BLT-sets over small fields

Tim Penttila and Gordon F. Royle

Department of Mathematics and Department of Computer Science University of Western Australia, Nedlands, WA 6009, Australia

Abstract

A BLT-set is a set X of q+1 points of the generalized quadrangle Q(4,q), q odd, such that no point of Q(4,q) is collinear with more than 2 points of X. BLT-sets are closely related to flocks of the quadratic cone, elation generalised quadrangles and certain translation planes. In this paper we report on the results of computer searches for BLT-sets for odd $q \leq 25$. We complete the classification for $q \leq 17$ finding one new BLT-set, and provide further examples for q = 19, q = 23 and q = 25 finding 10 new BLT-sets altogether. The relationship between BLT-sets and flocks of the quadratic cone in PG(3,q) means that this work classifies flocks for $q \leq 17$ and finds new flocks for q = 19, q = 23 and q = 25. In total the 10 new BLT-sets yield 26 new flocks.

1 Introduction and Motivation

A BLT-set is a set X of q + 1 points of the generalized quadrangle Q(4, q), q odd, such that no point of Q(4, q) is collinear with more than 2 points of X. (See Payne and Thas [7] for background on generalized quadrangles.)

They were introduced by Bader, Lunardon and Thas [1], although the nomenclature is due to Kantor [4]. Their introduction was motivated by the following connection with flocks of the quadratic cone. Given a BLT-set X, and a distinguished element x of X, the set of points of Q(4, q) collinear with x forms a quadratic cone in the polar hyperplane H of x. Moreover, the intersections of the polar hyperplanes of the points of X (other than x) and H form a flock of this quadratic cone. Conversely, given a flock of a quadratic cone, one can obtain a BLT-set with a distinguished point by reversing this procedure. Thus each flock gives rise to a BLT-set, which is turn gives rise to q further flocks, corresponding to the different choices of x. These flocks are called *derived* flocks in [1].

A second motivation for studying BLT-sets is the connection with elation generalized quadrangles, first pointed out by Thas [9] but clarified by Knarr[5]. Knarr gives a geometric construction of an elation generalised quadrangle of order (q^2, q) from each BLT-set in Q(4, q), whereas previously the construction had proceeded via a group coset geometry.

A third motivation for studying BLT-sets of Q(4,q) is the connection with translation planes of order q^2 and rank at most 2 over their kernel, that is, with spreads of PG(3,q). By the Klein correspondence, a spread of PG(3,q) corresponds to an ovoid of $Q^+(5,q)$. Given a BLT-set X of Q(4,q), and a point x of X, embed Q(4,q)as a hyperplane H in the Klein quadric $Q^+(5,q)$ and let y be the pole of that hyperplane. Then the intersection O with the Klein quadric of the union of the spans $\langle x, y, z \rangle$ with $z \in X$, z not equal to x is an ovoid of $Q^+(5,q)$. This was independently observed by Walker [10] and Thas.

A computer search for flocks of the quadratic cone of PG(3,q) for small q was carried out by De Clerck and Herssens [3]. A computer free classification of the conical flocks for $q \leq 8$ was given by De Clerck, Gevaert and Thas [2]. The purpose of this paper is to extend the computer search by placing it in the more general context of finding BLT-sets rather than individual flocks.

2 Techniques

Consider the generalized quadrangle Q(4,q) of order q. This quadrangle has $(q+1)(q^2+1)$ points and lines. Let G(q) denote the collinearity graph of Q(4,q). Then G(q) has $(q+1)(q^2+1)$ vertices, is regular of valency $q^2 + q$ and has an automorphism group of size $h(q^4-1)(q^2-1)q^4$, where $q = p^h$ with p prime. Table 1 shows these values for $q \leq 25$ to give some idea of the sizes involved.

q	$(q+1)(q^2+1)$	$h(q^4-1)(q^2-1)q^4$
3	40	51840
5	156	9360000
7	400	276595200
9	820	6886425600
11	1464	25721308800
13	2380	137037962880
17	5220	2008994088960
19	7240	6114035779200
23	12720	41348052472320
25	16276	190429200000000

Table 1: Number of points and size of automorphism group for Q(4,q)

A BLT-set can then be viewed simply as a special kind of independent set in G(q) and a search for BLT-sets can be structured in a similar way to a search for independent sets. The standard recursive action in a back-track search for an independent set in a graph extends an independent k-set X to an independent (k+1)-set X' by adding a new vertex x that is not adjacent to any vertex in X. This is usually implemented by maintaining a set of "live" points at all times, selecting x from the live points and then updating the set of live points by deleting the neighbours of x.

