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Abstract 

For an arbitrary graph on n vertices, the minimum time required to 
broadcast is pogz n 1, and for any n, there exist graphs on n vertices 
with broadcast time equal to fIogz n 1. When restricted to planar graphs, 
this is generally not the case; however, just one additional time unit is 
sufficient to allow broadcasting in certain planar graphs. We also show 
that the maximum number of vertices in a planar graph with broadcast 
time t is at least 2t - 1 + 2 LU/3J + 1. 

1 Introduction 

Broadcasting in a communication network is the process of transmitting a message 
from one vertex of the network to all other vertices of the network by placing a series 
of calls over the communication lines of the network. The goal is to accomplish this 
as quickly as possible, subject to the following: (1) each call involves exactly two 
vertices; (2) each call requires one unit of time; (3) a vertex can participate in only 
one call per unit of time; (4) a vertex can only call an adjacent vertex. 

Let a graph G represent a communication network, and V( G) the set of vertices 
of G. For each u E V( G), we define the broadcast time of vertex u to be the minimum 
time required to broadcast from u, and denote this by b( u). Since the number of 
informed vertices can at most double during each unit of time that elapses, it is clear 
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that b( u) ~ flog2 n 1, where n is the number of vertices in G. The b'rOadcast time of 
the graph G, b( G), is the maximum broadcast time for the vertices of G; i.e., 

b( G) = max {b( u ) : u E V ( Gn. 

For the complete graph on n 2:: 2 vertices, [{n, it is easy to see that b([{n) = 
flog2 n 1, so for any value of n, there is a graph on n vertices in which broadcasting 
can be completed in minimum possible time, POg2 n 1. However, it turns out that 
it is not necessary to have as dense a graph as [{n to achieve b( G) = flog2 n 1. In 
general, [4] and [3] consider the problem of finding the minimum number of edges 
in a graph G on n vertices with b( G) = flog2 n 1. The hypercube on n vertices can 
easily be seen to have broadcast time flog2 n 1 (simply broadcast in the ith dimension 
during the ith time unit), and has the minimum possible number of edges required 
to broadcast in time flog2 n 1. The question of broadcasting in graphs with bounded 
degree has also been addressed [2]. 

In many applications, the networks considered are required to be planar. Here, 
we consider the problem of finding planar graphs G on n vertices for which b( G) = 

pog2 n 1 if possible, or at least b( G) is "close to" flOg2 n 1. Because planar graphs 
are inherently sparse, we are not concerned with minimizing the number of edges. 
Notice that the hypercubes are non-planar for large dimensions, so are not of use to 
us in general. 

We define the planar broadcast time for n, bp( n), as the minimum broadcast time 
for planar graphs on n vertices; i.e., 

bp(n) = min{b(G) : G planar, IV(G)I = n}. 

Clearly, bp( n) 2:: flOg2 n 1. Consider a graph G on n = 2m vertices, m ~ 6, and 
suppose that b( G) = flOg2 n 1 = m. In this case, b( u) = flog2 n 1 = m for each vertex 
u E V( G), so that during the broadcasting process, the number of informed vertices 
must double in each unit of time. In particular, the vertex from which the broadcast 
originates must broadcast m times, and thus has degree at least m. But this is true 
for every vertex, and so G has minimum degree at least m. Since m ~ 6, it is clear 
that G can not be planar, and thus in general, bp(n) > flog2 n l-

It is somewhat surprising that bp ( n) does not differ by much from flog2 n 1, and 
that just one extra time unit permits us to broadcast even from low degree vertices 
in an efficient manner. We will see in the next section that 

POg2 n 1 ~ bp( n) ~ POg2 n 1 + 1, 

and that when n = 2t + 1, bp( n) = flOg2 n 1. We then go on to address the problem of 
determining the maximum number of vertices in a planar graph with fixed broadcast 
time t. 

2 Binary wheels 

We begin with a description of a planar graph that has an efficient broadcasting 
scheme, and follow this with a description of the broadcasting scheme. The binary 
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wheel, denoted BWt , is defined as follows: begin with 2t vertices 0,1, ... ,2t - l. 
For every j, 0 S j S t - 1, and every vertex x where 2i divides x, put an edge 
between x and x + 2i. Finally, add an extra vertex 00 and an edge from 00 to 
each of 0,1, ... , 2t - 1. See Figure 1 for an example of BW4 • Notice that the low 
degree vertices (approximately half the vertices have degree at most five) are nicely 
distributed among vertices of high degree. The embedding of BW4 generalizes to 
BWt for any t, so it is clear that BWt is planar. 

