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Abstract 
A choice function f of an n-set X is a function whose domain is the power 
set P(X), and whose range is X, such that f(A) E A for each A ~ X. If k 
is a fixed positive integer, k :::; n, by a k-restricted choice function we mean 
the restriction of some choice function to the collection of k-subsets of 
X. The symmetric group Sx acts, by natural extension on the respective 
collections C(X) of choice functions, and Ck(X) of k-restricted choice 
functions of X. In this paper we address the problem of finding the 
number of orbits in the two actions, and give closed form formulas for 
the respective numbers. 

1 Introduction 

A choice function f on an n-set X is defined to be a function whose domain is the 
collection of all subsets of X, and whose range is X, such that for each subset A of 
X, f(A) is an element of A. If k is a fixed positive integer, k :::; n, by a k-restricted 
choice function we mean the restriction of some choice function to the collection of 
k-subsets of X. If f and 9 are two choice functions (or k-restricted choice functions) 
on X, we say that f and 9 are permutation-equivalent (or just equivalent) if there 
exists a permutation a on the symbols of X which transforms f to g. Even though, 
as we shall see, it is easy to determine the number of classes under permutation 
equivalence in the collection of all choice functions, it is less trivial to determine 
the number of equivalence classes of k-restricted choice functions. It is perhaps 
surprising that solutions to these problems have not been given before, even though 
their statements have been known for awhile. In this paper we address both of these 
problems, and give closed form formulas for the respective number of equivalence 
classes. 
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2 Preliminaries 

For the most part we use standard notation. For example, if Y and Z are sets, ZY 
denotes the collection of all functions f : Y -t Z. We denote the collection of all 
subsets of Z (i.e. the power set of Z) by P(Z), and the collection of all k-subsets 
of Z, by (~), for 0 ::; k ::; n. Throughout, X will be an n-set, and Sx, or just 
Sn will denote the symmetric group on X. Let C(X) denote the collection of all 
choice functions on X. Thus, f E C(X) if and only if f E XP(X) and f(A) E A 
for all A E P(X). Let Ck(X) denote the collection of all f E xG) such that 
f(A) E A for all A E (~). We call Ck(X) the k-restricted choice functions of X. 

By straightforward counting we easily see that I Ck(X) I = k(~), moreover the total 

number of (unrestricted) choice functions is I C(X) I = n~=l k(~). 
Let X be a set, and G a multiplicative group, with its identity element denoted by 
1. Recall that a group action GIX is a function exp : X x G -t X, (x, g) H xg

, 

satisfying the two axioms (i) Xl = x, x E X, (ii) (X9)h = x9h, X E X, g, h E G. 
The G - orbit of x E X is the set xG := {x9 : 9 E G} ~ X, and the stabilizer 
of x E X the subgroup Gx = {g E G : x9 = x} of G. It is elementary that 
IxGI = [G : Gx ]. If GIX is a group action and 9 E G, the set of all elements of X 
fixed by g, {x EX: x9 = x} is called the fix of g, and is denoted by Fix(g). The 
function X : G -t N, X(g) := IFix(g)l, is called the character of the group action. 
If GIX is a group action we denote by p = p(GIX) the number of G-orbits on X. 
Any action GIX extends naturally to an action G on P(X) defined by (A, g) H A9 
for A ~ X, 9 E G. Here A9 = {a9 : a E A}. It easily follows that IA91 = IAI. The 
G-orbit of A is the collection of subsets AG = {A91g E G}. 

If GIX is a group action, x E X, and 0' E G, by the 0' - period of x, Au(X), we mean 
the length of the orbit of x under the cyclic group (0'). If follows that Au(X) is the 
least positive integer j such that xui = x, and that Au(X) divides the order of 0'. 

Similarly, if A ~ X, we define the 0' - period of A, Au(A), to be the length of the 
orbit IA(u)l. Note that Au(0) = Au(X) = 1, for any 0' E Sn. 

For a general group action GIX, the following facts are easy to see: For x E X 
and g, h E G, (i) GX9 = {Gx }9, (ii) Fix(gh) = {Fix(g)}h, (iii) X(gh) = X(g), (iv) 
p = Ibl L9EG X(g)· The last equality providing us with the number of G-orbits in 
X is known as the Cauchy-Frobenius lemma. For the remainder of this paper we let 
X = {1,2, ... ,n}. 

3 Main Results 

To simplify our discussion, let C denote either of the sets C(X) or Ck(X). If f E C it 
will be useful to write f = (::), where ai = f(Ai) E Ai, thus: 

(3.1) 
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where r = 2n or (~) accordingly. If (J" E G, x EX, and A ~ X, we denote by 
xu, and AU the images under (J" of x and A respectively. We now extend the action 
GIX canonically to an action GIC. If f = (~:) E C, and a E G we define fU by 

(Ai) U = (Ai). Thus 
ai ai ' 

(3.2) 

It is now clear that t' is the composition of functions (J"-l fa. Thus, a permutation 
a E G fixes f = (::) E C if and only if for all A in the domain of f, the following 
diagram commutes: 

A,.. I AI 
c)----------------o) 

U U 

Let X : Sn -+ N denote the character of the action Sn I C(X), and Xk : Sn -+ N the 
character of Sn I Ck(X). The following lemma is evident: 

Lemma 3.1 Let (J" E SnJ and f E C. Then, the following statements are equivalent: 

(i) f is fixed by a 

(ii) For each A ~ X, f(A) = a if and only if f(AU) = arT. 

We immediately have, 

Lemma 3.2 If a is a non-identity element of Sn, then a fixes none of the choice 
functions in C(X), i.e. X((J") = o. 

