Some Structural Results on Linear Arboricity

Dieter Rautenbach and Lutz Volkmann

Lehrstuhl II für Mathematik, RWTH Aachen
52056 Aachen, Germany
e-mail: volkm@math2.rwth-aachen.de

Abstract

A linear forest-factor F of a graph G is a spanning subgraph of G whose components are paths. A linear forest-decomposition of G is a collection $\mathcal{F}=\left\{F_{1}, \ldots, F_{k}\right\}$ of linear forest-factors of G such that the edge set $E(G)$ of G is the disjoint union of $E\left(F_{1}\right), \ldots, E\left(F_{k}\right)$. The linear arboricity $l a(G)$ of G is the minimum cardinality of a linear forest-decomposition of G. In this paper we evolve a method to construct a small linear forestdecomposition of a graph G from given linear forest-decompositions of two subgraphs that are linked by a cut vertex of G. As an application we determine the linear arboricity of block-cactus graphs which extends a result of Zelinka [5] (1986). Our results are connected to the "linear arboricity conjecture" of Akiyama, Exoo and Harary [2] (1980).

1. Introduction

We consider finite, simple, undirected, connected and non-trivial graphs G with vertex set $V(G)$ and edge set $E(G)$. For a vertex x of a graph G the degree $d(x, G)$ of x in G is the cardinality of the neighbourhood of x in G. The maximum degree of a vertex in a graph G is denoted by $\Delta(G)$. The linear arboricity of a graph was defined by F. Harary in [3]. We give here a slightly more formalized version which simplifies some matters of notation.

A linear forest-factor F of a graph G is a spanning subgraph of G whose components are all paths (isolated vertices are allowed). A linear forest-decomposition of G is a collection $\mathcal{F}=\left\{F_{1}, \ldots, F_{k}\right\}$ of linear forest-factors of G such that $E(G)$ is the disjoint union of $E\left(F_{1}\right), \ldots, E\left(F_{k}\right)$. The linear arboricity $l a(G)$ of G is the minimum cardinality of a linear forest-decomposition.

Since the maximum degree in a linear forest-factor is at most 2 , the lower bound

$$
\left\lceil\frac{\Delta(G)}{2}\right\rceil \leq l a(G)
$$

is immediate for every graph G.
Australasian Journal of Combinatorics 17(1998), pp.267-274

To shorten the proofs we now introduce some notation. Let $\mathcal{F}=\left\{F_{1}, \ldots, F_{k}\right\}$ be an linear forest-decomposition of G. For every vertex $x \in V(G)$ we define

$$
n_{i}(x, \mathcal{F})=|\{F \in \mathcal{F}: d(x, F)=i\}|, i=0,1,2
$$

and

$$
\vec{n}(x, \mathcal{F})=\left(n_{0}(x, \mathcal{F}), \dot{n}_{1}(x, \mathcal{F}), n_{2}(x, \mathcal{F})\right)
$$

A fundamental question in this context is the "linear arboricity conjecture" of Akiyama, Exoo and Harary [2].

Conjecture 1 If G is an r-regular graph, then

$$
l a(G)=\left\lceil\frac{r+1}{2}\right\rceil .
$$

For non regular graphs we state a version of this conjecture formulated by Aitdjafer [1].

Conjecture 2 If G is a graph, then

$$
\left\lceil\frac{\Delta(G)}{2}\right\rceil \leq l a(G) \leq\left\lceil\frac{\Delta(G)+1}{2}\right\rceil
$$

2. Structural Results

We start with our main theorem. It examines how to obtain a small linear forestdecomposition of a graph G from given linear forest-decompositions of two subgraphs that are linked by a cut vertex of G.

Theorem 1 Let G be graph with the cut vertex x. Let G_{1} and G_{2} be two subgraphs of G such that $\{x\}=V\left(G_{1}\right) \cap V\left(G_{2}\right), V(G)=V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and $E(G)=E\left(G_{1}\right) \cup$ $E\left(G_{2}\right)$.

