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Abstract 
Let G be a connected graph of order p and let 0 ::f. s ~ V ( G). Then 
S is a rad(G)-forcing set (or a radius-forcing set of G) if, for each v E 
V(G), there exists v' E S with dc(v, v') ?: rad(G). The cardinality of 
a smallest radius-forcing set of G is called the radius-forcing number of 
G and is denoted by rf(G). A graph G is called a randomly k-forcing 
graph for a positive integer k if every k-subset of V(G) is a radius-forcing 
set of G. We investigate the value of rf(G) for various graphs G, and 
obtain some general bounds, and we characterize graphs for which rf 
achieves the values of 1, 2, p-1, and p, respectively. We establish the NP­
completeness of the calculation of rf for arbitrary graphs, and conclude 
with an investigation of k-randomly forcing graphs. 

1. Introductory definitions and examples 

Let G be a connected graph of order p and vertex set V (G). Suppose that the vertices 
of G represent p facilities in which essential data or materials are storeable (for 
example, warehouses, rooms, computers in an information network). Two vertices 
in G are joined by an edge if the corresponding facilities are linked or adjacent or 
are somehow "close" to each other. Suppose that it has been determined that, for 
some kEN, if a disaster or failure of some kind occurs at a facility (represented 
by a vertex v, say), then all facilities represented by vertices at distance at most 
k - 1 from v will be jeopardized. The problem at hand now is to select the smallest 
possible subset of V (G) so that, if our essential material is stored in the facilities 
corresponding to this subset, then our system, in the most economical way, has the 
property that our material, or information, is retrievable from somewhere in the 
system even in the case when an arbitrary facility fails. One option, of course, is to 
design G to have radius at least k and to store all essential data in each facility, but 
this is an expensive option. However, if rad( G) ?: k and if S is a smallest subset 
of V(G) with the property that, for each w E V(G), there exists w' E S such that 
dc ( w, w') ?: k, then selecting the lSI facilities represented by S as the set of facilities 
at which to store our essential data will produce a choice that may be considerably 
cheaper, but which still provides the required security. In this paper, we will consider 
the case where rad( G) = k. 
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Let G be a (connected) graph, a E V(G) and A, S ~ V(G). We define the 
generalized S-eccentricity of a in G, eG(a, S), by 

eG(a, S) = max{dG(a, s); s E S}. 

If w is a vertex in S for which eG(a, S) = dG(a, w), we will call w an 8-eccentric 
vertex of a. We define rad(A, S, G), the radius of A with respect to 8 in G, by 

rad(A,S,G) = min{eG(a,S); a E A}. 

If S is such that rad(A, S, G) = rad( G), then S is called an A-rad(G}-forcing set; 
the size of a smallest A-rad( G)-forcing set is denoted by rf(A, G) and called the 
A-rad(G}-forcing number. If rad(V(G), S, G) = rad(G), then (briefly) 8 is a rad(G)­
forcing set, or simply a radius-forcing set if no ambiguity is possible; the size of a 
smallest rad( G)-forcing set, denoted by rf( G), is called the radius-forcing number of 
G. Also, we abbreviate rad(V(G), S, G) by rad(S, G). (Notice that rf(G) can be seen 
as the smallest number of vertices in a subset 8 of V(G) such that each vertex of G 
is at distance at least rad(G) from some vertex in S.) 

In [4], Fajtlowicz introduced the class of graphs called r-ciliates and the following 
notion of r-criticality. 

Definition 1. For a, bEN with b ~ 3, let Cb,a be a graph obtained from b disjoint 
copies of Pa+1 by linking together one end-vertex of each in a cycle Cb• For r, a E N 
with r 2: a, the graphs C2a,r-a are called r-ciliates. A graph is r-critical if it has 
radius r and every proper induced connected subgraph has radius strictly smaller 
than r. 

Finally, for a connected graph G of radius r, we define the graph G* to be 
the graph given by V(G*) = V(G) and uv E E(G*) if and only if dG(u, v) 2: r. 
Notice that this graph G* provides a link between total domination and radius­
forcing number since, by the definition of rf, '"Yt(G*) = rf(G). Furthermore, it is not 
difficult to see that G* = Grad(G)-l. (This graph is a generalization, in a sense, of the 
antipodal graph A(G) of a graph G defined by R. R. Singleton [6], where A(G) C G* 
and uv E E(A(G)) if and only if dG(u, v) = diam{G).) 

