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Abstract 

Let G be a 2-connected graph with n ?: 3 vertices such that for any 
two vertices u, v at distance two in an induced subgraph K 1,3 or P4 of 
G, the inequality d(u) + d(v) ?: IN(u) U N(v) U N(w)l- s holds for all 
w E N(u) n N(v). We prove that (i) if s = 1 and IN(u) n N(v)1 ?: 2, 
then G is hamiltonian or K p,p+1 ~ G ~ Kp + K p+1; (ii) if s = 0, then G 
is either pancyclic, or bipartite graph. This generalizes two localization 
theorems known before. 

1. Introduction 

In this paper, we consider only simple finite graphs. Our notations and terminol
ogy follow Bondy and Murty[3]. For a graph G, let V and E denote its vertex set 
and edge set, respectively. Denote by d(u, v) the distance between u and v. K 1,3 is 
a graph with 4 vertices in which 3 vertices have degree 1 and the other has degree 
3. P4 is a path with 4 vertices. Let C be a longest cycle of G with a fixed cyclic 
orientation. For x E V (C), let x+ be the successor and x- be the predecessor of x 
in the chosen direction on C. A graph G is pancyclic, if for any integer i, 3 :::; i :::; n 
G has a cycle of length i. 

The following results are known. 
In [4], Hasratian and Khachatrian proved the following theorem: 

Theorem 1. Let G be a connected graph with n ?: 3 vertices. If d(u) + d(v) ?: 
IN(u) U N(v) U N(w)1 for any triple of vertices u, v, w with d(u, v) = 2 and w E 
N ( u) n N ( v ), then G is hamiltonian. 

Recently, Theorem 1 was generalized by the following two theorems in [1] and [2]: 
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Theorem 2[2]. Let G be a connected graph with n ~ 3 vertices. If for any two 
vertices u, v with d( u, v) = 2 the following conditions hold: 

(i) d(u) + d(v) ~ IN(u) U N(v) U N(w)l- 1 for all w E N(u) n N(v), 
(ii) IN(u) n N(v)1 ~ 2, 

then G is hamiltonian or Kp,p+l ~ G ~ Kp + K p+b where n = 2p + 1,p ~ 2 and + 
is the join operation. 

Theorem 3[1]. Under the conditions of Theorem 1, G is pancyclic. 

In this paper, we obtain the following theorems. 

Theorem 4. Let G be a 2-connected graph with n ~ 3 vertices. If for any two 
vertices u, v at distance two in an induced subgraph K 1,3 or P4 of G the following 
conditions hold: 

(i) d(u) + d(v) ~ IN(u) U N(v) U N(w)l- 1 for all w E N(u) n N(v), 
(ii) IN(u) n N(v)1 ~ 2, 

then G is hamiltonian or Kp,p+l ~ G ~ Kp + K p+1' 

Theorem 5. Let G be 2-connected graph with n ~ 3 vertices. If for any two 
vertices u, v at distance two in an induced subgraph K 1,3 or P4 of G, the inequality 
d( u) + d(v) ~ IN(u) U N(v) U N(w)1 holds for any w E N(u) n N(v), then G is either 
pancyclic or G is a bipartite graph. 

Consider the graph G1 obtained from K n - 3 and {x,y,z} by adding an edge 
set {xy,yz,yu,yv,xu,zv}, where {u,v} ~ V(Kn - 3 ). Obviously, G1 satisfies the 
conditions of Theorem 4 and Theorem 5, but does not satisfy the conditions of 
Theorems 1-3, because IN(x) n N(z)1 = 1. Notice that G is 2-connected under 
the conditions of Theorems 2-3. Therefore, Theorem 4 and Theorem 5 generalize 

. Theorem 2 and Theorem 3, respectively. Also we have the following consequence: 

Corollary 1. Let G be a 2-connected graph. If G has neither K 1,3 nor P4 as induced 
subgraph, then G is pancyclic unless G is a cycle with four vertices. 