Figure 1. 

Theorem 1 b(BWt ) = t + 1. 

Proof: We will show that in BWt (on 2t + 1 vertices), every vertex can broadcast 
in time t + 1 = flOg2(2t + 1)1. We begin with a description of our basic broadcast 
scheme originating at 00. 

Express each vertex x =1= 00 in binary, as a string of length t. During the first unit 
of time, 00 informs ot After the kth time unit, k 2 1, the following invariant holds: 
all vertices x =1= 00 divisible by 2 t - k have been informed, except 2t - 2 t - k = 1 kot-k 

(and no other vertices have been informed). 
During the (k + 1 )st time unit, the broadcast proceeds as follows: each informed 

vertex x =1= 00 is divisible by 2t
-

k and hence can inform x + 2t - k
-

1
, and 00 informs 

2t - 2t - k ; i.e., x = XIX2 ... XkO t - k informs XIX2 . .. xdOt - k- 1 and 00 informs 1 kOt-k. 

It is easy to verify that the invariant is maintained. Thus, after t time units, all 
vertices except 2t 1 = It have been informed; this vertex is informed by 00 during 
the (t + 1)st time unit. 

Suppose now that the broadcast originates at 2t - 1 = It. For convenience, we 
number the time units starting with 0, and during the Oth time unit, 2t 1 informs 
00. Continue the broadcast from 00 as before, and notice that all vertices have been 
informed after time unit t, and thus the total time required to broadcast from 2t - 1 
is t + 1. 
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To show that we can broadcast in time t + 1 from an arbitrary vertex x, we need 
only show that it is possible to originate a broadcast from 00 so that after t time 
units, all vertices except x have been informed. Let x = XIX2 ... Xt, and suppose 
that 2 t - s is the largest power of two that divides Xi i.e., x = XIX2 ... x s_ I 10t - s . We 
construct a sequence of vertices VI, V2, ... Vt, where VI = X10 t - 1

, and for 2 ::s; k ::s; t, 
Vk = XIX2 .. ' Xk_I10t-k (note that Vs = x). We will describe a broadcast scheme 
originating at 00 so that: 

1. for 1 ::s; k ::s; s, after k time units all vertices Y i- 00 divisible by 2t - k have been 
informed except Vk, and no other vertices have been informed; 

2. for s + 1 ::s; k ::s; t, after k time units all vertices Y i- 00 divisible by 2t
- k have 

been informed except for Vs = x, and no other vertices have been informed. 

During the first time unit, 00 informs the vertex (1 - xd2 t
-

1 = (1 - Xt)Ot-l. 

Notice that after the first time unit, VI = XIO t- 1 is the only vertex divisible by 2t - 1 

that has not been informed. 
Suppose that 1 ::s; k ::s; s - 1, and that after k time units all vertices Y (y i- 00) 

divisible by 2 t - k have been informed, except for Vk. During the (k + 1 )st time unit 
the broadcast proceeds as follows: if Xk = 1, then every informed vertex Y i- 00 
is divisible by 2 t - k , and informs Y + 2 t - k- 1

; 00 informs Vk. On the other hand, 
if Xk = 0, then XIX2' .. Xk-l Ot-k+1 informs Vk = XIX2 ... Xk_l10t-k. Every other 
informed vertex Y i- 00 is divisible by 2t

-
k and informs y + 2t

-
k

-
1

; 00 informs 
Vk + 2 t - k- 1 = XIX2 ... Xk_IllOt-k-i. 

We will now verify that (after k + 1 ::s; s time units) all vertices divisible by 
2t- k - 1 have been informed, except for Vk+1' To do this, it is sufficient to show that 
after (k + 1) time units, 0) Vk is informed, and (ii) every vertex Y = Yl ... YklOt - k- 1

, 

Y i- Vk+1 is informed. If Xk = 1, then Vk was informed by 00, and every vertex 
Y = Yl'" Yk10t-k-l was informed by Yl ... YkOt-k, except when Y = Vk+1, in which 
case YI ... YkOt - k = Xl'" Xk_l10t-k = Vk, which was not previously informed. If 
Xk = 0, then Vk was informed by Xl'" Xk_lOt-k+1 (this vertex would normally inform 
Xl ... Xk_l010t-k-l = Vk+1, which need not be informed). Vertex Y = Yl ... YdOt - k- 1 

was informed by Yl ... YkOt-k, except in the case when Y = Xl ••• Xk_lllOt-k-I (Vk 

could not inform this vertex). In this case, Y = Xl." xk_d10t - k - 1 was informed by 
00. 