Let \mathcal{F}_{1} and \mathcal{F}_{2} be linear forest-decompositions of G_{1} and G_{2}, respectively with $\left|\mathcal{F}_{i}\right|=l a\left(G_{i}\right)$ and $\vec{n}_{i}=\left(n_{0}^{i}, n_{1}^{i}, n_{2}^{i}\right)=\vec{n}\left(x, \mathcal{F}_{i}\right), i=1,2$. Assume that $n_{1}^{1} \geq n_{1}^{2}$.

Then the following relations for $l a(G)$ hold:
i. If $n_{0}^{1} \leq n_{2}^{2}$ and $n_{0}^{2} \leq n_{2}^{1}$, then

$$
l a(G)=\max \left\{\left\lceil\frac{d(x, G)}{2}\right\rceil, l a\left(G_{1}\right)\right\}
$$

ii. If $n_{0}^{1} \leq n_{2}^{2}$ and $n_{2}^{1}<n_{0}^{2}<n_{2}^{1}+\left(n_{1}^{1}-n_{1}^{2}\right)$, then

$$
l a(G) \leq \max \left\{l a\left(G_{1}\right),\left\lceil\frac{d(x, G)+n_{0}^{2}-n_{2}^{1}}{2}\right\rceil\right\} .
$$

iii. In all other cases we have

$$
l a(G)=\max \left\{l a\left(G_{1}\right), l a\left(G_{2}\right)\right\}
$$

Proof. Step by step we combine linear forest-factors of \mathcal{F}_{1} and \mathcal{F}_{2} to form linear forest-factors of G. After every step we reduce the entries of \vec{n}_{1} and \vec{n}_{2} to keep track of the remaining linear forest-factors. If $\vec{n}_{1}=\vec{n}_{2}=(0,0,0)$, the process is complete.

Since $n_{1}^{2} \leq n_{1}^{1}$ we begin in all three cases by forming the union of linear forestfactors $F_{1} \in \mathcal{F}_{1}$ and linear forest-factors $F_{2} \in \mathcal{F}_{2}$ with $d\left(x, F_{i}\right)=1, i=1,2$ to construct n_{1}^{2} new linear forest-factors of G. This leads to

$$
\begin{equation*}
\vec{n}_{1}=\left(n_{0}^{1}, n_{1}^{1}-n_{1}^{2}, n_{2}^{1}\right) \text { and } \vec{n}_{2}=\left(n_{0}^{2}, 0, n_{2}^{2}\right) . \tag{1}
\end{equation*}
$$

In Cases i and ii we form the union of linear forest-factors $F_{1} \in \mathcal{F}_{1}$ and linear forest-factors $F_{2} \in \mathcal{F}_{2}$ with $d\left(x, F_{1}\right)=0$ and $d\left(x, F_{2}\right)=2$ to construct n_{0}^{1} new linear forest-factors of G and obtain

$$
\begin{equation*}
\vec{n}_{1}=\left(0, n_{1}^{1}-n_{1}^{2}, n_{2}^{1}\right) \text { and } \vec{n}_{2}=\left(n_{0}^{2}, 0, n_{2}^{2}-n_{0}^{1}\right) . \tag{2}
\end{equation*}
$$

Case i : By forming the union of linear forest-factors $F_{1} \in \mathcal{F}_{1}$ and linear forestfactors $F_{2} \in \mathcal{F}_{2}$ with $d\left(x, F_{1}\right)=2$ and $d\left(x, F_{2}\right)=0$ we construct n_{0}^{2} new linear forest-factors of G. Therefore we deduce from (2)

$$
\vec{n}_{1}=\left(0, n_{1}^{1}-n_{1}^{2}, n_{2}^{1}-n_{0}^{2}\right) \text { and } \vec{n}_{2}=\left(0,0, n_{2}^{2}-n_{0}^{1}\right) .
$$

Now we decompose $m=\min \left\{\left\lfloor\frac{n_{1}^{1}-n_{1}^{2}}{2}\right\rfloor, n_{2}^{2}-n_{0}^{1}\right\}$ of the linear forest-factors $F \in \mathcal{F}_{2}$ with $d(x, F)=2$ in $2 m$ new linear forest-factors F^{\prime} of G_{2} with $d\left(x, F^{\prime}\right)=1$ and obtain

$$
\vec{n}_{1} \text { remains unchanged and } \vec{n}_{2}=\left(0,2 m, n_{2}^{2}-n_{0}^{1}-m\right) .
$$