Examples 1. 

1. The trivial graph is the only graph having radius-forcing number equal to 1. 

2. Any graph having radius 1 has radius-forcing number equal to 2. 

3. If G ~ K m,n,2 ::; m ::; n, with partite sets VI and V2 , then, for 8 ~ V(G) 
such that 18 n Vii ~ 2 for i E {1,2} we have rad(S, G) = 2 = rad(G), whereas 
rad(8, G) ::; 1 if 18 n Vii ::; 1 for some i E {I, 2}. 80, rf(G) = 4. 

4. If G is a graph with rad(G) = 1, then G* ~ Kp(G). If G is a graph of radius 2, 
then G* = G. For n E N, C2n = nK2 (n ~ 2) and C2n+1 = C2n+l . 
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Some preliminary results are listed in the following. 

Proposition 2. Let G be a connected graph and (/) =j:. S ~ V(G). Then 

(1) rad(S, G) :s; rad(G). 

(2) rad(S,G) :s; rad((S)a). 

(3) rad(S, G) :s; rad(S, H) for a connected subgraph H of G with S ~ V(H). 

(4) For any T, S ~ T ~ V(G), T is a radius-forcing set of G if S is a radius­
forcing set of G. 

That there is a fundamental difference between rad(S, G) and rad( (S)a) can be 
easily shown by simple constructions of graphs G where rad(S, G) and rad( (S)a) 
(and hence their difference) can be prescribed for selected sets S ~ V ( G). 

2. The radius-forcing number of a graph 

As we shall see in Section 3, the computation of rf( G) is an NP-complete problem. 
Hence, one cannot expect a simple characterization of graphs with given radius­
forcing number. Graphs with radius-forcing number 2, however, can easily be char­
acterized. 

Theorem 3. For any connected, nontrivial graph G, rf( G) = 2 if and only if 
diam( G) 2:: 2 rad( G) - 1. 

Proof. Let G be a non-trivial, connected graph. Suppose first that diam( G) 2: 
2 rad(G) -1. Let 81, 82 E V(G) with da (S1' 82) = diam(G). Then, for any w E V(G), 

da (S1' w) + da (82' w) 2: da(Sl, S2) = diam(G) 2:: 2 rad(G) - 1, 

so that at least one of da(sr,w), da(S2'W) is at least rad(G), and thus {S1,S2} is a 
radius-forcing set of G, and rf(G) :s; 2. Since G is connected and non-trivial, the 
desired result follows. 

For the converse, let S = {Sl' S2} be a minimum rad(G)-forcing set. Of course, 
for all w E V(G), ea(w, S) = max{da(w, sd, da(w, S2)} 2: rad(G). Let P: (S1 =) 
XO,X1, .. ' ,xm (= S2) be a shortest S1- S2 path. Then, for all i E {O,I, ... ,m}, 
max{ da(Xi, xo), da(Xi, xm)} 2: rad(G); i.e., max{ i, m - i} 2:: rad( G) for all i E 

{O, ... , m}. So r ~ 1 = max {r ~ 1 ,m - r ~ l} 2: rad(G), whence we obtain diam(G) 2: 
m 2: 2rad(G) -1. 0 

Coronary 4. For every non-trivial tree T, rf(T) = 2. 

Proposition 5. Every non-trivial interval graph has radius-forcing number 2. 

Proof. Let G be an interval graph and let [a(v), b(v)] be the interval corresponding 
to the vertex v. Let v', v" be such that b(v' ) = min{b(w)lw E V(G)} and a(v") = 
max{a(w)lw E V(G)}. Then, for every vertex v E V(G), either v' or v" is an 
eccentric vertex of v. Hence, {v', v"} is a radius-forcing set of G. 0 
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Using Theorem 3, we can quickly calculate rf(P) for the Petersen graph P: 
rad(P) = 2 = diam(P) = 2 rad(P) - 2 shows that rf( G) :2: 3. If I is a maxi­
mum independent set of one of the 5-cycles C of P, then V( C) - I is a radius-forcing 
set of P, whence rf(P) = 3. 