A search for BLT-sets can be structured in precisely the same way except that we have to modify the definition of live points. Suppose that X is a partial BLT-set (expressed as a set of vertices in G(q)). Then a point is *not* live if either

(1) it is a neighbour of a vertex in X, or

(2) it is a neighbour of a common neighbour of two vertices in X.

With this observation it is straightforward to write a naive back-track program to construct BLT-sets.

However there are significant difficulties with the *isomorphism problem* as the naive algorithm produces many isomorphic copies of each BLT-set. The graph isomorphism program **nauty** [6] can be used to determine the isomorphism classes of the resulting BLT-sets, but there are practical limitations. For reasons that are not well understood, graphs relating to geometries are often pathological cases for graph isomorphism programs such as **nauty**. Although the graphs G(q) are not among the most pathological, they are fairly large, so isomorphism checking rapidly becomes very difficult.

However, for $q \leq 17$ it is feasible to use an orderly algorithm (see Royle [8] for details) to compute the precise numbers of partial BLT-sets of all sizes. Although this computation took several months of computer time, the techniques are well-understood and the programming effort minimal so we have a high degree of confidence in the results.

For q > 17 it becomes too expensive to use **nauty** and to do a fully exhaustive search. For q = 19 we used a hybrid method, whereby the orderly algorithm was used to construct all the "partial BLT-sets" of size five, which were then completed to BLT-sets in all possible ways. These were partitioned by using a combinatorial invariant termed the *F-profile* (see below for details), rather than exact isomorphism. Hence any new BLT-set must have the same F-profile as one of the BLT-sets on our list (an event which we believe is unlikely to occur). For q > 19 we abandoned any sort of completeness in the search and simply aimed to construct as many BLT-sets as possible, in a variety of ad-hoc ways. One technique that proved to be fruitful was "guessing" a possible group of automorphisms — usually by taking a modestly sized subgroup of the group of automorphisms of one of the known BLT-sets — and then constructing BLT-sets stabilised by that group of automorphisms. The resulting BLT-sets were again partitioned by F-profile. The results of these computations are a list of BLT-sets that are guaranteed to be different, but there is no guarantee that the list is complete.

3 BLT-sets and flocks

Recall that for q odd, a *flock* of the quadratic cone in PG(3, q) is a set of q planes whose intersections with the cone partition the points of the cone (other than the vertex of the cone). If we fix the cone to have equation $X_0X_1 = X_2^2$, then each plane Π_i can be given by an equation of the following form:

$$\Pi_i : a_i X_0 + b_i X_1 + c_i X_2 + X_3 = 0.$$

and we can represent the flock just by giving a set of q triples:

$$\mathcal{F} = \{ (a_i, b_i, c_i) \mid i \in GF(q) \}.$$

It is straightforward to check that Π_i and Π_j do not have any common points on the cone if and only if

$$(c_i - c_j)^2 - 4(a_i - a_j)(b_i - b_j) \in \not \square$$

where $\not\square$ is the set of non-squares in GF(q).

As described above, a BLT-set is equivalent to a collection of (q + 1) flocks, with each point of the BLT-set being associated to a different flock. We would like to be able to easily compute the q + 1 flocks associated with each BLT-set, and, conversely, to compute the BLT-set associated with a flock. These operations are simple provided the appropriate models are chosen.

The construction of a BLT-set from a flock can be found in Bader, Lunardon & Thas [1]. Given a flock

$$\mathcal{F} = \{ (a_i, b_i, c_i) \mid i \in GF(q) \},\$$

define the following set of points of Q(4, q) (given by the form $X_0X_1 - X_2^2 + X_3X_4$):

$$X = \{(0, 0, 0, 1, 0)\} \cup \{(b_i, a_i, -c_i/2, c_i^2/4 - a_ib_i, 1) \mid i \in GF(q)\}$$

Then X is a BLT-set, with distinguished point (0, 0, 0, 1, 0).

Given a BLT-set X containing the point (0, 0, 0, 1, 0) it is easy to reverse the above construction to get a flock \mathcal{F} . It is easy to guarantee that X contains (0, 0, 0, 1, 0) by construction, or if necessary to map X to an isomorphic BLT-set containing this point.