Thus, after s time units, every vertex Y i- 00 that is divisible by 2t
-

s has been 
informed, except for VS' During the (k + l)st time unit, s ::s; k ::s; t - 1 every informed 
vertex Y i- 00 is divisible by 2 t

-
k - 1

, and hence informs Y + 2t
-

k - 1
; 00 informs Vk+1' 

What remains is to verify that (after k + 1 time units), all vertices divisible by 
2t

-
k - 1 , except for Vs = x, have been informed. To do this, we need only verify 

that after (k + 1) time units, every Y = Yl ... Yk10t-k-l is informed. The vertex 
Y = YI ... Yk10t-k-1 was informed by Yl ... YkOt-k, except when Y = Vk+l? in which 
case Y was informed by 00. 

This shows that for any X E V(BWt ), X i- 00, it is possible to originate a 
broadcast from 00 so that after t time units X is the only uninformed vertex. Since 
00 is adjacent to every other vertex of BWt , this implies that for any X E V( G), 
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x =1= 00, it is possible to originate a broadcast at x that is complete after t + 1 time 
units. On the other hand, pog2(2t + 1)1 = t + 1, and thus b(BWt) = t + 1. II1II 

Corollary 2 If n = 2t + 1) then bp( n) = flOg2 n 1. 

For 2t
-

1 + 1 < n < 2t + 1, it is possible to modify BWt and the broadcast 
scheme described in the proof to obtain a graph on n vertices with broadcast time 
t + 1 = POg2 n 1 + 1. Note that the odd vertices in BWt (i.e., those with Xt = 1) 
are the last to be informed in the broadcast scheme just described, and that they 
are never used to inform any other vertices. There are 2t

- 1 odd vertices in BWt , 

and deleting any subset of these results in a graph in which the broadcast scheme 
for BWt can be used to inform all vertices in time at most t + 1. This leads to the 
following theorem. 

The authors wish to acknowledge D. West for pointing out the following alternate 
proof of Corollary 2. Define a broadcast }ree to be a rooted tree on n vertices with 
root u such that b( u) = flog2 n 1. If n = 2t for some t ~ 1, then there is a unique (up 
to isomorphism) broadcast tree on n vertices. Let G be the graph obtained from the 
broadcast tree on 2t vertices by adding an extra vertex, along with edges to the 2t 
vertices. Clearly, G is a planar graph, and G has 2t + 1 vertices. One can verify by 
arguments similar to those above, that b( G) t + 1. Thus, this graph also admits 
a broadcast scheme in which each vertex broadcasts in time t + 1, implying that 
bp (2t + 1) f!og2(2 t + 1)1- We note that the graph G has fewer edges (only 2£+1-1 
edges) than the graph BWt (which has 3· 2t - 3 edges). However, the graphs BWt 
have the advantage that we can use them to obtain better bounds for the maximum 
number of vertices in a planar graph with broadcast time t, as we shall see in the 
next section. 

3 Extended binary wheels and q ... pods 

For fixed t, we define Bp(t) to be the maximum number of vertices in a planar graph 
with broadcast time t. Note that Bp(t) 2:: n if and only if bp(n) ::; t. When t ::; 3, 
the hypercube on 2t vertices is planar, and thus Bp(t) = 2t for these values of t. The 
graph in Figure 2 has 16 vertices, and it is easy to verify that the broadcast time for 
this graph is four, thus showing that Bp( 4) = 16. When t = 5, the largest planar 
graph with broadcast time five that we know of contains 30 vertices (see Figure 3), 
and so 30 ::; Bp(5) ::; 32. 

For values of t ~ 6, it seems much more difficult to determine exact values for 
Bp(t). It is obvious that Bp(t) ::; 2t, and the comments in the previous section 
show that for t 2:: 6, Bp(t) ::; 2t - 1. Also, the fact that b(BWt-d = t shows that 
Bp(t) 2:: 2t - 1 + 1. We now proceed to improve this lower bound. 

313 



Figure 2. Figure 3. 

The broadcast scheme described for the binary wheel, BWt - b in the previous 
section is efficient in the sense that broadcasting is completed in time t, the minimum 
possible time. However, observe that when broadcasting from 00, only one call is 
made during the last time unit (all vertices except 00 are idle during the last time 
unit), and when broadcasting from x f=. 00, x makes the initial call to 00, but then 
is idle for the rest of the time. By making use of these idle vertices, we can increase 
the number of vertices that can be informed in t time units. 