Notice that if G is Kl,3-free, then for any u, v E V with d(u, v) = 2, we have 
d(u) + d(v) ~ IN(u) U N(v) U N(w)l- 1 for any w E N(u) n N(v). Thus we have 

Corollary 2. Let G be a 2-connected, Kl,3-free graph. If for any two vertices u,v 
at distance two in an induced subgraph P4 of G, IN(u) n N(v)1 ~ 2, then G is 
hamiltonian. 

Corollary 2 generalizes a result of Shi [5]. 

Corollary 3[5]. Let G be a 2-connected, Kl,3-free graph. If for any pair of vertices 
u, v at distance two in G, IN(u) n N(v)1 ~ 2, then G is hamiltonian. 

2. The Proof of Theorem 4 

By contradiction, let G be a nonhamiltonian graph that satisfies the conditions 
of Theorem 4. Clearly, G contains a cycle, since G is 2-connected. Take C a longest 
cycle with a fixed cyclic orientation. Set R = G \ C, then R =f. 0. Since G is 2-
connected, there exists some v in R such that N ( v) n V (C) =f. 0. Choose a vertex v 
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in R such that IN(v) n V(G)I = max{IN(v') n V(G)I : v' E R}. Let N(v) n V(G) = 
{WI,' ", Wt} (t ~ 1). If t = 1, since G is 2-connected, there is a path connecting 
WI to a vertex, say y, of V (G) \ {wd with all internal vertices in R. Choose such 
a shortest path P' = WIVI ••. VkY, where Vi E R for 1 :S i ::; k. Since G is a longest 
cycle of G and t = 1, we have k ~ 2 and wi, WI, VI, V2 are in an induced subgraph P4 

of G. Thus IN(wt) n N(Vl)1 ~ 2. By the maximality of G, N(wt) n N(Vl) ~ V(G), 
so that IN( VI) n V( G) I ~ 2 > t, a contradiction. Hence t ~ 2. Since G is a longest 
cycle, it is easy to show that for any 1 ::; i < j ::; t, w[w; tf; E, wiwj tf- E. 

Let G[x, y) denote the subpath of G from x to y (in the chosen direction). For 
G[x+, y] we also write G(x, y] and similarly, G[x, y) = G[x, y-]. Now, set Gi = 
G[Wi' Wi+1), i < t and Gt = G[Wt, WI)' Suppose w[wi E E, then W;+lWi tf; E. 
Choose Ui E V(Gi ) such that for any U E V(G(Wi' Ui]), UWi E E but utwi tf- E. If 
w[wi tf- E, set Ui = w[. Let U = {Ul, U2,' . " Ut} and W = {WI, W2, .. " Wt}. Since 
G is a longest cycle, it is easy to check that for any 1 ::; i ::; t, {v, Ui} is in an induced 
sub graph K I ,3 or P4 of G with d( v, Ui) = 2 and U U {v} is an independent set of C. 
Hence IN(v) n N(Ui) I ~ 2 for all i. 

If for some i, 1 :S i :S t, N(v) n N(Ui) n V(C \ G) =I- 0, then we can get a cycle 
longer than G. Hence we may assume that for each 1 ::; i :S t, N(v) n N(Ui) n 
V(G \ G) = 0. Thus N(v) n N(Ui) ~ W for all 1 :S i ::; t. Since {V,Ui} is in an 
induced subgraph K I ,3 or P4 of G, d(v, Ui) = 2 and Wi E N(v) n N(Ui), we have 
d(v) + d(Ui) ~ IN(v) U N(Ui) U N(wi)1 - 1 by the hypothesis of Theorem 4. Thus 
for any 1 :S i :S t, IN(v) n N(Ui)1 ~ IN(v) U N(Ui) U N(Wi)l- IN(v) U N(Ui)l- 1 = 
IN(Wi) \ (N(v) U N(Ui))I- 1. 

If IGi-il =I- 2 and w[wi tf- E, we have {v, wi}UNu(Wi) ~ N(wd \ (N(v)UN(Ui)). 
If IGi-il = 2 or w[wi E E, we have {v} U NU(Wi) ~ N(Wi) \ (N(v) U N(Ui))' Hence 
we obtain 
INu(Wi)1 + 1 + qi :S IN(Wi) \ (N(v) U N(Ui))1 ::; IN(v) n N(Ui)1 + 1 :S INw(ui)1 + 1 
for any i,l :S i :S t, where qi = 1, if IGi-11 ~ 3 and w[wi tf- E; otherwise, qi = O. 
Therefore, 

E~=I(lNu(wi)1 + qi) :S E~=IINw(ui)l. (1) 
Note that both Ef=lINu(wi)! and Ef=IINw-(Ui) I represent the number of edges 

with one end in U and the other in W. From the inequality (1), we obtain that for 
all i, 1 ::; i ::; t, qi = O. 

