Directed packings with block size 5

Ahmed M. Assaf*
Department of Mathematics, Central Michigan University
Mt. Pleasant, MI 48859, U.S.A.
N. Shalaby
Department of Mathematics
Memorial University of Newfoundland
St. John's, NF, Canada A1C 5S7
J. Yin
Department of Mathematics, Suzhou University
Suzhou 215006, P.R. of China

Abstract Let $v \geq 5$ and λ be positive integers and let $D D(v, k, \lambda)$ denote the packing number of a directed packing with block size 5 and index λ. The values of $\operatorname{DD}(\mathrm{v}, 5, \lambda)$ have been determined for $\lambda=1,2$ with the possible exceptions of $(v, \lambda)=(15,1)(19,1)(27,1),[7,8,19]$. In this paper we determine the values of $D D(v, 5, \lambda)$ for all $v \geq 5$ and $\lambda \geq 3$ except possibly $(v, \lambda)=(43,3)$.

1. Introduction

Let v, k and λ be positive integers. A transitively ordered k -tuple (a_{1}, \ldots, $\left.a_{k}\right)$ is defined to be the set $\left\{\left(a_{i}, a_{j}\right) \mid 1 \leq i<j \leq k\right\}$ consisting of $\frac{k(k-1)}{2}$ ordered pairs. A directed packing (covering), denoted by $D P(v, k, \lambda),(D C(v, k, \lambda))$ is a pair (V, A) where V is a set of v elements and A is a collection of transitively ordered k-tuples (called blocks) of V such that every ordered pair of V occurs in at most (at least) λ blocks. Let $\mathrm{DD}(\mathrm{v}, \mathrm{k}, \lambda)$ denote the maximum number of blocks in a $\operatorname{DP}(\mathrm{v}, \mathrm{k}, \lambda)$ and $D E(v, k, \lambda)$ denote the minimum number of blocks in a $D C(v, k, \lambda)$. A $D P(v, k, \lambda)$ directed packing design with $|A|=D D(v, k, \lambda)$ will be called a maximum packing. Similarly, a $D C(v, k, \lambda)$ directed covering with $|A|=$ $D E(v, k, \lambda)$ is called a minimum covering. If one ignores the order of the blocks, a $\operatorname{DP}(v, k, \lambda)(D C(v, k, \lambda))$ is a standard ($v, k, 2 \lambda)$ packing (covering).

[^0]So we have the following:
$D D(v, k, \lambda) \leq\left[\frac{v}{k}\left[\frac{v-1}{k-1} 2 \lambda\right]\right]=D U(v, k, \lambda)$ and $D E(v, k, \lambda) \geq\left\lceil\frac{v}{k}\left\lceil\frac{v-1}{k-1} 2 \lambda\right\rceil\right]=D L(v$, k, λ).
where $[\mathrm{x}]$ is the largest and $[\mathrm{x}]$ is the smallest integer satisfying $[\mathrm{x}]<\mathrm{x} \leq$ $\lceil x\rceil$. When $D D(v, k, \lambda)=D U(v, k, \lambda)$ the directed packing is called optimal and denoted by $\operatorname{ODP}(v, k, \lambda)$. Similarly, when $\operatorname{DE}(v, k, \lambda)=\operatorname{DL}(v, k, \lambda)$ the directed covering is called minimal and denoted by $\operatorname{MDC}(v, k, \lambda)$. Further as a consequence of Hanani's result [15, P.362], this bound can be sharpened in certain cases.

Theorem 1.1 if $2 \lambda(v-1) \equiv 0 \bmod (k-1)$ and $2 \lambda v \frac{(v-1)}{(k-1)} \equiv 1(\bmod k)$ then $D D(v, k, \lambda) \leq D U(v, k, \lambda)-1$.

A directed packing with a hole of size $h, \operatorname{DP}(v, k, \lambda)$ is a triple (V, H, A) where V is a v-set, H is a subset of V of cardinality h, and A is a collection of transitively ordered k-tuples, called blocks, of V such that

1) no 2-subset of H appears in any block;
2) every 2 -subset of V appears in at most λ blocks.

Further, a $\operatorname{DP}(v, k, \lambda)$ with a hole of size h is said to be maximum if it contains $\operatorname{DU}(\mathrm{v}, \mathrm{k}, \lambda)-\mathrm{DU}(\mathrm{h}, \mathrm{k}, \lambda)$ blocks.