By forming the union of linear forest-factors $F_{1} \in \mathcal{F}_{1}$ and linear forest-factors $F_{2} \in \mathcal{F}_{2}$ with $d\left(x, F_{1}\right)=1$ and $d\left(x, F_{2}\right)=1$ we construct $2 m$ linear forest-factors of G and obtain

$$
\vec{n}_{1}=\left(0, n_{1}^{1}-n_{1}^{2}-2 m, n_{2}^{1}-n_{0}^{2}\right) \text { and } \vec{n}_{2}=\left(0,0, n_{2}^{2}-n_{0}^{1}-m\right) .
$$

All the remaining linear forest-factors of G_{1} and G_{2} are adopted unchanged as linear forest-factors of G (just by adding all the missing vertices to get a factor). This yields finally

$$
\vec{n}_{1}=\vec{n}_{2}=(0,0,0)
$$

The cardinality of the constructed linear forest-decomposition of G is now

$$
\begin{aligned}
& n_{1}^{2}+n_{0}^{1}+n_{0}^{2}+2 m+\left(n_{2}^{1}-n_{0}^{2}\right)+\left(n_{1}^{1}-n_{1}^{2}-2 m\right)+\left(n_{2}^{2}-n_{0}^{1}-m\right) \\
& =n_{1}^{1}+n_{2}^{1}+n_{2}^{2}-m \\
& =\max \left\{n_{1}^{1}+n_{2}^{1}+n_{2}^{2}-\left\lfloor\frac{n_{1}^{1}-n_{1}^{2}}{2}\right\rfloor, n_{1}^{1}+n_{2}^{1}+n_{2}^{2}-n_{2}^{2}+n_{0}^{1}\right\} \\
& =\max \left\{n_{1}^{1}+n_{2}^{1}+n_{2}^{2}+\left\lceil\left.\frac{n_{1}^{2}-n_{1}^{1}}{2} \right\rvert\,, n_{0}^{1}+n_{1}^{1}+n_{2}^{1}\right\}\right.
\end{aligned}
$$

$$
\begin{aligned}
& =\max \left\{\left\lceil\frac{n_{1}^{2}+n_{1}^{1}+2 n_{2}^{1}+2 n_{2}^{2}}{2}\right\rceil, n_{0}^{1}+n_{1}^{1}+n_{2}^{1}\right\} \\
& =\max \left\{\left\lceil\frac{d(x, G)}{2}\right\rceil, l a\left(G_{1}\right)\right\},
\end{aligned}
$$

and hence it follows that

$$
l a(G) \leq \max \left\{\left\lceil\frac{d(x, G)}{2}\right\rceil, l a\left(G_{1}\right)\right\}
$$

Since $l a(G) \geq \max \left\{\left\lceil\frac{d(x, G)}{2}\right\rceil, l a\left(G_{1}\right)\right\}$ the desired equality is proved.
Case ii: By forming the union of linear forest-factors $F_{1} \in \mathcal{F}_{1}$ and linear forestfactors $F_{2} \in \mathcal{F}_{2}$ with $d\left(x, F_{1}\right)=2$ and $d\left(x, F_{2}\right)=0$ we construct n_{2}^{1} new linear forest-factors of G. Hence (2) becomes

$$
\vec{n}_{1}=\left(0, n_{1}^{1}-n_{1}^{2}, 0\right) \text { and } \vec{n}_{2}=\left(n_{0}^{2}-n_{2}^{1}, 0, n_{2}^{2}-n_{0}^{1}\right) .
$$

By forming the union of linear forest-factors $F_{1} \in \mathcal{F}_{1}$ and linear forest-factors $F_{2} \in \mathcal{F}_{2}$ with $d\left(x, F_{1}\right)=1$ and $d\left(x, F_{2}\right)=0$ we construct $n_{0}^{2}-n_{2}^{1}$ new linear forest-factors of G and obtain

$$
\vec{n}_{1}=\left(0, n_{1}^{1}-n_{1}^{2}-n_{0}^{2}+n_{2}^{1}, 0\right) \text { and } \vec{n}_{2}=\left(0,0, n_{2}^{2}-n_{0}^{1}\right) .
$$