If there exists some i, say i = s, such that IGsl ~ 3, then wtwl E E by qi = O. 
Since G is a longest cycle of G, IGll ~ 3 and wtwi E E. For the same reason, 
we can get for any i, S - 1 ~ i ~ 2, IGil ~ 3 and W4l W;+I E E, in turn. Because 
IN(v) n N(Ui)1 ~ 2, there exists some j,2 ::; j :S s such that WjUl E E. Thus 
we can get a cycle G' = WjUIUt··· wjW;'" wlwt·· . UIWIVWj and IGI' > IGI, a 
contradiction. 

Hence IGil = 2 for all i, 1 :S i :S t. Since G is a longest cycle, there is no path 
joining two vertices of UU{ v} with all internal vertices in V( C\ G). When there exists 
a vertex v' (=I- v) E V (G \ G) such that vv' E E or UiV' E E for some 1 :S i :S t, since 
C is 2-connected and IGil = 2 for all i, we can easily get a cycle which is longer than 
G, a contradiction. Thus when V (G \ G) =I- {v}, then for any v' (=I- v) E V (G \ G) 

63 



we have NC(vf) ~ W. Hence there exists some j such that {v,vf}UNu(wj) ~ 
N(wj) \ (N(v) U N(uj)) and {v} U NU(Wi) ~ N(Wi) \ (N(v) U N(Ui)) for any i =f j. 
Similar to the proof of inequality (1), we obtain E~=lINu(Wi)1 + 1 ::; E~=lINw(Ui)l, 
which is impossible since both Ef=l INu(Wi) I and Ef=lINw(Ui)1 represent the number 
of edges with one end in U and the other in W. Hence V (G \ C) = {v}. 

Notice that for any i with 1 ::; i ::; t we can get a cycle Cf = WiVWi+lUiH ... Wi 
such that IC'I = ICI, Ui E V(G \ Cf) and N(Ui) n V(C') f=- 0. Using the same 
arguments as before, we can derive that N( Ui) = W for any 1 ::; i ::; t. Hence 
Kp,p+l ~ G ~ K pH + Kp and n = 2p + 1. 

Therefore, the proof of Theorem 4 is complete. 

3. The Proof of Theorem 5 

Notice that for any two distinct vertices u, v with d( u, v) = 2, if IN( u) I + IN( v)1 ~ 
IN(u)UN(v)UN(w)1, where wE N(u)nN(v), then IN(u)nN(v)1 ~ IN(w)\(N(u)u 
N(v))1 ~ 2, since {u,v} ~ (N(w) \ (N(u) U N(v))). Thus by Theorem 4, G has a 
hamiltonian cycle C, since otherwise G is a supergraph of Kp,p+l and therefore does 
not satisfy the condition of Theorem 5. If G has no C3 , then choose v E V(G) such 
that d(v) = max{d(u) : u E V(G)}. When d(v) 2, then ICI = 4, that is, G is 
bipartite. When d( v) ~ 3, then v-, v, v+ are contained in an induced subgraph K1,3 
of G. Since d(v-)+d(v+) ~ IN(v-)UN(v+)UN(v)1 and N(v)n(N(v-)UN(v+)) = 0, 
we can easily get that G is bipartite. 