It is also straightforward to obtain the other q flocks associated with X (the derived flocks) — Bader, Lunardon & Thas [1] explain how derivation can be performed entirely in the flock model. Given

$$\mathcal{F}_0 = \{(a_i, b_i, c_i) \mid i \in GF(q)\}$$

define for each i the set

$$\mathcal{F}_i = \{(0,0,0)\} \cup \{((a_i - a_j)/\Delta, (b_i - b_j)/\Delta, (c_i - c_j)/\Delta) \mid j \neq i\}$$

where

$$\Delta = (c_i - c_j)^2 / 4 - (a_i - a_j)(b_i - b_j).$$

Then $\mathcal{F}_1, \mathcal{F}_2, \ldots, \mathcal{F}_q$ are the flocks *derived* from \mathcal{F}_0 .

3.1 Isomorphism and Profiles

As explained above, determining isomorphism of BLT-sets is a difficult problem in practice, so it is necessary to develop a cheaper way to distinguish different BLT-sets. To accomplish this we associate a purely combinatorial invariant with each BLT-set,

which (for want of a better name) we call the F-profile. The F-profile is based on the q + 1 flocks associated with the BLT-set. Given a flock \mathcal{F} , we can define the *profile* of \mathcal{F} in the following fashion:

$$\operatorname{prof}(\mathcal{F}) = (x_0, x_1, \dots, x_q)$$

where x_i is the number of points of PG(3, q) that lie on precisely *i* planes of the flock. This is therefore a vector of length q+1 with entries summing to q^3+q^2+q+1 . Clearly flocks with different profiles are not isomorphic, but the converse is not necessarily true. As a BLT-set is equivalent to a collection of q + 1 flocks, we then associate a multiset of q + 1 profiles to each BLT-set. This multiset is the F-profile of X.

If we are just interested in the stabiliser group of the BLT-set X then it is possible to use the package MAGMA to compute the stabiliser of X in $\operatorname{Aut}(G(q))$. For all the known BLT-sets with $q \leq 25$ the F-profile distinguishes all the orbits.

4 Results

The results of the search are summarised in Table 2. These results confirm those of De Clerck and Herssens [3] showing that they are complete for $q \leq 13$. For q = 17 the list is completed by the addition of one new BLT-set that yields two new flocks. For q = 19 we find three new BLT-sets, yielding six new flocks, for q = 23 we find four new BLT-sets, yielding 11 new flocks and for q = 25 we find two new BLT-sets yielding 7 new flocks.

We explicitly give each of the new BLT-sets found as a set of q+1 points of Q(4,q), together with their F-profiles. Given the explicit details presented above, it should be straightforward for any researcher to obtain the associated flocks for further analysis. This data is also available from http://www.cs.uwa.edu.au/~gordon/data.html

4.1 The previously known BLT-sets

Most BLT-sets were discovered as flocks, hence we shall present them as such, and give the associated BLT-set the same name as the flock. Occasionally flocks associated with the same BLT-set were discovered separately — we simply concatenate the names of the flocks to yield the name of the BLT-set.

The known families of BLT-sets for odd q are as follows (this list is based on that given by De Clerck and Herssens [3]). For many of the details see the paper by Thas [9].

1. Linear — for all q the linear flock is given by

$$\{(t, -mt, 0) \mid t \in GF(q)\},\$$

where m is a fixed nonsquare. The associated BLT-set is transitive.

2. FTW — for $q \equiv -1 \pmod{3}$, the flock FTW due to Fisher, Thas and Walker is given by

 $\{(t, 3t^3, 3t^2) \mid t \in GF(q)\}.$

q	Name	Group Size	Orbit structure
5	Linear	960	{6}
5	FTW=Fi=K3	720	{6}
7	Linear	5376	{8}
7	Fi = K2	384	{8}
9	Linear	28800	{10}
9	Fi	400	{10}
9	K1 = G	5760	{10}
11	Linear	31680	$\{12\}$
11	FTW	1320	$\{12\}$
11	Fi	288	$\{12\}$
11	DCHT	144	$\{12\}$
13	Linear	61152	{14}
13	Fi	392	$\{14\}$
13	K2/JP	48	$\{2, 12\}$
17	Linear	176256	{18}
17	FTW	4896	{18}
17	Fi	648	{18}
17	K2/JP	32	$\{2, 16\}$
17	DCH1/2	144	$\{6, 12\}$
17	New	24	$\{6, 12\}$
19	Linear	273600	{20}
19	Fi	800	$\{20\}$
19	New	40	$\{20\}$
19	New	20	$\{20\}$
19	New	16	$\{2^2, 8^2\}$
23	Linear	582912	{24}
23	FTW	12144	$\{24\}$
23	Fi	1152	$\{24\}$
23	K2/JP	44	$\{2, 22\}$
23	DCH1/2	72	$\{6, 18\}$
23	New	1152	$\{24\}$
23	New	24	${24}$
23	New	16	$\{4^2, 8^2\}$
23	New	6	$\{3^2, 6^3\}$
25	Linear	1622400	{26}
25	Fi	2704	$\{26\}$
25	K1	124800	$\{26\}$
25	K3/BLT	100	$\{1, 25\}$
25	New	8	$\{2, 8^3\}$
25	New	16	$\{2, 8, 16\}$

Table 2: The known BLT-sets for $q \leq$ 25, complete up to $q \leq 17$

The associated BLT-set is transitive.