Now we decompose $m=\min \left\{\left\lfloor\frac{n_{1}^{1}-n_{1}^{2}-n_{0}^{2}+n_{2}^{1}}{2}\right\rfloor, n_{2}^{2}-n_{0}^{1}\right\}$ of the linear forest-factors $F \in \mathcal{F}_{2}$ with $d(x, F)=2$ in $2 m$ new linear forest-factors F^{\prime} of G_{2} with $d\left(x, F^{\prime}\right)=1$ and obtain

$$
\vec{n}_{1} \text { remains unchanged and } \vec{n}_{2}=\left(0,2 m, n_{2}^{2}-n_{0}^{1}-m\right) .
$$

By forming the union of linear forest-factors $F_{1} \in \mathcal{F}_{1}$ and linear forest-factors $F_{2} \in \mathcal{F}_{2}$ with $d\left(x, F_{1}\right)=1$ and $d\left(x, F_{2}\right)=1$ we construct $2 m$ new linear forestfactors of G and obtain

$$
\vec{n}_{1}=\left(0, n_{1}^{1}-n_{1}^{2}-n_{0}^{2}+n_{2}^{1}-2 m, 0\right) \text { and } \vec{n}_{2}=\left(0,0, n_{2}^{2}-n_{0}^{1}-m\right) .
$$

All the remaining linear forest-factors of G_{1} and G_{2} are adopted unchanged as linear forest-factors of G. A similar calculation as in Case i leads to the cardinality of the constructed linear forest-decomposition of G, which implies the desired inequality

$$
l a(G) \leq \max \left\{\left\lceil\frac{d(x, G)+n_{0}^{2}-n_{2}^{1}}{2}\right\rceil, l a\left(G_{1}\right)\right\}
$$

Case iiii: Starting from (1) we distinguish two subcases.
(a) $n_{2}^{2}<n_{0}^{1}$. We construct n_{2}^{2} new linear forest-factors of G by forming the union of linear forest-factors $F_{1} \in \mathcal{F}_{1}$ and linear forest-factors $F_{2} \in \mathcal{F}_{2}$ with $d\left(x, F_{1}\right)=0$ and $d\left(x, F_{2}\right)=2$. We obtain

$$
\vec{n}_{1}=\left(n_{0}^{1}-n_{2}^{2}, n_{1}^{1}-n_{1}^{2}, n_{2}^{1}\right) \text { and } \vec{n}_{2}=\left(n_{0}^{2}, 0,0\right) .
$$

We construct $\max \left\{n_{0}^{2}, n_{2}^{1}+\left(n_{1}^{1}-n_{1}^{2}\right)+\left(n_{0}^{1}-n_{2}^{2}\right)\right\}$ new linear forest-factors of G by forming the union of $\min \left\{n_{0}^{2}, n_{2}^{1}+\left(n_{1}^{1}-n_{1}^{2}\right)+\left(n_{0}^{1}-n_{2}^{2}\right)\right\}$ linear forest-factors $F_{1} \in \mathcal{F}_{1}$ and linear forest-factors $F_{2} \in \mathcal{F}_{2}$ and by adopting all remaining linear forest-factors unchanged. We obtain a linear forest-decomposition of G with cardinality

$$
\begin{aligned}
& n_{1}^{2}+n_{2}^{2}+\max \left\{n_{0}^{2}, n_{2}^{1}+\left(n_{1}^{1}-n_{1}^{2}\right)+\left(n_{0}^{1}-n_{2}^{2}\right)\right\} \\
& =\max \left\{n_{0}^{2}+n_{1}^{2}+n_{2}^{2}, n_{0}^{1}+n_{1}^{1}+n_{2}^{1}\right\} \\
& =\max \left\{l a\left(G_{1}\right), l a\left(G_{2}\right)\right\}
\end{aligned}
$$

Therefore $l a(G) \leq \max \left\{l a\left(G_{1}\right), l a\left(G_{2}\right)\right\}$. Since clearly $l a(G) \geq l a\left(G_{i}\right)$ for $i=1,2$ we obtain the desired result.
(b) The only remaining case, $n_{2}^{2} \geq n_{0}^{1}$ and $n_{0}^{2} \geq n_{2}^{1}+\left(n_{1}^{1}-n_{1}^{2}\right)$ is similar to Case iii (a) and is therefore omitted.