A characterization of graphs having radius-forcing number 3 appears to be dif­
ficult. It is true, however, that a graph with radius-forcing number 3 can have 
arbitrarily large radius r and maximum possible diameter 2r - 2 (see Theorem 3); in 
fact, the diameter of a graph H with rf( H) = 3 and radius r can be 2r - 2 or arbitrar­
ily smaller rhan 2r - 2, as Proposition 6 shows. On the other hand, having diameter 
2r - 2 and radius r is not a sufficient condition for a graph to have radius-forcing 
number 3, as Proposition 8 shows. Furthermore, that having radius-forcing number 
3 does not force a graph to have small girth is a consequence of Proposition 7, which 
shows that arbitrarily large girths (of odd parity) are possible. 

Proposition 6. Given any a E N, a:2: 2, there exists a graph G with rf(G) = 3 and 
diam( G) = 2 rad( G) - a. 

Proof. Given a E N with a :2: 2, let bEN with b :2: ~. Construct a graph G 
from the cycle C3a : Vo, VI, ... ,V3a-l, Vo and four additional vertices x, u, v, and w 
by joining the vertices u, V and w to Vo, Va, and V2a, respectively, with paths Pu,o, 

Pv,a, and P w ,2a, respectively, of length b, and by joining x to the vertices va, Va, 

V2a by paths Px,o, Px,al and P x ,2a, respectively, of length a, so that Pu,o, Pv,a, P w ,2a, 

Px,o, Px,a, and P x ,2a are mutually internally disjoint. Then, rad(G) = a + band 
diam(G) = a + 2b = 2rad(G) - a ::; 2rad(G) - 2, whence rf(G) :2: 3. However, 
rad({u,v,w},G) = rad(G); so, rf(G) = 3. 0 

Proposition 7. For any r E N, r :2: 3, let G be obtained by r - 1 subdivisions of 
each spoke of the wheel with 2n outer vertices (so there are r + 1 vertices (in total) 
on each spoke), where n = 2r - 3 or n = 2r - 4. Then, rad(G) = r, g(G) = 2r + 1 
and rf( G) = 3. 

Proof. Let r, n E Nand G be as defined above. Denote the centre of the wheel 
by u and its outer vertices by VI, V2, ... ,V2n' Let Wi be the neighbour of Vi on the 
subdivided spoke of the wheel. It is easy to verify that {u, VI, W n } is a radius-forcing 
set whence rf(G) ::; 3. Since diam(G) = n ::; 2r - 3 = 2 rad(G) - 3, Theorem 3 
implies rf( G) :2: 3. 0 

Proposition 8. There exists an infinite class of graphs G with 
diam(G) = 2 rad(G) - 2 and rf(G) > 3. 

Proof. Let r E N with r :2: 3 and let G be a graph obtained from the disjoint union of 
a 2r-cycle, C : UI, U2, .. . ,U2n UI, and a path of order 2r - 3, P : VI, V2, ... ,V2r-3, by 
identifying the vertices U3 and Vr-l. We note that eC(ui) = r for i E {I, 2, 3, ... ,5} 
and that ec(w) > r for wE V(G) - {Ul,U2, ... ,U5}; so rad(G) = rand diam(G) = 
r + (r - 2) = 2r - 2. Furthermore, each of the vertices U2, U3, U4 has a unique 
eccentric vertex in G, namely U2+r, U3+r and U4+n respectively. Hence, if S is a 
minimum radius-forcing set of G, then, as eC(ui, S) :2: r for i E {2, 3, 4}, it follows 
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that U2+n U3+n UHr E S; furthermore, as ec(ui+n S) 2:: r ~ 3 for i E {2, 3, 4}, 
s - {U2+n U3+n UHr} contains at least one vertex and so rf( G) = lSI 2:: 4. (More 
specifically, rf(G) = 4 follows from the observation that {Ur+2' Ur+3, ur+4, vIl is a 
radius-forcing set of G.) D 

Before moving on from considering graphs which have radius-forcing number 
three, we ask the question whether any graph H having rf(H) = 3 satisfies diam( G) = 
2 rad( G) - 2 (by Proposition 8, this condition is, of course, not sufficient). 

In [4], Fajtlowicz proved that a graph is r-critical if and only if it is an r-ciliate. 

Proposition 9. Let G be a radius-critical graph that is neither a path nor a cycle. 
Then, G ~ C2a,r-a for some a, r E N, 2::; a < rand rf(G) 2a. 