Therefore, in the rest of this section, we may assume that G contains at least 
one triangle. For an integer i ~ 3, we define OJ::,Ci+1 = XIX2 ... Xi+lXI to indicate a 
cycle with Xj-lXjH E E for some 1 ::; j ::; i + 1. First we claim that G has a 0 4605 , 

Let 0 3 = XIX2X3XI be a triangle in G. By contradiction, assume that there is 
no 0 4605 in G. Since G is 2- connected, we may assume that there exist u =f 
v E V(G \ C3) such that XIU E E, X3V E E. Then uv (j. E, since otherwise we 
have a C46C5 in G, a contradiction. If U, Xl, X3, v are in an induced subgraph P4 
of G, then IN(u) n N(X3)1 ~ 2 and IN(v) n N(xdl ~ 2. When there exists some 
W E V(G)\ {Xl, X2, X3, U, v} such that W E N(u)nN(X3) or W E N(v)nN(xd, then we 
can get a 0 4605 in G, contrary to the assumption. When (V(G) \ {Xl, X2, X3, U, v}) n 
N(u) n N(X3) = 0 and (V (G) \ {XI,X2,X3,U,V}) n N(v) nN(XI) = 0, then X2U E E 
and X2V E E. Thus we can also get a 046C5, contrary to the assumption. 

If U, Xl, X3, v are not contained in an induced subgraph P4 of G, then UX3 E E or 
VXl E E, say UX3 E E. For the same reason, X2V (j. E and (V(G) \ {Xl, X2, X3, U, v}) n 
N(u)nN(v) = 0. Thus X2U E E, since otherwise, u, v, X2 are contained in an induced 
subgraph K I ,3 of G and d(u)+d(v) ::; IN(u)UN(v)UN(x3)1-1, a contradiction. Since 
G is 2-connected, we may assume that there exists some W E V(G) \ {Xl, X2, X3, U, v} 
such that uw E E. By the assumption, w, U, X3, v are contained in an induced 
subgraph P4 of G and N(v) n {Xl, X2, U, w}) = 0. Since IN(u) n N(v)1 ~ 2, there 
exists some z E V(G) \ {XI,X2,X3,W} such that zu E E and zv E E. Thus we can 
get a C4605 in G, contrary to the assumption. The final contradiction shows that 
there must be a C4605 in G. 

Now, we shall prove that if G has a Oi60i+b then G has either a 0i+160i+2 or 
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a Ci+2LCH3 for any i, n - 3 2: i 2: 4. By contradiction, assume that there exists 
some i,4 S; i ::; n - 3 such that there is neither CHI LCH2 nor CH2LCi+3 in G. 
We Choose v E V (G \ CHd such that dCHl (v) = max{ dCHl (y) : y E V (G \ CHI)}' 
Let CiLCHl XIX2'" Xi+lXl and W = N(v) n V(CHd = {WI, W2,"', Wt} in order 
around CHl. Thus we may assume that for any v' E V(G \ CHd and x E V(CHI ), 
{xv', v' x+} rz E, since otherwise, we can get a Ci+l LCH2 in G, contrary to the 
assumption. Let Uj = wj for 1 ::; j ::; t and U {UI' U2,"', Ut}. We distinquish 
the following three cases: 
Case 1. t 2: 3. 
Case 1.1. For all 1 S; j S; t, wjwj E E. 

Then WtWI fI E by the assumption. Choose U E V(C(Wt, wI)) such that UWI fI E 
but for any u' E V(C(u, WI), U'WI E E. Since IN(u+) n N(v)1 ;:::: 2, there exists some 
Z E V(G \ CHd or z E W \ {w} such that Z E N(u+) n N(v). If Z E V(G \ CHr), 
then we can get a CH2LCH3 in G. If Z E W then we can get a CHI LCH2 by t 2: 3 
in G, both are contrary to the assumption. 
Case 1.2. For all 1 S; j ::; t, wjWj fI E. 

Without loss of generality, we may assume that XIX3 E E. Thus X2V fI E. 
If XIV fI E, then X2,X3 fI U. By the assumption, U U {v} is an independent 

set of G and N(uj) n N(v) ~ W for any j,l S; j ::; t. Since d(v, Uj) = 2 and 
Wj E N(uj) n N(v), we have d(v) + d(uj) 2: IN(v) n N(uj) n N(wj)l. Thus for any 
j,l ::; j S; t, 
IN(v)nN(uj)1 ;:::: IN(v)nN(uj)nN(wj)I-IN(v)UN(uj)1 = IN(wj) \ (N(v)UN(uj))I· 
Since {v} U Nu(wj) ~ N(wj) \ (N(v) U N(uj)), we obtain 
INu(wj)1 + 1 ::; IN(wj) \ (N(v) U N(uj))1 S; IN(v) n N(uj)1 = INw(uj)1 
for any j, 1 S; j ::; t. 