To apply this result we need to know the vectors \vec{n}_{i}. For a vertex $x \in V(G)$ of maximum degree in a graph G satisfying Conjecture 2, the following proposition summarizes all possible values of $\vec{n}(x, \mathcal{F})$.

Proposition 1 Let G be a graph with $\left\lceil\frac{\Delta(G)}{2}\right\rceil \leq l a(G) \leq\left\lceil\frac{\Delta(G)+1}{2}\right\rceil$. Let x be a vertex of G with maximum degree $d(x, G)=\Delta(G)$ and \mathcal{F} be a linear forest-decomposition of G with $|\mathcal{F}|=l a(G)$.
1.1. If $\Delta(G)$ is odd, then $\vec{n}(x, \mathcal{F})=(0,1, l a(G)-1)$.
1.2. If $\Delta(G)$ is even and $l a(G)=\frac{\Delta(G)}{2}$, then $\vec{n}(x, \mathcal{F})=(0,0, l a(G))$.
1.3. If $\Delta(G)$ is even and $l a(G)=\frac{\Delta(G)}{2}+1$, then either
(a) $\vec{n}(x, \mathcal{F})=(0,2, l a(G)-2) \quad$ or
(b) $\vec{n}(x, \mathcal{F})=(1,0, l a(G)-1)$.

The simple proof of Proposition 1 is left to the reader. Now we proceed to the first application of Theorem 1.

Theorem 2 Let G be a graph with at least two blocks B_{1}, \ldots, B_{r} such that
2.1. for each $i \in\{1, \ldots, r\},\left\lceil\frac{\Delta\left(B_{i}\right)}{2}\right\rceil \leq l a\left(B_{i}\right) \leq\left\lceil\frac{\Delta\left(B_{i}\right)+1}{2}\right\rceil$;
2.2. for each $i \in\{1, \ldots, r\}$ and for every cut vertex x of G in $V\left(B_{i}\right)$ we have $d\left(x, B_{i}\right)=\Delta\left(B_{i}\right) ;$ and
2.3. for each $i \in\{1, \ldots, r\}$ such that $\Delta\left(B_{i}\right)$ is even and $l a\left(B_{i}\right)=\frac{\Delta\left(B_{i}\right)}{2}+1$, for every cut vertex x of G in $V\left(B_{i}\right)$ there are linear forest-decompositions \mathcal{F}_{1} and \mathcal{F}_{2} of B_{i} such that $\vec{n}\left(x, \mathcal{F}_{1}\right)=\left(0,2, l a\left(B_{i}\right)-2\right)$ and $\vec{n}\left(x, \mathcal{F}_{2}\right)=\left(1,0, l a\left(B_{i}\right)-1\right)$.
Then

$$
\begin{equation*}
l a(G)=\left\lceil\frac{\Delta(G)}{2}\right\rceil \tag{3}
\end{equation*}
$$

Proof. We use induction on r to show that if the graph G with $r \geq 1$ blocks B_{1}, \ldots, B_{r} has properties 2.1, 2.2 and 2.3 then

$$
\begin{equation*}
l a(G) \leq \max \left\{\left\lceil\frac{\Delta\left(B_{i}\right)+1}{2}\right\rceil, i=1, \ldots, r,\left\lceil\frac{\Delta(G)}{2}\right\rceil\right\} \tag{4}
\end{equation*}
$$

When $r \geq 2$, from 2.2 we have that $\Delta\left(B_{i}\right)+1 \leq \Delta(G)$ for $i=1, \ldots, r$, so (3) follows from (4) and the theorem will be proved. Since (4) is immediate from 2.1 when $r=1$, we assume now than $r \geq 2$.