Proof. Let a, r E N with 2 ::; a < r and let G ~ C2a ,r-a' It is easy to verify that, in 
every radius-forcing set of G, each vertex can be replaced by the closest end-vertex. 
Hence, there is a minimum radius-forcing set containing only end-vertices. On the 
other hand, no proper subset of. the end-vertices is a radius-forcing set. D 

Having considered graphs of minimum possible radius-forcing number, we now 
turn to the graphs having maximum possible radius-forcing number. 

A graph G is a unique eccentric vertex graph if every vertex v E V (G) has exactly 
one V (G)-eccentric vertex w E V ( G), i.e. if for every v E V (G) there exists exactly 
one vertex w E V(G) with dc(v, w) = ec(v, V(G). 

Theorem 10. A graph G satisfies rf( G) = p( G) if and only if G is a self-centred 
unique eccentric vertex graph. 

Proof. Let G be a graph with rf(G) = p = p(G). Since any connected graph F of 
order at least 3 satisfies 'Yt(F) :::; p(F) - 1, it follows that G* ~ nK1 U mK2 for some 
non-negative integers m, n. But G* has no isolated vertex. So, G* ~ ~K2 and, for 
every vertex v E V (G), there is only one vertex G at distance at least rad( G) from 
v. Hence, every vertex has a unique eccentric vertex and G is self-centred. 

Conversely, suppose G is a self-centred, unique eccentric vertex graph. Then, for 
any vertex v of G, there is exactly one vertex v* that is at distance at least rad(G) 
from v. So, in G*, every vertex has degree 1. So, G* = mK2 for some mEN and 
rf(G) = 'Yt(G*) = p(G), as required. D 

Now, considering the statement of Theorem 3 that a graph G has rf(G) = 2 if 
and only if diam(G) ~ 2rad(G) - 1, and the statement of Theorem 10, one may 
be inclined to believe that, relative to its order, a graph's radius-forcing number 
is large if the diameter is "close" to the radius. However, for k, n E N (n 2:: 2), 
the graph F which is the lexicographic product C2n [Kk ] of C2n and Kk is such that 
rf(F) = rf(C2n ) = 2n and p(F) = 2kn, i.e., ~ = fe, while diam(F) = n = rad(F). 

43 



That the simple operation of subdivision of an edge can have the effect of almost 
halving the radius-forcing number of a graph is illustrated by Proposition 5. That 
the contraction of an edge can produce a graph with a radius-forcing number that is 
an arbitrarily large factor smaller than the the radius-forcing number of the original 
graph is seen as follows: If n 2:: 2 is an integer, G ~ K 2n , F is a perfect matching 
of G, H = G - F, and V(H) = Au B such that (A)H ~ (B)H ~ Kn , then the 
contraction of any edge e of (A) H or (B) H yields a graph G' having rf( G') = 2, while 
H, being a self-centred, unique eccentric vertex graph, satisfies rf(H) = 2n. 

Proposition 11. Let n EN. Then 

rf(C2n+l ) 

rf(C2n ) 
n+l 

2n, n 2:: 2. 

Proof. Let n E N. For n 2:: 2, ~hat rf(C2n ) = 2n follows immediately from The­
orem 10. Since C2n+1 is self-centred and C2n+l ~ C2n+2 and 'Yt(C2n+1) = n + 1, 
rf( C2n+2) = n + 1. 0 

Lemma 12. If G is a connected graph with p(G) 2:: 4, then 'Yt(G) ~ p(G) - 2. 

Lemma 13. Let G be a connected graph of radius r 2:: 2 and order p with rf( G) = 
p - 1. Then p is odd and V(G) = {u, v, w} U {Xli, X2i; i = 1,2, ... ,9}, where 

(i) dc(u, v) = dc(u, w) = r, dc(v, w) ~ r, 

(ii) dc(y, Xji) < r for y E {u, v, w}, j E {I, 2}, i E {I, 2, ... ,~}, 

(iii) dC(Xli' X2i) = r, i = 1,2, ... ,~. 

Proof. Let G be a graph of order p having rf( G) = p - 1. Then, no component of 
G has order more than three (by Lemma 12. Furthermore, at most one component 
of G* has order three since any connected graph of order three has total domination 
number two. So, G* = ~K2 or G* ~ ~K2 U P3 or G* ~ ~K2 U K3. However, 
I't(~K2) = Pi=- rf(G), and the desired result follows. 0 

We can now describe all (connected) graphs G having rf( G) = p( G) - 1. 