Therefore, 1';;=IINv (wj)1 + t ::; 1';;=lINw(uj)l, a contradiction. 
If XIV E E, that is, WI = Xl, then set W' = W \ {wt} and U' = U \ {ut}. By the 

assumption, U2W; fI E, U' U {v} is an independent set of G and N (Uj) n N (v) ~ W 
for each j,2 ::; j ::; t. For the same reason as above, we can get that for any 
j,2 ::; j S; t, IN(v) n N(uj)1 ;:::: IN(wj) \ (N(v) U N(uj))I. Since {v, wi} U NUl (W2) ~ 
N(W2) \ (N(v) U N(U2)), we obtain . 
I NUl (w2)1 + 2 ::; IN(W2) \ (N(v) U N(U2))1 S; IN(v) n N(U2)1 S; INw(U2) I 
and for any 3 ::; j S; t we have 
I NUl (wj)1 + 1 ::; IN(wj) \ (N(v) U N(uj))1 S; IN(v) n N(uj)1 S; INw(uj)l· 

Therefore, 1';;=2INu,(wj) + t ::; 2:;=2INw(Uj) I S; 2:;=2INw'(Uj) I + (t - 1), a con
tradiction. 
Case 1.3. There exists some j, 1 S; j S; t such that wjWj fI E, denote by W'the 
set of all such vertices of W. 

Then by the preceding proof, W \ W' "# 0. By the assumption, for all W E W', 
N(v) n N(w) n V(G \ CHd = 0. When IW'I S; t - 2, then by the assumption, 
U' = {u+ : U E W'} is an independent set of G and N(u) n N(v) E W' for any 
U E U'. Using the same method as before, we can get a contradiction. When 
IW'I = t 1, say Xl = WI E W \ W', that is, X2Xi+l E E. Set U' = U \ {ut}. Then 
by the assumption, N(uj) n N(v) ~ W for any j, 2 S; j S; t. Since u2wi fI E and 
wi fI u' U N (v), using the same method as before, we can get a contradiction. 
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Case 2. t 2, that is, W = {Wl,W2} and U = {Ul,U2}. 
Ifwtwj tt E for j = lor j = 2, then IN(v)nN(uj)1 ?:: IN(wj)\(N(Uj)uN(v))1 2:: 

3 and IN(v)nN(wj)/?:: IN(Wj) \ (N(wj)uN(v))1 ?:: 3. Thus N(v)nN(uj)nV(G\ 
CHd =I- 0 and N(v)nN(wj)nV(G\Ci+d =I- 0. Since there exists some q, 1 ::; q::; i+1 
such that Xq-lXq+l E E and {Xq-l, xq+d =I- {wj, wt}, we can get a CH26CH3 in G, 
contrary to the assumption. 

Ifwtwj E E for j = 1,2, then by the assumption, for j = 1,2 N(wt)nN(v) ~ W 
and N(wj) n N(v) ~ W. Set Yj = wj for j = 1,2. Let C 1 be the subpath of CHI 
from WI to Y2 and C2 be the subpath of CHI from W2 to Yl. Without loss of generality, 
we may assume /C21 2:: ICll· By the assumption, ICll ?:: 4, that is, ICi +11 2:: 8. 
Case 2.1. ujWj E E, j = 1 or j = 2. Say j = 1. 

If yiWl E E, then we can get a CH16CH2 = W2Y2U2Ut· .. YlUlUt··· YiWlVW2 in 
G, contrary to the assumption. If YiWl tt E, choose Z E V(Cr) such that zlWl E E 
for any Zl E CHl(Wl,Z] but Z+Wl tt E. Then by the assumption, {V,Wl,Z,Z+} 
is contained in an induced P4 of G and N(v) n N(z) E W. Since d(v, z) = 2, 
W2Z E E by the hypothesis of Theorem 5. Thus we can get a Ci +16CH2 = 
WIZ- ... UlYlYl' .. U2Y2Yi ... ZW2VWl, contrary to the assumption. 
Case 2.2. ujWj tt E for j = 1,2. For the same reason, we may assume that for 
j = 1,2, yjWj tt E. 