3. K1 — for all q, the flock K1 due to Kantor is given by

$$\{(t, -mt^{\sigma}, 0) \mid t \in GF(q)\},\$$

where m is a fixed non-square and σ is an automorphism of GF(q). It is linear if and only if $\sigma = 1$. The associated BLT-set is transitive.

4. K2/JP — for $q \equiv \pm 2 \pmod{5}$ the flock K2 due to Kantor is given by

$$\{(t, 5t^5, 5t^3) \mid t \in GF(q)\}.$$

Johnson and Payne observed that a different flock can be derived from K2.

5. K3/BLT — for $q = 5^{h}$, the flock K3 due to Kantor is given by

$$\{(t, k^{-1}t + 2t^3 + kt^5, t^2) \mid t \in GF(q)\},\$$

where k is a given non-square. Bader, Lunardon and Thas observed that a different flock can be derived from K3.

6. Fi — for all q the flock Fi due to Fisher has the following complicated construction. Let ξ be a primitive element of $GF(q^2)$ so $w = \xi^{q+1}$ is a primitive element of GF(q); put $i = \xi^{(q+1)/2}$, so $i^2 = w$, $i^q = -i$; put $z = \xi^{q-1} = a + bi$, so z has order q + 1 in the multiplicative group of $GF(q^2)$; then the triples of Fi are

 $\{(t, -wt, 0) \mid t \in GF(q), t^2 - 2(1+a)^{-1} \in \Box\}$

together with

$$\{(-a_{2j}, -wa_{2j}, 2b_{2j}) \mid 0 \le j \le (q-1)/2\}$$

where $a_k = (z^{k+1} + z^{-k})/(z+1)$ and $b_k = i(z^{k+1} - z^{-k})/(z+1)$. The associated BLT-set is transitive.

7. G/PTJLW — for $q = 3^h$, the flock G due to Ganley is given by

$$\{(t, -(nt + n^{-1}t^9), t^3) \mid t \in GF(q)\},\$$

where n is a fixed nonsquare. Payne and Thas, and also Johnson, Lunardon and Wilke observed that a different flock can be derived from G.

Three seemingly sporadic BLT-sets were previously known. De Clerck, Herssens and Thas found a flock for q = 11 called DCHT, and De Clerck and Herssens found two pairs of flocks (related by derivation) for q = 17 and q = 23. We call both the associated BLT-sets DCH1/2. (The BLT-sets that we give were found by our search, and then identified, hence are not directly related to the specific flocks as presented in De Clerck and Herssens [3].)

DCHT	(0,0,0,0,1)	(0,0,0,1,0)	(10, 10, 0, 10, 1)	(8, 8, 0, 2, 1)
q = 11	(9,7,7,8,1)	(7, 3, 1, 2, 1)	(6, 1, 4, 10, 1)	(1,4,10,8,1)
	(5,2,3,10,1)	(4, 6, 9, 2, 1)	(3, 5, 1, 8, 1)	(2, 9, 9, 8, 1)
DCH1/2	(0,0,0,0,1)	(0,0,0,1,0)	(6, 6, 12, 6, 1)	$(12,\!12,\!7,\!7,\!1)$
q = 17	$(13,\!13,\!9,\!14,\!1)$	(16, 16, 15, 3, 1)	$(14,\!11,\!8,\!12,\!1)$	(10,3,5,12,1)
	(11, 5, 1, 14, 1)	(7, 14, 13, 3, 1)	$(5,\!15,\!11,\!12,\!1)$	(1,7,6,12,1)
	(15, 1, 16, 3, 1)	(9,4,13,14,1)	$(4,\!10,\!16,\!12,\!1)$	(8,2,8,14,1)
	(2, 9, 2, 3, 1)	$(3,\!8,\!11,\!12,\!1)$		
DCH1/2	(0,0,0,0,1)	(0,0,0,1,0)	(22,22,0,22,1)	(21, 21, 0, 19, 1)
q = 23	(19, 19, 7, 10, 1)	(2,2,7,22,1)	(7, 14, 18, 19, 1)	(1, 3, 5, 22, 1)
-	(11, 10, 20, 14, 1)	(9, 13, 1, 22, 1)	(14, 1, 14, 21, 1)	$(15,\!6,\!9,\!14,\!1)$
	(17, 4, 15, 19, 1)	$(4,\!17,\!6,\!14,\!1)$	(3, 16, 6, 11, 1)	(20, 7, 14, 10, 1)
	(8, 12, 1, 20, 1)	(13, 8, 16, 14, 1)	(6, 15, 14, 14, 1)	(10, 9, 20, 11, 1)
	(16, 5, 3, 21, 1)	(18, 20, 5, 10, 1)	(5, 18, 6, 15, 1)	$(12,\!11,\!20,\!15,\!1)$