Proof: Suppose f E C(X), and let (J"' = (al,' .. ,at), t ~ 2, be a non-trivial cycle in 
the decomposition of a as the product of disjoint cycles. If A = {aI, ... , at}, then, 
ArT = A, while ai =f. ai-for 1 ~ i ~ t. If f(A) = ai, then f(AU) = f(A) = ai =f. ai, so 
by 3.1, f is not fixed by (J". 0 

Theorem 3.1 The number of equivalence classes in C(X) under permutation equiv-
alence is 

n 

p(n) = II k(~)-l. 
k=l 
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Proof: Note that a non-identity permutation (j of Sn fixes X((j) = 0 functions ofC(X), 
while the identity permutation fixes all choice functions. Hence, by the Cauchy
Frobenius lemma, the number of Sn-orbits in C(X) is 

o 
If a E A ~ X, and a E Sn, let ,\,.(a) and ,\,.(A) be the orbit lengths under (a) 

of the point-orbit a(u) and set-orbit A (u) respectively. It can be easily seen that, in 
general, both cases (i) Au(a) ~ Au(A), (ii) Au(a) > Au(A) are possible. Suppose 
however, that f E Ck(X) is fixed by a, and f(A) = a. Then, it is clear that (ii) can 
not occur, otherwise the statement (ii) of lemma 3.2 would be violated. Moreover, 
again under the assumptions that f is fixed by a and f(A) = a, it is easily seen 
that Au(a) must divide Au(A), otherwise condition (ii) of lemma 3.2 would again be 
violated. Consequently, we have the following 

Lemma 3.3 Let (j E Sn, and suppose that f E Ck(X) is fixed by (j. If Au(a) is the 
orbit length of a = f(A) under the cyclic group (a), and Au(A) the orbit length of A 
under (a), then, Au(a) divides Au(A). 

Let k be a fixed positive integer, k ~ n, a an arbitrary element of Snl and 
suppose that (j = (jl . a2 ... (jm is the factorization of (j as the product of disjoint 
cycles, where (ji = (ai,l,"" ai,v;)' Let Vi = {ai,l, ... ai,Vi} be the set of elements of 
X occuring in ai. Now, for any A E (~), A = Al u··· u Am, where Ai = A n Vi. 
Let ki = IAil. Even though some of the Ai may be empty, with corresponding 
ki = 0, we still call the collection {AI,"" Am} a partition of A, and {kl , ... , km} a 
partition of the natural number k. Since the Ai are disjoint, and A = Al U ... U Am, 
the following lemma is straightforward: 

Lemma 3.4 Under the notation just established, we have: 

(i) 

(ii) 

(iii) 

Au;(0) = 1 

Au(Ai) = Au; (Ai) 

Au(A) = LCM [Au(At}, ... , Au(Am)]. 

Let II : N -+ N be a mobius-like function defined by 

where the Pi are primes. Then, we have the following: 

(3.3) 

Proposition 3.1 Suppose that a = (1,2, ... , v), and t, k, and v are positive inte
gers such that t, k ~ v, and v = rt. Let N(v, k, t) denote the number of subsets A of 
V = {I, 2, ... , v} such that IAI = k, and Au(A) = t. Then, 
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N(v, k, t) = I: v(dlr) (~j~). 
d 

(3.4) 

rid I (k,v) 

Proof: Since Acr(A) = t, the stabilizer of A in (a) is of order l(a)llt = vlt = r. 
But (a) has a unique subgroup of order r, namely the cyclic group generated by 
y = at, Now, y is a permutation of type rt, i.e. it consists of t cycles of length r. 
Since A is fixed by y, A is the union of some of the t r-cycles of y. In particular, 
IAI = sr = k, so that rlk, and s = klr. Now, there are G) = (~~~) ways of selecting 
these s r-cycles to form A. However, some of these k-sets are also the union of kid 
d-cycles in the cyclic subgroup of (a) order d, where rid I k. There are G~:) ways 
of forming the latter k-sets, and they fall into orbits of length v I d. Hence, by the 
inclusion-exclusion principal the result follows. 0 

Proposition 3.2 Let (J be a permutation in Sn whose factorization as the product 
of disjoint cycles is a = al ... am, lail = Vi. Then, the number of k-restricted choice 
functions in Ck(X) fixed by a is 

IT II {L 
kl + ... + km = k (tl, ... , tm ) Vi I LCM [tt, ... , tmJ 

o ~ ki :5 Vi 

l~i:5m 

ti I Vi 

ki = 0 => ti = 1 
I ~ i ~ m 

Proof: For 0 ::; i ::; m, let ai = (ai,l, ai,2, ... , ai,vJ, and Vi = {ai,l, ai,2, ... ,ai,vJ. For 
a fixed partition of k, kl + ... + km = k with 0 :S ki ::; Vi, and a fixed (t l , ... , tm) 
where the ti are positive integers, ti I Vi, there are N(Vll kll td·· . N(vm , km, tm) ways 
of selecting an m-tuple of fragments (AI' A2, • •• , Am) such that Ai ~ Vi, Ur Ai = A, 
IAI = k, and Acri(Ai) = ti' But, for this fixed (tl,"" tm), the collection F of all 
m-tuples of fragments (AI"'" Am), and the collection F' of corresponding k-sets 
A, are partitioned into (a)-orbits all of length LCM [t l , ... , tm]' Now, to form a 
choice function f E Ck(X) fixed by a it is necessary and sufficient to assign a value 
to a single orbit representative, from each (a)-orbit of k-sets. Moreover, by lemma 
3.3, the number of choices is L Vi I .x(A) ki . The result follows. 0 
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