In this subcase, for j = 1,2, {v, Wj, Uj, uj} is contained in an induced subgraph 
P4 of G. Thus by the assumption and the hypothesis of Theorem 5, we have WlU2 E 

E, W2Ul E E and similarly, YIW2 E E and WlY2 E E. Consequently, for j = 1,2, 
N(wj) \ {v, Uj} ~ N(uj) U N(v) and N(wj) \ {v, Yj} ~ N(Yj) U N(v). Also by the 
assumption, for any vertices x+, X- in V(CHl ) \ {WI, W2}, we have x+x- tt E. Since 
/CHII ::; n - 2 and G is 2-connected, there exists some Vi =I- v E V(G \ Ci+1) such 
that N(v' ) n V(CHd =I- 0. By the choice of v, dCHl (v') ::; 2. Let x E V(CHl ) such 
that xv' E E. 

If x E V(CHl ) \ W, then by the assumption and Case 2.1, x+x- tt E. Since 
dCHl (v') ::; 2 and IN(x) \ (N(v' ) U N(x+))1 ?:: 3, N(v' ) n N(x+) n V(G \ CHd =I- 0 
by the hypothesis of Theorem 5. Similarly, N(v' ) n N(x-) n V(G \ CHr) =I- 0. Thus 
we can get a CH26CH3 in G, contrary to the assumption. 

If x Wj for j = 1 or j = 2, say j = 1, then Vi E N(Ul) U N(v). When 
Ul v' E E, then we can get a Ci+16CH2 in G, contrary to the assumption. When 
v' E N(v), then by the assumption and the hypothesis of Theorem 5, dCH1(v') = 2. 
By the preceding case, we may assume W2V' E E. Thus we can get a CH26CH3 = 
WI Ul ut ... Y2U2 ... Yl W2VV' WI, contrary to the assumption. 
Case 3. t = 1. Then by the choice of v, for any v' E V (G \ CHI), dCHl (v') ::; 1. 

If there exist some v E V(G \ CHI) and some x E V(CHl ) such that xv E E 
and x+x- tt E, then by the assumption, x, x+, x-, v are in an induced subgraph 
K 1,3 of G. Thus by the hypothesis of Theorem 5, N(v) n N(x+) n V(G \ CHI) =I- 0 
and N(v) n N(x-) n V(G \ CHI) =I- 0, since t = 1. Because there exists some j, 
1 ::; j ::; i + 1 such that Xj-lXj+1 E E and {Xj-I, xj+d =I- {x-, x+}, we can get a 
CH26CH3 in G, contrary to the assumption. Thus for any v E V(G \ CHI) and 
x E N(v) n V(CHl ), x+x- E E. Without loss of generality, let Xl E N(v) n V(CHl ). 

Since G is 2-connected, there exists a path P connecting Xl and some vertex of 
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V(CHI ) \ {xd with internal vertices in V(G \ CHI). Let P be such a shortest path 
and P = XlVI' .. VkXj, where j =1= 1 and Vi E V(G \ CHI) for any i, 1 :::; i :::; k. 
Since t = 1, we have k ~ 2. If k ~ 3, then by the choice of P, {X2' Xl, VI, V2} is 
contained in an induced subgraph P4 of G. Thus by the hypothesis of Theorem 5, 
there exists some V* E V(G \ Ci +l ) \ {VI} such that V* E N(X2) n N(VI), since t = 1 
and consequently, pI = Xl VI v* X2 is a path which is shorter than P, a contradiction. 
Hence k = 2, that is IPI = 4. We may assume P = XIVIV2X2. 

By the hypothesis of Theorem 5, there exists v* E (G \ CHd \ {X2} such that 
v* E N(X3) n N( V2)' Then {X3' X2, V2, VI} is contained in an induced subgraph P4 , 

since t = 1. Since Xi+IX2 E E, we get a CH26CH3 in G, contrary to the assumption. 
Therefore Theorem 5 is true. 
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