Table 3: The three known sporadic BLT-sets

4.2 The new BLT-sets

For each value of q we shall simply identify the BLT-sets by groupsize, and call them $X_{\rm groupsize}.$

For q = 17, q = 19 and q = 23 the field has prime order and hence is simply represented as the integers modulo q. For q = 25 we the field we use has primitive polynomial $\omega^2 + 4\omega + 2$ and we use the convention that 0 represents 0, 1 represents 1, 2 represents ω , 3 represents w^2 and so on.

X_{24}	(0,0,0,0,1)	(0,0,0,1,0)	(6, 6, 12, 6, 1)	(12, 12, 7, 7, 1)
	(2,2,4,12,1)	(9, 9, 5, 12, 1)	(8, 16, 15, 12, 1)	(10, 3, 5, 12, 1)
	(15,7,10,12,1)	(5, 8, 9, 7, 1)	(11,4,13,6,1)	(3,1,7,12,1)
	(13,10,12,14,1)	(16, 11, 3, 3, 1)	(14, 15, 16, 12, 1)	(1, 14, 0, 3, 1)
	(4,5,0,14,1)	(7, 13, 1, 12, 1)		

Table 4: New BLT-set for q = 17

	·····			
X_{40}	(0,0,0,0,1)	(0,0,0,1,0)	(18, 18, 0, 18, 1)	(17, 17, 0, 15, 1)
	(14, 14, 9, 18, 1)	$(9,\!9,\!13,\!12,\!1)$	(1, 2, 1, 18, 1)	(4, 8, 14, 12, 1)
	(15,7,16,18,1)	(12, 3, 15, 18, 1)	(6, 11, 17, 14, 1)	(10, 13, 9, 8, 1)
	(2,16,5,12,1)	(11, 4, 4, 10, 1)	(5, 12, 10, 2, 1)	(8,1,11,18,1)
	(16, 15, 18, 8, 1)	$(3,\!10,\!10,\!13,\!1)$	(7, 5, 9, 8, 1)	$(13,\!6,\!10,\!3,\!1)$
X_{20}	(0,0,0,0,1)	(0,0,0,1,0)	(18, 18, 0, 18, 1)	(16, 16, 0, 10, 1)
	(10,10,1,15,1)	(9, 9, 8, 2, 1)	(5,5,1,14,1)	(8,8,1,13,1)
	(6,12,6,2,1)	(11, 14, 9, 3, 1)	(14, 4, 11, 8, 1)	(12, 17, 16, 14, 1)
	(15,3,14,18,1)	(13, 2, 5, 18, 1)	(17, 7, 2, 18, 1)	(7,6,11,3,1)
	(2,1,15,14,1)	(1, 15, 2, 8, 1)	$(3,\!13,\!16,\!8,\!1)$	(4, 11, 15, 10, 1)
X_{16}	(0,0,0,0,1)	(0,0,0,1,0)	(18, 18, 0, 18, 1)	(17, 17, 0, 15, 1)
	(16, 16, 0, 10, 1)	(8, 8, 13, 10, 1)	(4, 12, 1, 10, 1)	(7, 9, 0, 13, 1)
	(13,2,14,18,1)	(5, 11, 14, 8, 1)	$(14,\!3,\!14,\!2,\!1)$	(9,6,8,10,1)
	(12,1,14,13,1)	(6, 10, 7, 8, 1)	(3, 14, 6, 13, 1)	(10, 7, 8, 13, 1)
	(1, 15, 2, 8, 1)	(2, 13, 6, 10, 1)	$(11,\!5,\!12,\!13,\!1)$	(15, 4, 14, 3, 1)