Theorem 14. Let G be a connected graph of order p with rf( G) = p( G) - 1. 

(1) If rad(G) = 1, then G ~ K3 or G ~ K I ,2. 

(2) If rad(G) = 2, then, for H the complete ~-partite graph K(3, 2, 2, ... ,2), we 
have G ~ H or G ~ H + e where e E E(fJ) joins two vertices in the partite 
set of cardinality 3. 

(3) Ifrad(G) 2:: 3, then V(G) = {u, v,w} U {Xli,X2i; i = 1,2, ... ,~} where 

(i) dc(u, v) = dc(u, w) = r, dc(v, w) ~ r, 

(ii) dC(y,Xji) < r for y E {u,v,w}, j E {1,2}, i E {1,2, ... ,~}, 
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(iii) dC(Xli' X2i) = r, i E {I, 2, ... ,~}. 

Proof. Since rf(H) = 2 for any graph H having radius 1, (1) follows immediately. 
Statement (3) holds by Lemma 13. Let G be a connected graph of radius two. By 
Lemma 13, V(G) = {u, v, W }U{Xli' X2i; 1 ::; i ::; ~} where dc(u, v) = dc(u, w) = 2, 
dc(v, w) E {I, 2}, each of u, v and w is adjacent to every vertex of V(G) - {u, v, w} 
and, for each i, 1 ::; i ::; ~, Xli (respectively, X2i) is adjacent to each vertex of 
V(G) - {X2i} (respectively, V(G) - Xli})' Clearly, (2) holds. 0 

We conclude this section with four bounds on rf. Based on the observation that 
rf( G) = "ft( G*) ::; ~p( G*) (see [2]) for any connected graph of order at least three, it 
follows that rf( G) ::; ~p( G) whenever G is a connected graph of order at least three, 
having no vertex with a unique eccentric vertex. Three lower bounds are given next. 

Proposition 15. For a connected graph G of order p, finite radius r ::::: 2, minimum 
degree 6, and connectivity 1'\" 

1. rf(G) > r p 1 - p-I-(r-l)K 

if r ::::: 4, 

if r = 3, 

if r = 2. 

3. rf(G) ~ rlfl where t = max{l{y E V(G);dc(Y,v)::::: r}l;v E V(G)}. 

Proof. Let G, p, r, 6 and I'\, be as described above. Let v E V (G) and Ai = {y E 

V(G); dc(y, v) = i} for i, 1 ::; i ::; ec(v). Clearly, Nco (v) = U:~~v) Ai so that 
degc- v = p 1 - L:~::t IAil. Observing that IAil ::::: I'\, for 1 ::; i ::; r - 1, we have 
L\(G*) ::; p 1 (r - 1)1'\, and so 

rf(G) = "ft(G*) 2 r L\[c*) 1::::: r p - 1 -~r - 1)1'\, 1· 
Moreover, observing that, for any j, 2 ::; j ::; r-2, IAj-lUAjUAj+ll 2 6+1, we have, 
for r ::::: 4, that L\ ( G*) ::; p 1 - { L r; I J( 6 + 1) + r - 1 - 3 L r; 1 J} = p - (6 - 2)l r; 1 J - r, 
whence 

rf (G) 2 r p - (6 - ~ L !::f J r 1-
For r 3, L\(G*) ::; p - 1 - (6 + 1) = p - 6 - 2 so that rf(G) ::::: r *'1; and 

for r = 2, L\(G*) ::; p - 1 - 6 so that rf(G) ::::: r p±-r 1- Result 3 follows from the 

fact that L\(G*) = max{IAvl; v E V(G)}, where Av = {y E V(G); dc(y, v) 2 r} and 

rf(G) ::::: r l(g1) 1- 0 
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Consideration of the even shows that the first bound in t'f()pO'SWlon 15 is 
sharp. To show that the next three are also let k and 8 be ", .. ,,,1-11rD integers 
with 8 ? 2, and consider the G obtained from a the 
rep1lacement of each of the vertices V2+3i (0 :::; i :::; 2k - 1) a 
the deletion of the Vl+3iV2+3i and V2+3iV3+3i, the addition of the aVl+3i, 

aV2+3i for all a E the addition of two new vertices u and v, where u is joined 
to VI and to every vertex of and where v is to V6k and to every vertex of 
V(G6k - 1 ). Then, rad(G) = 3k, = 6k -1 (whence rf(G) = 8, and 
p(G) = 2k8+2k+2. If k ? 2 that rad(G) > then Proposition 15 ? 