Without loss of generality we assume that B_{1} is an endblock with the cut vertex x. By induction the graph $G^{\prime}=G-\left(V\left(B_{1}\right)-\{x\}\right)$ satisfies (4), i.e.

$$
\begin{equation*}
l a\left(G^{\prime}\right) \leq \max \left\{\left\lceil\frac{\Delta\left(B_{i}\right)+1}{2}\right\rceil, i=2, \ldots, r,\left\lceil\frac{\Delta\left(G^{\prime}\right)}{2}\right\rceil\right\} \tag{5}
\end{equation*}
$$

Let \mathcal{F} and \mathcal{F}^{\prime} be linear forest-decompositions of B_{1} and G^{\prime} with $l a\left(B_{1}\right)=|\mathcal{F}|$ and $l a\left(G^{\prime}\right)=\left|\mathcal{F}^{\prime}\right|$. Define $\vec{n}=\vec{n}(x, \mathcal{F})$ and $\vec{n}^{\prime}=\vec{n}\left(x, \mathcal{F}^{\prime}\right)$.

Theorem 1 can be applied to B_{1} and G^{\prime} as G_{1} and G_{2}. Since $d\left(x, B_{1}\right)=\Delta\left(B_{1}\right)$ and B_{1} satisfies $\left\lceil\frac{\Delta\left(B_{1}\right)}{2}\right\rceil \leq l a\left(B_{1}\right) \leq\left\lceil\frac{\Delta\left(B_{1}\right)+1}{2}\right\rceil$, the only possible values for \vec{n} are all mentioned in Proposition 1. We now show that all these values exclude Case ii of Theorem 1 for \vec{n} and \vec{n}^{\prime}.

1. Let $\Delta\left(B_{1}\right)$ be odd and thus $\vec{n}=\left(0,1, l a\left(B_{1}\right)-1\right)$.
(a) If $n_{1}^{\prime}=0$, then we use Theorem 1 with $G_{1}=B_{1}$ and $G_{2}=G^{\prime}$. Since $l a\left(B_{1}\right)-1<n_{0}^{\prime}=n_{0}^{2}<l a\left(B_{1}\right)$ is not possible, Case ii is excluded.
(b) If $n_{1}^{\prime} \geq 1$, then we use Theorem 1 with $G_{1}=G^{\prime}$ and $G_{2}=B_{1}$. Since $0=n_{0}^{2}>n_{2}^{1} \geq 0$ is false, Case ii is excluded.
2. Let $\Delta\left(B_{1}\right)$ be even, $l a\left(B_{1}\right)=\frac{\Delta\left(B_{1}\right)}{2}$ and thus $\vec{n}=\left(0,0, l a\left(B_{1}\right)\right)$. We define $G_{1}=G^{\prime}$ and $G_{2}=B_{1}$. Since $0=n_{0}^{2}>n_{2}^{1} \geq 0$ is false, Case ii is excluded.
3. Let $\Delta\left(B_{1}\right)$ be even and $l a\left(B_{1}\right)=\frac{\Delta\left(B_{1}\right)}{2}+1$.
(a) If $n_{1}^{\prime} \geq 2$, then choose \mathcal{F} such that $\vec{n}=\left(0,2, l a\left(B_{1}\right)-2\right)$. We define $G_{1}=G^{\prime}$ and $G_{2}=B_{1}$. Since $0=n_{0}^{2}>n_{2}^{1} \geq 0$ is false, Case ii is excluded.
(b) If $n_{1}^{\prime}<2$, then choose \mathcal{F} such that $\vec{n}=\left(1,0, l a\left(B_{1}\right)-1\right)$. We define $G_{1}=G^{\prime}$ and $G_{2}=B_{1}$. Since $n_{2}^{1}=n_{2}^{\prime}<n_{0}^{2}=1<n_{2}^{1}+\left(n_{1}^{1}-n_{1}^{2}\right)=n_{2}^{\prime}+n_{1}^{\prime}$ is not possible, Case ii is excluded.

Thus for B_{1} and G^{\prime} only Cases i and iii of Theorem 1 occur which implies

$$
l a(G) \leq \max \left\{l a\left(G^{\prime}\right), l a\left(B_{1}\right),\left\lceil\frac{d(x, G)}{2}\right\rceil\right\}
$$

Together with (5) and the bounds $l a\left(B_{1}\right) \leq\left\lceil\frac{\Delta\left(B_{1}\right)+1}{2}\right\rceil$ and $\Delta\left(G^{\prime}\right) \leq \Delta(G)$, we deduce (4) and the proof is complete.