Table 5: New BLT-sets for q = 19

p				
X_{1152}	(0,0,0,0,1)	(0,0,0,1,0)	$(22,\!22,\!0,\!22,\!1)$	$(21,\!21,\!0,\!19,\!1)$
	$(20,\!20,\!0,\!14,\!1)$	$(10,\!10,\!0,\!15,\!1)$	(7, 14, 7, 20, 1)	(17, 11, 1, 21, 1)
	$(14,\!5,\!13,\!7,\!1)$	(4, 8, 11, 20, 1)	(3, 9, 22, 20, 1)	(13, 6, 16, 17, 1)
	(18, 3, 8, 10, 1)	(19, 2, 5, 10, 1)	(15,4,10,17,1)	(12, 7, 20, 17, 1)
	(6, 15, 10, 10, 1)	(8, 13, 3, 20, 1)	(5,16,13,20,1)	(1,18,18,7,1)
	(16, 12, 12, 21, 1)	(9, 19, 10, 21, 1)	$(2,\!17,\!15,\!7,\!1)$	(11, 1, 13, 20, 1)
X24	(0,0,0,0,1)	(0,0,0,1,0)	(22, 22, 0, 22, 1)	(20, 20, 0, 14, 1)
	(5,5,20,7,1)	(15, 6, 9, 14, 1)	(11, 9, 1, 17, 1)	(2,12,0,22,1)
	(18, 16, 11, 17, 1)	(8,2,7,10,1)	(7, 3, 13, 10, 1)	(17, 21, 2, 15, 1)
	(4, 13, 4, 10, 1)	(13, 15, 13, 20, 1)	(10, 18, 19, 20, 1)	(9,11,7,19,1)
	(12,7,11,14,1)	(19, 1, 19, 20, 1)	(6,10,6,22,1)	(14, 8, 15, 21, 1)
	$(1,\!19,\!6,\!17,\!1)$	(16, 14, 4, 22, 1)	(21, 4, 12, 14, 1)	$(3,\!17,\!5,\!20,\!1)$
X_{16}	(0,0,0,0,1)	(0,0,0,1,0)	(22,22,0,22,1)	(21, 21, 0, 19, 1)
	(5, 10, 5, 21, 1)	$(20,\!17,\!5,\!7,\!1)$	(14, 5, 13, 7, 1)	(2, 6, 16, 14, 1)
	(3, 9, 22, 20, 1)	(6,7,1,5,1)	(10, 1, 20, 22, 1)	(17, 4, 3, 10, 1)
	$(15,\!13,\!19,\!5,\!1)$	(9, 12, 17, 20, 1)	(11, 18, 14, 21, 1)	(13, 15, 4, 5, 1)
	(16, 3, 17, 11, 1)	(12, 20, 13, 21, 1)	(18, 2, 20, 19, 1)	(8, 14, 2, 7, 1)
	$(1,\!19,\!17,\!17,\!1)$	$(4,\!11,\!13,\!10,\!1)$	(19, 8, 1, 10, 1)	(7, 16, 8, 21, 1)
X_6	(0,0,0,0,1)	(0,0,0,1,0)	(22, 22, 0, 22, 1)	(21, 21, 0, 19, 1)
	(11, 11, 21, 21, 1)	(5, 5, 1, 22, 1)	(15, 7, 14, 22, 1)	(20, 14, 16, 22, 1)
	(6, 13, 7, 17, 1)	(3,1,6,10,1)	$(17,\!3,\!5,\!20,\!1)$	(14, 16, 3, 15, 1)
	$(16,\!15,\!12,\!19,\!1)$	$(8,\!4,\!11,\!20,\!1)$	$(19,\!17,\!12,\!5,\!1)$	(12, 18, 22, 15, 1)
	$(13,\!8,\!20,\!20,\!1)$	(4, 10, 13, 14, 1)	(10, 12, 1, 19, 1)	(9,6,8,10,1)
	$(7,\!20,\!22,\!22,\!1)$	(2, 9, 9, 17, 1)	(18, 2, 3, 19, 1)	$(1,\!19,\!1,\!5,\!1)$