A directed balanced incomplete block design, $D B[v, k, \lambda]$ is a $D P(v, k, \lambda)$, where every ordered pair of V is contained in exactly λ blocks. If a $D B[v, k, \lambda]$ exists then it is clear that $D D(v, k, \lambda)=2 \lambda \frac{v(v-1)}{k(k-1)}=D U(v, k, \lambda)$ and D.J. Street and W.H. Wilson [20] have shown the following:

Theorem 1.2 Let λ and $v \geq 5$ be positive integers. Necessary and sufficient conditions for the existence of a $D B[v, 5, \lambda]$ are that $(v, \lambda) \neq(15$, 1) and that $\lambda(v-1) \equiv 0(\bmod 2)$ and $\lambda v(v-1) \equiv 0(\bmod 10)$.

The following result was established in $[7,8,9]$.
Theorem 1.3 Let $v \geq 5$ be an integer. Then $D D(v, 5, \lambda)=D U(v, 5, \lambda)-e$ for λ $=1,2(v, \lambda) \neq(15,1)$ where $e=1$ if $2 \lambda(v-1) \equiv 0(\bmod 4)$ and $\frac{\lambda v(v-1)}{2} \equiv$ $1(\bmod 5)$ and $e=0$ otherwise with the possible exception of $(v, \lambda)=(19,1)$ $(27,1)$.

Corollary 1.1 Let $v \equiv 0$ or $1(\bmod 5), v \geq 5$, be an integer. Then
$\operatorname{DU}(v, 5, \lambda)=\operatorname{DD}(v, 5, \lambda)$ for all integers $\lambda \geq 1$ with the exception of $(v, \lambda)=$ $(15,1)$.

Proof For $\lambda=1$ or 2 the result was established in Theorem 1.3. For $\lambda=2 r$, where r is a positive integer, notice that there exists a $\operatorname{DB}[v, 5,2 r]$. For λ $=2 r+1, v \neq 15$ it is easy to see that $D U(v, 5,2 r+1)=D U(v, 5,2 r)+$ $D U(v, 5,1)$. For $v=15$ notice that a $D B[15,5,3]$ exists by Theorem 1.2 and then $D U(v, 5,2 r+1)=D U(v, 5,2 r-2)+D U(v, 5,3)$.

In this paper we are interested in determining the values of $D D(v, 5, \lambda)$ for $\lambda>2$. Our goal is to prove the following.

Theorem 1.4 Let $v \geq 5$ and $\lambda>2$ be integers. Then $D D(v, 5, \lambda)=\operatorname{DU}(v, 5, \lambda)$ -e where $e=1$ if $2 \lambda(v-1) \equiv 0$ and $e=0$ otherwise, with the possible exception of $(v, \lambda)=(43,3)$.

In what follows, we will use the following obvious fact. For brevity, we will not mention it subsequently.

Lemma 1.1 If there exists a $\operatorname{DB}[v, 5, \lambda]$ and $\operatorname{DU}\left(v, 5, \lambda^{\circ}\right)=\operatorname{DD}\left(v, 5, \lambda^{\prime}\right)$ then $D U\left(v, 5, \lambda^{\prime}+\lambda\right)=D D\left(v, 5, \lambda^{\prime}+\lambda\right)$.

Finally, about the notation of $<a b c d>\cup\left\{h_{1}, h_{2}\right\}$ we refer the reader to [9], and a block <a $b-c d>\cup\left\{h_{1}, h_{2}\right\}$ means that $h_{j}, i=1,2$ is to be inserted in the middle.

2. The Structure of Packing and Covering Designs

Let (V, A) be a (V, k, λ) packing design, and for each 2-subset $e=\{x, y\}$ of V define $m(e)$ to be the number of blocks in A which contains e. The complement of (V, A) denoted by $C(V, A)$ is defined to be the multigraph spanned by the edges not packed in (V, A). It is clear that the number of edges in $C(V, A)$ is $\lambda\binom{V}{2}-|A|\binom{k}{2}$. The degree of a vertex x in $C(V, A)$ is $\lambda(V$ $-1)-r_{x}(k-1)$ where r_{x} is the number of blocks through x. In a similar way, one can define the excess graph, $E(V, A)$, of a (v, k, λ) covering design to be the multigraph spanned by the edges covered more than λ times in (V, A). The number of edges in $E(V, A)$ is $|A|\binom{k}{2}-\lambda\binom{V}{2}$ and the degree of each vertex x in $C(V, A)$ is $r_{x}(k-1)-\lambda(v-1)$ where r_{x} is as above.

Lemma 2.1 [10] Let $v \equiv 2$ or $4(\bmod 5), v \geq 9$, be a positive integer. Then the complement graph of a ($v, 5,4$) optimal packing design consists of two vertices joined by 4 edges.