Under weaker conditions the same proof-methods lead to a similar result.
Theorem 3 Let G be a graph with $r \geq 1$ blocks B_{1}, \ldots, B_{r} such that
3.1. for each $i \in\{1, \ldots, r\},\left\lceil\frac{\Delta\left(B_{i}\right)}{2}\right\rceil \leq l a\left(B_{i}\right) \leq\left\lceil\frac{\Delta\left(B_{i}\right)+1}{2}\right\rceil$ and
3.2. for each $i \in\{1, \ldots, r\}$ and for every cut vertex x of G in $V\left(B_{i}\right)$ we have $d\left(x, B_{i}\right)=\Delta\left(B_{i}\right)$.

Then

$$
l a(G) \leq\left\lceil\frac{\Delta(G)+1}{2}\right\rceil
$$

i.e. the graph G satisfies Conjecture 2.

3. Applications

A block-cactus graph is a graph whose blocks are either complete or cycles. In view of Theorem 2 the linear arboricity of block-cactus graphs is now easy to determine.

Corollary 1 If G is a block-cactus graph with at least two blocks, then

$$
l a(G)=\left\lceil\frac{\Delta(G)}{2}\right\rceil
$$

Proof. Since for the blocks which are cycles all conditions in Theorem 2 are evident, we only verify them for the complete blocks.

For the complete graph K_{n} on n vertices Condition 2.2 of Theorem 2 is immediate, and the linear arboricity was determined by Stanton, Cowan and James [4] and is given by (see also [2])

$$
l a\left(K_{n}\right)=\left\lceil\frac{\Delta\left(K_{n}\right)+1}{2}\right\rceil
$$

Therefore the complete blocks satisfy Condition 2.1 .
For Condition 2.3 let K_{n} be a complete graph of odd order and let x be an arbitrarily chosen vertex in $V\left(K_{n}\right)$. The linear arboricity is

$$
l a\left(K_{n}\right)=\left\lceil\frac{\Delta\left(K_{n}\right)+1}{2}\right\rceil=\frac{\Delta\left(K_{n}\right)}{2}+1=\frac{n-1}{2}+1
$$

Now by [4] there exists even a linear forest-decomposition \mathcal{F} of K_{n} in $l a\left(K_{n}\right)$ factors such that each factor in \mathcal{F} contains only one path of length different from 0 . Hence it is easily seen that there are at least two vertices x_{1} and x_{2} in $V\left(K_{n}\right)$ such that $\vec{n}\left(x_{1}, \mathcal{F}\right)=\left(0,2, l a\left(K_{n}\right)-2\right)$ and $\vec{n}\left(x_{2}, \mathcal{F}\right)=\left(1,0, l a\left(K_{n}\right)-1\right)$. Now the symmetry of K_{n} implies the existence of two linear forest-decompositions of K_{n} in $l a\left(K_{n}\right)$ factors where x takes the positions of x_{1} and x_{2} respectively. Hence the desired decompositions of Condition 2.3 do exist. This completes the proof.

As an immediate consequence, we obtain the following two results.

Corollary 2 (Zelinka [5], 1986) If G is a cactus graph with at least two blocks, then

$$
l a(G)=\left\lceil\frac{\Delta(G)}{2}\right\rceil
$$

Corollary 3 (Akiyama, Exoo and Harary [2], 1980) If G is a tree, then

$$
l a(G)=\left\lceil\frac{\Delta(G)}{2}\right\rceil
$$

Acknowledgements We would like to thank the referee for useful comments and suggestions concerning the exposition of this paper.

References

[1] H. Aït-djafer. Linear arboricity for graphs with multiple edges. J. Graph Theory 11, 135-140 (1987)
[2] J. Akiyama, G. Exoo and F. Harary. Covering and packing in graphs III: cyclic and acyclic invariants. Math. Slovaca 30, 405-417 (1980)
[3] F. Harary. Covering and packing in graphs I. Ann. New York Acad. Sci. 175, 198-205 (1970)
[4] R.G. Stanton, D.D. Cowan and L.O. James. Some results on path numbers. Proc. Louisiana Conf. Combinatorics, Graph Theory and Computing, Baton Rouge, 112-135 (1970)
[5] B. Zelinka. Domatic number and linear arboricity of cacti. Math. Slovaca 36, 49-54 (1986)