Table 6: New BLT-sets for q = 23

X_8	(0,0,0,0,1)	(0,0,0,1,0)	(21, 21, 22, 8, 1)	(2,2,6,10,1)
	(24,1,14,14,1)	(3, 5, 15, 8, 1)	$(18,\!20,\!6,\!14,\!1)$	(8,10,22,8,1)
	(10, 15, 0, 12, 1)	(4, 9, 15, 14, 1)	(17, 23, 9, 6, 1)	(13, 22, 5, 14, 1)
	(9, 19, 13, 4, 1)	(6, 16, 22, 22, 1)	$(20,\!7,\!9,\!24,\!1)$	(23, 12, 1, 8, 1)
	(5,18,7,20,1)	$(22,\!11,\!1,\!10,\!1)$	$(1,\!14,\!9,\!4,\!1)$	(15, 4, 7, 14, 1)
	(11,3,14,18,1)	$(7,\!24,\!23,\!4,\!1)$	$(14,\!8,\!19,\!8,\!1)$	$(12,\!6,\!8,\!18,\!1)$
	(16, 13, 9, 14, 1)	$(19,\!17,\!5,\!12,\!1)$		
X_{16}	(0,0,0,0,1)	(0,0,0,1,0)	(14, 14, 22, 14, 1)	(9,10,19,14,1)
	(17, 18, 7, 24, 1)	(24, 1, 14, 14, 1)	(6, 7, 2, 10, 1)	(18, 20, 6, 14, 1)
	(3,6,11,18,1)	$(22,\!3,\!7,\!10,\!1)$	(4, 9, 15, 14, 1)	$(11,\!17,\!13,\!4,\!1)$
	(8,15,8,24,1)	$(5,\!13,\!5,\!4,\!1)$	$(12,\!22,\!24,\!14,\!1)$	(10, 21, 10, 16, 1)
	(15,2,6,12,1)	(16, 4, 5, 24, 1)	(23, 11, 16, 10, 1)	(19, 8, 11, 22, 1)
	(21, 12, 13, 10, 1)	$(13,\!5,\!16,\!22,\!1)$	$(7,\!24,\!24,\!8,\!1)$	$(1,\!19,\!21,\!20,\!1)$
	(20, 16, 22, 18, 1)	(2, 23, 10, 20, 1)		<i>,</i>

Table 7: New BLT-sets for q = 25

5	Linear	6 imes (25, 125, 0, 0, 0, 6)
5	FTW=Fi=K3	6 imes (51, 65, 30, 10, 0, 0)
7	Linear	8 imes (49, 343, 0, 0, 0, 0, 0, 8)
7	Fi=K2	8 imes (125, 186, 60, 26, 0, 3, 0, 0)
9	Linear	$10 \times (81,729,0,0,0,0,0,0,0,0,0)$
9	Fi	10 imes (270, 349, 150, 40, 5, 6, 0, 0, 0, 0)
9	K1 = G	$10 \times (225, 486, 0, 108, 0, 0, 0, 0, 0, 1)$
11	Linear	$12 \times (121, 1331, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12)$
11	FTW	12 imes (496, 638, 165, 165, 0, 0, 0, 0, 0, 0, 0, 0, 0)
11	Fi	$12 \times (469, 652, 252, 78, 0, 9, 0, 4, 0, 0, 0, 0)$
11	DCHT	12 imes (481, 641, 237, 81, 15, 9, 0, 0, 0, 0, 0, 0, 0)
13	Linear	14 imes (169, 2197, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14)
13	Fi	$14 \times (777, 1021, 441, 126, 0, 0, 7, 8, 0, 0, 0, 0, 0, 0)$
13	K2/JP	12 imes (795, 1024, 379, 145, 23, 14, 0, 0, 0, 0, 0, 0, 0, 0, 0)
		2 imes (801, 1014, 372, 166, 12, 15, 0, 0, 0, 0, 0, 0, 0, 0, 0)
17	Linear	$18 \times (289, 4913, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,$
17	FTW	18 imes (1769, 2363, 408, 680, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
17	Fi	18 imes (1692, 2249, 972, 288, 0, 0, 0, 0, 9, 10, 0, 0, 0, 0, 0, 0, 0)
17	K2/JP	2 imes (1777, 2223, 752, 408, 32, 28, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
		$16 \times (1811, 2129, 839, 371, 51, 19, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)$
17	DCH1/2	6 imes (1689, 2363, 792, 298, 24, 51, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0)
		$12 \times (1783, 2132, 957, 269, 33, 45, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0)$
17	X_{24}	$6 \times (1785, 2125, 976, 232, 74, 20, 6, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)$
L		12 imes (1788, 2157, 880, 303, 73, 14, 4, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
19	Linear	20 imes (361, 6859, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
19	Fi	20 imes (2321, 3168, 1320, 410, 0, 0, 0, 0, 0, 15, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0)
19	X_{40}	$20 \times (2518, 2932, 1197, 501, 50, 42, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,$
19	X_{20}	$20 \times (2501, 2961, 1221, 419, 115, 21, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)$
19	X_{16}	$8 \times (2455, 3050, 1193, 417, 85, 31, 8, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)$
		$2 \times (2467, 3000, 1258, 400, 64, 44, 4, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)$
		$8 \times (2502, 2938, 1266, 410, 88, 30, 5, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)$
		$2 \times (2549, 2829, 1326, 416, 94, 24, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)$