r p 1 - ,2H2+
11 h ,215+2+

11 k If k -p-[J-2Jl Y J-r - Hl+t' were Hfi( -+ 2 as -+ 00. - 1 that 

rad(G) = 3), Proposition 15 gives rf(G) ? r *' 1 = 2. Finally, if H is the graph 

obtained from G the deletion of the set {V4}UV( G5)U{ vdu ... UV( G6k - 4 )U{ V6k-3} 

of vertices and the identification of the vertices V3 and V6k-2, then rad(H) = 2, 
diam(G) = 4, rf(H) = 2, 8(H) ~ 8 and p(H) = 28 + 3, and Proposition 15 gives 

rf(G) ? 'P-h 1 = r p~:!ll = 2. 

3. 

It would be very interesting to characterize the class of 
graph G) since, if this class is enough," the decision pf()mem 
associated with rf( G) would be 
is essentially determining 
Unfortunately, the problem the graphs G* seems to be very difficult, 
since it is related to the problem of characterizing powers of 
Fortunately, that the problem of total domination for bipartite graphs is 
is sufficient to show the NP-completeness of RF. 

Definition 2. We define the "UU.u.O-1:'·~~A'~~ 1,\I"TYlt~LH' Problem RF as follows: 

INSTANCE: A connected graph M? 1. 

Is :::; M? 

Theorem 16. RF is NP-complete. 

Proo]. That RF is in NP follows from the fact that it can be fJi+1lnH:,nt-ll" verified 
whether a set of vertices of a connected is a set of the 
graph. 

The problem of the total domination number for is 
NP-complete ([5]). We shall show that RF is NP-complete by showing that BTD is 
reducible in polynomial time to RF, where BTD shall refer to the problem "Given 
a non-complete bipartite graph B (without isolated vertices) and a positive integer 
M, is I't(B) :::; M?" 

Let B be any non-complete bipartite graph without isolated vertices with partite 
sets and V2 , and let M be a positive integer. Let G = B (we can construct G 
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in polynomial time). Notice that, since B is non-complete, G is connected and has 
radius 2. Hence, by definition of the graph G*, B = G* and thus 'Yt(B) = rf(G). 0 

4. Randomly k-forcing graphs 

We refer the reader to the motivation provided in Section 1 where we discussed 
the selection of a smallest set of facilities at which to store material to ensure the 
survival of that material in the event of a disaster occurring at anyone of the facilities. 
Imagine now the situation where the time and cost of finding such a set is sufficiently 
high to warrant re-evaluation by management of this method of ensuring security 
(after all, RF is NP-complete). In other words, suppose that there are other factors 
more important than the size of our security-ensuring collection of facilities. The 
question is, does there exist a number k such that every subset of V (G) of size k is a 
radius-forcing set (where G is, again, the graph that models our system of facilities). 
If such a number k exists, and is not too much bigger than rf(G), then those other 
factors can be allowed to determine where our material is stored. Clearly, picking 
the smallest such k is the most ·cost-effective. A formal definition is as follows. 

Definition 3. We call a connected graph G a randomly k-forcing graph (k E N) if 
rad(S, G) = rad(G) for every S ~ V(G) with lSI = k (i.e., every k-set of V(G) is a 
radius-forcing set of G). 

Notice that every connected graph G is a randomly p(G)-forcing graph, which 
justifies the following definition. 

Definition 4. For a connected graph G, let RF( G), the randomly forcing number 
of G, denote the smallest k for which G is a randomly k-forcing graph. 

Observation. 

1. For all connected graphs G, rf(G) ~ RF(G) ~ p(G). 

2. For all connected graphs G and fEN, RF(G) ~ f ~ p(G), G is randomly 
f-forcing. 

3. For a connected graph G, 

RF(G) = 1 + max{f EN; 3T ~ V(G), ITI = f,rad(T, G) < rad(G)}. 

Proposition 17. For any connected subgraph H of G satisfying rad(H) < rad( G), 
RF(G) > p(H). 

Proof. For G and H satisfying the hypothesis of the proposition and S ~ V(H), 

rad(S, G) ~ rad(S, H) ~ rad(H) < rad(G). 