The general structure of the binary wheel can be used to construct a graph with 
more than 2t

-
1 + 1 vertices having broadcast time t. We first define a q-pod as follows: 

begin with 2q + 1 vertices 0,1,2, ... , 2Q
• For every j, 0 S; j :s: q, and every vertex x 

where 2i divides x, put an edge between x and x + 2i. The vertices 0 and 2Q are called 
the endpoints of the q-pod. It is easy to see that q-pods are planar. Observe that 
the graph BWt - 1 can be obtained by taking two (t - 2)-pods, identifying the two 0 
vertices and the two 2t - 2 vertices, removing any multiple edges, and then adding a 
vertex 00 joined to all the other vertices of the graph. 

An extended binary wheel, denoted Et-l, is the graph on 2t- 1 + 2L2t/3J + 1 vertices 
constructed as follows: begin with two (t - 2)-pods, PI and Pz, and one 2lZt/3Lpod, 
P3 • Relabel the vertices of P2 and P3 by changing the label of every x E V(Pz) 
to x + 2t - Z , the label of every y E V(P3 ),y "# 2l2t/3J, to y + 2t -t, and the label of 
2lZt/3J E V(P3 ) to O. Next, identify vertices with identical labels (i.e., 0 E V(Pd 
is identified with 0 E V(P3 ), 2t-Z E V(P1 ) is identified with 2t

-
2 E V(P2 ), and 

2t- 1 E V(P2 ) is identified with 2t- 1 E V(P3 )). Finally, add another vertex 00 and an 
edge from 00 to each of 0, 1,2, ... ,(2t- 1 + 2l2t/3J - 1). It is easy to verify that Et - l 

is planar. We will now show that B(Et-d = t, thus proving the following theorem. 

Theorem 4 For t ~ 6, Bp(t) ~ 2t- 1 + 2LZt/3J + 1. 

The proof of this requires two preliminary results. We first define a q*-pod to be 
a q-pod with one of its endpoints deleted; a q*-pod has precisely one endpoint. 
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Lemma 5 If x is the endpoint of a q* -pod, then b( x) = q. 

Proof: The q*-pod contains the broadcast tree on 2q vertices, rooted at x, as a 
spanning subgraph, and hence b(x) = q. III 

Lemma 6 For every integer q ~ 3, the broadcast time for the q-pod is at most 

f3q/21 - 1. 

Proof: Let q ~ 3, and let Dq denote the q-pod on vertices 0,1,2, ... 2q. We need to 
show that for any vertex x E V(Dq), b(x) ::; r3q/21 - 1. The proof is by induction 
on q. For q = 3, it is routine to verify that every vertex in D3 has broadcast time 
4 r3q/21 - 1; similarly, for q = 4, one can check that every vertex in D4 has 
broadcast time 5 r3q/21 - 1. 

We partition the vertices of Dq into levels as follows: a vertex v is in level zero 
if v == 1 (mod 2); v is in level one if v == 2 (mod 4); v is in level two if v == 0 
(mod 4). Since every vertex v is adjacent to v - 2, v-I, v + 1 and v + 2, it is clear 
that every vertex at level zero and every vertex at level one is adjacent to a vertex 
at level two. 

Let x be any vertex in Dq , and consider the broadcast originating at x. If x is a 
level zero or level one vertex, then during the first time unit, x informs a level two 
neighbour, nx ; otherwise, x is a level two vertex, and we let nx = x. A (q - 2)-pod, 
Dq- 2 , canbe obtained from Dq by suppressing all vertices at levels zero and one, 
and deleting the resulting loops and multiple edges. Then nx is a vertex in Dq- 2 , 

and by the induction hypothesis, b(nx) :::; f3(q 2)/21 1 in Dq- 2 • This means that 
in Dq , all level two vertices can be informed in at most r3(q - 2)/21 - 1 time units 
from the broadcast originating at n x . Therefore, in r3( q 2)/21 time units, all level 
two vertices have been informed. At this point, it is easy to see that the level one 
and level zero vertices can all be informed in just two more time units. Therefore, 
b(x) :::; r3(q - 2)/21 + 2 = r3q/21 - 1. The result now follows by induction. III 

The authors are grateful to B. Bauslaugh for simplifying the original proof of 
Lemma 6. 