Table 8: F-profiles for $q \leq 19$

Linear	$24 \times (529, 12167, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,$
FTW	$24 \times (4302, 5888, 759, 1771, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,$
Fi	$24 \times (4069, 5554, 2340, 732, 0, 0, 0, 0, 0, 0, 0, 18, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0)$
K2/JP	$2 \times (4467, 5074, 2112, 946, 22, 99, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,$
	$22 \times (4485, 5027, 2166, 886, 78, 78, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,$
DCH1/2	$18 \times (4308, 5377, 2078, 756, 129, 46, 14, 10, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,$
	$6 \times (4310, 5300, 2259, 640, 123, 57, 21, 6, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)$
X_{1152}	$24 \times (3959, 6168, 1620, 788, 30, 141, 0, 8, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)$
X24	$24 \times (4472, 5038, 2229, 761, 160, 60, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0$
X_{16}	$4 \times (4361, 5295, 2078, 767, 138, 76, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,$
	8 imes (4369, 5267, 2124, 710, 190, 51, 6, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
	8 imes (4386, 5225, 2145, 729, 172, 54, 6, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
	$4 \times (4473, 4999, 2311, 722, 153, 56, 4, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)$
X_6	$6 \times (4443, 5072, 2279, 687, 176, 55, 7, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,$
	$6 \times (4451, 5089, 2199, 746, 189, 39, 6, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,$
	3 imes (4457, 5058, 2240, 748, 158, 49, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
	3 imes (4460, 5036, 2292, 700, 165, 63, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
	$6 \times (4473, 5019, 2265, 743, 171, 39, 8, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,$

Table 9: F-profiles for q = 23

T:	
Linear	$26 \times (625, 15625, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,$
Fi	$26 \times (5226, 7045, 3042, 936, 0, 0, 0, 0, 0, 0, 0, 13, 14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)$
K1	$26 \times (3025, 12500, 0, 0, 0, 750, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0$
K3/BLT	$25 \times (5736, 6446, 2766, 1126, 91, 111, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,$
	$1 \times (5901, 6050, 3000, 1150, 100, 75, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,$
X_8	$8 \times (5678, 6546, 2826, 907, 251, 60, 6, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,$
	$8 \times (5701, 6473, 2903, 884, 249, 49, 16, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,$
	$2 \times (5714, 6454, 2882, 932, 221, 64, 8, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,$
	$8 \times (5735, 6427, 2864, 946, 246, 52, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,$
X_{16}	$2 \times (5649, 6609, 2800, 904, 224, 86, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,$
	$8 \times (5699, 6507, 2827, 938, 233, 65, 6, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,$
	$16 \times (5727, 6439, 2867, 948, 223, 67, 4, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,$

Table 10: F-profiles for q = 25

•

References

- L. Bader, G. Lunardon and J.A. Thas, Derivation of flocks of quadratic cones, Forum Math. 2, 1990, 163-174.
- [2] F. De Clerck, H. Gevaert and J.A. Thas, Flocks of a quadratic cone in PG(3,q), $q \leq 8$, Geom. Dedicata 26, 1988, 215-230.
- [3] F. De Clerck and C. Herssens, Flocks of the quadratic cone in PG(3,q), for q small. The CAGe reports 8, 1992, University of Gent.
- [4] W. M. Kantor, Note on generalized quadrangles, flocks and BLT-sets, J. Comb. Th. A, 58, 1991, 153-157.
- [5] N. Knarr, A geometric construction of generalized quadrangles from polar spaces of rank three, *Resultate Math.* **21**, 1992, 332-334.
- [6] B. D. McKay, nauty User's Guide (version 1.5), Department of Computer Science, Australian National University, 1990.
- [7] S. E. Payne and J. A. Thas, *Finite generalized quadrangles*, 1984 Pitman.
- [8] G. F. Royle, An orderly algorithm and some applications to finite geometry, To appear in *Discrete Mathematics*.
- [9] J. A. Thas, Generalized quadrangles and flocks of cones, *European J. Combin.* 8, 1987,441-452.
- [10] M. Walker, A class of translation planes, Geom. Dedicata 5, 1976, 135-146.

(Received 16/7/97)