_{C_{i+1}}(v') \leq 1$.

If there exist some $v \in V(G \setminus C_{i+1})$ and some $x \in V(C_{i+1})$ such that $xv \in E$ and $x^+x^- \notin E$, then by the assumption, x, x^+, x^-, v are in an induced subgraph $K_{1,3}$ of G. Thus by the hypothesis of Theorem 5, $N(v) \cap N(x^+) \cap V(G \setminus C_{i+1}) \neq \emptyset$ and $N(v) \cap N(x^-) \cap V(G \setminus C_{i+1}) \neq \emptyset$, since t = 1. Because there exists some j, $1 \leq j \leq i+1$ such that $x_{j-1}x_{j+1} \in E$ and $\{x_{j-1}, x_{j+1}\} \neq \{x^-, x^+\}$, we can get a $C_{i+2} \triangle C_{i+3}$ in G, contrary to the assumption. Thus for any $v \in V(G \setminus C_{i+1})$ and $x \in N(v) \cap V(C_{i+1}), x^+x^- \in E$. Without loss of generality, let $x_1 \in N(v) \cap V(C_{i+1})$.

Since G is 2-connected, there exists a path P connecting x_1 and some vertex of

 $V(C_{i+1}) \setminus \{x_1\}$ with internal vertices in $V(G \setminus C_{i+1})$. Let P be such a shortest path and $P = x_1v_1 \cdots v_kx_j$, where $j \neq 1$ and $v_i \in V(G \setminus C_{i+1})$ for any $i, 1 \leq i \leq k$. Since t = 1, we have $k \geq 2$. If $k \geq 3$, then by the choice of P, $\{x_2, x_1, v_1, v_2\}$ is contained in an induced subgraph P_4 of G. Thus by the hypothesis of Theorem 5, there exists some $v^* \in V(G \setminus C_{i+1}) \setminus \{v_1\}$ such that $v^* \in N(x_2) \cap N(v_1)$, since t = 1and consequently, $P' = x_1v_1v^*x_2$ is a path which is shorter than P, a contradiction. Hence k = 2, that is |P| = 4. We may assume $P = x_1v_1v_2x_2$.

By the hypothesis of Theorem 5, there exists $v^* \in (G \setminus C_{i+1}) \setminus \{x_2\}$ such that $v^* \in N(x_3) \cap N(v_2)$. Then $\{x_3, x_2, v_2, v_1\}$ is contained in an induced subgraph P_4 , since t = 1. Since $x_{i+1}x_2 \in E$, we get a $C_{i+2} \triangle C_{i+3}$ in G, contrary to the assumption. Therefore Theorem 5 is true.

References

- A.S. Asratian, O.A. Ambartsumian and G.V. Sarkisian, Some local conditions of existence of cycles and hamiltonian cycles in a graph. Dokl. Acad. Sci. Armenian SSR 91(1990), No.1(in Russian).
- [2] A.S. Asratian, H.J. Broersma, J. Van Den Heuvel and H.J. Veldman, On graphs satisfying a local Ore-type conditon. Preprint(1993).
- [3] J.A. Bondy and U.S. Murty, Graph Theory with Applications. Macmillan, London, and Elsevier, New York(1976).
- [4] A.S. Hasratian and N.Y. Khachatrian, Some Localization Theorems on Hamiltonian Circuits. J. Combin. Theory Ser B 49(1990) 287-294.
- [5] R. Shi, 2-Neighborhoods and hamiltonian conditions. J. Graph Theory 16(1992) 267-271.

(Received 12/7/96; revised 22/8/97)