Proof of Theorem 4: We will describe a broadcast scheme for E t - 1 , showing that 
each vertex has broadcast time t. There are a number of cases to consider. 

Case 1: First, suppose that the broadcast originates at 00. During the first unit of 
time, 00 informs 0, and during the second unit of time 0 informs 2t -2 and 00 informs 
2t-l. By Lemma 5, vertex 0 can originate a broadcast that informs 1,2, .. . 2t

-2 - 1 
in the remaining t - 2 time units; Similarly, vertex 2t-2 can originate a broadcast 
that informs (2 t -2 + 1), (2t -2 + 2), ... (2 t

-
1 -1) in the remaining t - 2 time units. As 

well, since l2t/3J ::; t - 2, vertex 2t
-

1 can originate a broad~ast to inform (2 t
- 1 + 

1), (2 t - 1 + 2), ... , (2 t - 1 + 2l2t/3J - 1) in the remaining t 2 time units. Therefore, 
b(oo)=t. 

Case 2: Now suppose the broadcast originates at one of vertices 0, 2t -2 or 2t-l. If the 
broadcast originates at vertex 0, then the first call is from 0 to 00, and the broadcast 

315 



then proceeds as in Case 1. By the symmetry of Et - 1 , a broadcast originating at 
2t - 1 is identical to one originating at vertex 0, and so can be completed in t time 
units. Finally, suppose the broadcast originates at 2t

-
2 ; the first call is from 2t

-
2 to 

00. During the second unit of time, 2t- 2 informs ° and 00 informs 2t-l. Thus after 
the first two time units, vertices 00, 0, 2t

-
2 and 2t

-
1 are the only informed vertices, 

as in Case 1, and thus the broadcast can proceed in the same fashion. Therefore, 
b(O) = b(2t-2) = b(2t-1) = t. 
Case 3: We now consider the case where the broadcast originates at vertex x, where 
2t - 1 + 1 ~ x :::; 2t

- 1 + 2L2t/3J - 1. The first call is from x to 00. During th« second 
time unit, x can originate a broadcast to inform all the vertices in the l2t /3 J -pod 
on vertices 2t- 1,(2t - 1 + 1), ... ,(2t-1 + 2L2t/3J -1),0. By Lemma 6, this requires 
r3l2t/3J/21 time units, and r3l2t/3j/21 ~ t 1, so this can be accomplished in the 
remaining t - 1 time units. All remaining vertices can all be informed by a broadcast 
originating at CXJ during the second unit of time. For 2 ~ k :::; t, 00 informs 2t - k 

during the kth time unit. Notice that 2t
-

k is the endpoint of a (t - k)* -pod on vertices 
2t- k , (2t- k + 1), ... , (2t- k+1_1), 2t - k+1_1, and by Lemma 5, vertex 2t - k can originate 
a broadcast to inform (2 t

-
k + 1), (2t- k + 2), ... , (2 t -k+1 - 1) in (t - k) time units. 

After t time units, all vertices have been informed, so b( x) = t. 
Case 4: The final case is when the broadcast originates at a vertex x not covered by 
one of the previous three cases. If t = 6, then t 2 = l2t /3 J, and Et - 1 has threefold 
symmetry; it follows from the previous cases that b(x) = t for every vertex x, and we 
may therefore assume that t 2:: 7. In this case, l2t /3 j = t - m for some m 2:: 3. The 
symmetry of Et - 1 allows us to assume, without loss of generality, that ° < x < 2t-2. 
Express each vertex x in binary, as a string of length t - 2; i.e., x = XIX2 ... Xt-2. 

During the first time unit, x informs 00, and during the remaining t - 1 time 
units, the broadcast originating at x can inform all vertices in the l2t/3j-pod with 
endpoints X1X2 ... x m_20t- m and X1X2' .. Xm_20t-m + 2L2t/3J (by Lemma 6). We will 
now describe the calls that 00 makes in the remaining t - 1 time units. There are 
two cases to consider, according as X m -2 = 0 or X m -2 = 1. 

First suppose that X m -2 = O. Then during the second time unit, 00 informs 
vertex 2t- 2

; during the kth time unit, 3 ~ k ~ (m - 1),00 informs vertex 

XIX2 ... xk-3(1 - Xk_2)Ot-k. 