So, RF(G) > max{ lSI; S ~ V(H)} = p(H). o 
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Corollary 18. For a connected graph G of order p, radius r E N and maximum 
degree .6., 

RF(G) ~ p - .6.(.6. - Iy-I + 1. 

Proof. Let G be a connected graph of order p, finite radius r and maximum degree 
,6,.. Construct a breadth first search tree T rooted at any central vertex c of G, and 
let L be the leaves of T that are the eccentric vertices of c. Then, rad( G - L) = r -1. 
So, by Proposition 17, 

RF(G) > p -ILl ~ p - .6.(.6. - Iy-I. 

o 

The bound given by the above proposition is best possible since it is attained by 
any .6.-ary tree. 

In [3], Erdos, Saks and S6s proved that every connected graph of radius r contains 
a path P2r- 1 as an induced subgraph, whence the following. 

Corollary 19. If G is a connected graph, then RF (G) ~ 2 rad ( G) . 

Examples 20. 

1. For n E N, rad(P2n-d < rad(C2n+l ) = n, so that RF(C2n+d ~ 2n; obviously, 
RF(C2n+d = 2n. Since rf(C2n) = 2n, RF(C2n ) = 2n follows trivially. 

2. Any graph G of radius 1 has RF(G) = 2. 

3. If v is an end-vertex of an r-ciliate C2a,r-a (2 S a < r), then rad( C2a,r-a - v) < 
rad( C2a,r-a), so that RF( C2a,r-a) > p( C2a ,r-a - v) and it follows that 
RF(C2a,r-a) = p(C2a,r-a)' 

4. For n E N, rad(P2n-d = n - 1 < n = rad(P2n ), so that RF(P2n ) > 2n - 1, 
and RF(P2n ) = p(P2n) follows. Furthermore, rad(P2n ) = n = rad(P2n+1) , 

while rad(P2n-d = n - 1 < rad(P2n+1), whence RF(P2n+1) ~ 2n. However, 
it is easy to see that any 2n-set of V (G) is a radius-forcing set of P2n+1 • So, 
RF(P2n+d = p(P2n+1) - 1. 

Obviously, a graph G being randomly RF( G)-forcing does not imply rf( G) = 
RF(G), which leads naturally to the problem of determining which graphs G do 
satisfy rf(G) = RF(G). 

Proposition 21. A connected graph G is a randomly a-forcing graph of order p with 
a = rf( G) if and only if a = p or a = 2 < p and rad( G) = 1. 

Proof. Let G be a connected graph of order p. If rf( G) = p, then obviously G is 
randomly rf(G)-forcing. Otherwise, if rad(G) = 1, then rf(G) = 2 and every pair of 
distinct vertices of G form a radius-forcing set, so that G is randomly rf( G)-forcing. 
Conversely, suppose that G is randomly a-forcing graph with a = rf(G). Suppose 
a < p. Then, every a-set of V(G*) is a minimum total dominating set of G*. Let 
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D be a minimum total dominating set of G; let J = (D)c*. Suppose J contains a 
path of length greater than one; let P : Xl, X2, ... ,Xk (k 2:: 3) be a longest path in 
J. Then, NJ(xd ~ V(P) and Xl has no private neighbour in V(P), so that Xl must 
have a private neigbour y (say) in V( G*) - D. Then, D' = (D - {Xl}) U {y} is not a 
total dominating set (since y has no neighbour in D'); however, this contradicts the 
fact that ID'I = a. Hence, J contains precisely paths of length one. So, (A)c* ~ ~K2 
for every a-set A in V ( G*). 

Case 1: Suppose a 2:: 3 (and hence p 2:: 4) and G* is connected. Then, if u, v, w 
is a path of length 2 in G*, the set {u, v, w} can be extended to an a-set A' of G*, 
where 6( (A')c*) 2:: 2, which is impossible. 

Case 2: Suppose a 2:: 3 and G* is disconnected. Then, by an argument similar to 
that used in Case 1, it follows that every component of G* is a copy of K 2 . However, 
since a < p, there exists an a-set A" in V(G*) that contains a single vertex of some 
component of G*, so that 6( (A")c*) = 0, which is impossible. 

Case 3: Suppose a = 2 (and hence p 2:: 3). Then, every two vertices of G* are 
joined by an edge, so that G* is complete. Therefore, rad( G) = 1. 0 
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