During the mth time unit, 00 informs 2t-l. The vertex informed by CXJ during time 
k, 2 ~ k :::; m, is the endpoint of a (t - k)*-pod, and by Lemma 5, this vertex 
can inform all vertices in the (t - k)* -pod in the remaining t - k time units. The 
only vertices that will not be informed are the vertices inside the (t - m )-pod with 
endpoints XIX2 . " Xm_20t-m + 2t - m and XIX2 ... Xm_2ot-m + 2t - m+1 (the endpoints 
of this (t - m )-pod are already taken care of). These vertices can be informed by 
a broadcast, originating at infinity, during times (m + 1), (m + 2), ... (t - 1), t as 
follows: during time k, m + 1 :::; k :::; t, 00 informs vertex 

XIX2 ... xm-31 k-m+1ot-k. 

Each of these vertices is the endpoint of a (t - k)*-pod, all of whose vertices can be 
informed in the remaining t - k time units. 
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We now assume that X m -2 = 1. Then during the second time unit, 00 informs 
vertex 2t - 1 ; during the kth time unit, 3 ~ k ~ (m - 1), 00 informs vertex 

XIX2' •• Xk_ 20
t - k + 2t - k

-
1 

XIX2 . •. Xk_20t-k 

if Xk = 0 
if Xk = 1. 

During the mth time unit, 00 informs vertex O. The vertex informed by 00 during 
time k, 2 ~ k ~ m, is the endpoint of a (t - k)*-pod, and by Lemma 5, this vertex 
can inform all vertices in the (t - k )-pod in the remaining t - k time units. The 
only vertices that will not be informed are the vertices inside the (t m )-pod with 
endpoints XIX2." Xm_30t-m+l and XIX2 ••. xm_31Ot-m (the endpoints of this (t - m)
pod are already taken care of). These vertices can be informed by a broadcast, 
originating at infinity, during times (m + 1), {m + 2), ... (t - 1), t as follows: during 
time k, m + 1 ::; k ~ t, 00 informs vertex 

Again, each of these vertices is the endpoint of a (t - k)* -pod, all of whose vertices 
can be informed in the remaining t - k time units. Therefore, b( x) = t, and this 
completes the proof of the theorem. II1II 

4 

For t ?: 6, we have shown that 

The upper bound for Bp(t) can be improved to 

2t
- 1 + 2t

-
2 + 2t - 3 + 2t

-
4 + 2t -

5
, 

by simply that fact that every planar graph contains a vertex of degree at most 
five. further improvements on this bound should be possible. The planar 
graph constructed to demonstrate the fact that Bp(t) ?: 2t

- 1 + 2L2t/3J + 1 raises a 
number of questions. The graph Et - 1 contains a universal vertex; i.e., a 
vertex adjacent to all other vertices of the graph. 

Question 1 What is the maximum number of vertices in a planar graph G with a 
universal vertex and having broadcast time t? 

Question 2 If G is a planar graph with broadcast time t and at least 2t
- 1 + 2t - 2 

vertices) does this imply that G contains a universal vertex? 

Answers to these questions would enable us to improve the upper bound on Bp(t). 
The existence of the universal vertex in Et - 1 leads in another direction as well: 

that of determining the effect of restricting the maximum degree of the graph. 
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Pro blem 3 Find large planar graphs with degree bounded by ~ in which all vertices 
can originate a broadcast that completes in time at most t. 

Finally, we relate our topic to the popular subject of large graphs with given 
diameter (cf. [1]). Suppose we change the rules for broadcasting so that a vertex is 
allowed to inform all its neighbours in a single time unit. Then the broadcast time 
from a vertex v is simply the maximum distance from v to any other vertex of the 
graph. To ensure that the broadcast time of the graph is at most k, it is necessary 
for the graph to have diameter at most k. This gives rise to the following problem. 

Problem 4 Find large planar graphs with diameter k and degree at most ~. 

Let p(~, t) denote the maximum number of vertices in a planar graph with di
ameter t and maximum degree~. We have shown [5] that, for ~ ~ 8, p(~, t) = 
l3~j2J + 1, and along with Fellows [6] have shown that p(~, 3) is roughly between 
4.5~ and 8~. As well, asymptotic results have been obtained for larger values of t 
(see (6], [71). In general, p(~, t) is between a constant times ~Lt/2J and a constant 
times t~LtI2J; in particular, it is of the order e(~lt/2J) for any fixed value of t. Re
cently, S. Kwek [8} has improved the upper bound on p(~, t)j ~lt/2J from O(t) to 
O(tj~ + Vi), and hopes that a further improvement to 0(1) may be possible. 
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