Lemma 2.2 [16] Let $v \equiv 3(\bmod 10) v \geq 23, v \neq 53,63,73,83$. Then the complement graph of a $(v, 5,2)$ minimal covering design consists of two vertices joined by 4 edges.

3. Recursive Constructions

In order to describe our recursive constructions we need the notions of transversal designs and group divisible designs. For the definition of these combinatorial designs see [15]. We shall use the following notations: a $T[k, \lambda, m]$ stands for a transversal design with block size k, index λ and group size m. $A(K, \lambda)$ - GDD of type $1^{i}, 2^{\text {T}}, 3^{s} \ldots$ stands for a group divisible design with block size from K , index λ, and there are i groups of order $1, r$ groups of order $2, s$ groups of order 3 , etc. We remark that the notions of transversal designs and group divisible design can be easily extended to the directed case, and we write DT and DGDD with the appropriate parameters.

The following theorem is most useful to us. For a proof see [3] and references therein.

Theorem 3.1 There exists a $T[6,1, m]$ for all positive integers $m \neq 2,3,4$, 6 with the possible exceptions of $m \in\{10,14,18,22\}$.

Let $\mathrm{k}, \lambda, \mathrm{m}$ and v be positive integers. A modified group divisible design, $\operatorname{MGD}[\mathrm{k}, \lambda, \mathrm{m}, \mathrm{mn}]$ is a quadrupie $(\mathrm{v}, \boldsymbol{\beta}, \gamma, \Delta)$ where V is a set of points with $|\mathrm{V}|=\mathrm{mn}, \gamma=\left\{\mathrm{G}_{1}, \ldots \mathrm{G}_{\mathrm{m}}\right\}$ is a partition of V into m sets, called groups, $\Delta=\left\{R_{1}, \ldots, R_{n}\right\}$ is a partition of V into n sets, called rows, and β is a family of k-subsets of V, called blocks, with the following properties.

1) $\left|B \cap G_{j}\right| \leq 1$ for all $B \in \beta$ and $G_{i} \in \gamma$.
2) $\left|B \cap R_{j}\right| \leq 1$ for all $B \in \beta$ and $R_{j} \in \Delta$.
3) $\left|R_{j}\right|=m$ for all $R_{j} \in \Delta$ and $\left|G_{i}\right|=n$ for all $G_{i} \in \gamma$.
4) Every 2 -subset $\{x, y\}$ of V such that x and y are neither in the same group nor same row is contained in exactly λ blocks.
5) $\left|G_{\rho} \cap R_{j}\right|=1$ for all $G_{i} \in \gamma$ and $R_{j} \in \Delta$.

A resolvable modified group divisible design, RMGD[k, $\lambda, \mathrm{m}, \mathrm{v}]$ is a modified group divisible design the blocks of which can be partitioned into parallel classes. It is clear that $\operatorname{RMGD}[5,1,5,5 \mathrm{~m}]$ is the same as $\operatorname{RT}[5,1$, $\mathrm{m}]$ with one parallel class of blocks singied out, and since a RT[5, $1, \mathrm{~m}]$ is equivalent to $T[6,1, \mathrm{~m}]$ we have the following.

Theorem 3.3 There exists a $\operatorname{RMGD[5,1,5,5m]}$ for all $m \neq 2,3,4,6$ with the possible exceptions of $m \in\{10,14,18,22\}$.

The following is our main recursive construction [6].
Theorem 3.4 If there exists a RMGD[5, 1, 5, 5m] and a ($5, \lambda$) - DGDD of type $4^{\mathrm{m}} s^{1}$ and there exists a maximum $\operatorname{DP}(20+h, 5, \lambda)$ with a hole of size h then there exists a maximum $\operatorname{DP}(20 \mathrm{~m}+4 \mathrm{u}+\mathrm{h}+\mathrm{s}, 5, \lambda)$ with a hole of size $4 u+h+s$ where $0 \leq u \leq m-1$.

In a similar way one can show
Theorem 3.5 If there exists a RMGD[5, 1, 5, 5m], a $(5, \lambda)$ - DGDD of type 2^{m} or 2^{m+1} and there exists a maximum $\operatorname{DP}(10+h, 5, \lambda)$ with a hole of size h then there exists a maximum $\operatorname{DP}(10 \mathrm{~m}+2 u+h+2 e, 5, \lambda)$ with a hole of size $2 u+h+2 e$ where $e=0$ if the DGDD is of type 2^{m} and $e=1$ if the DGDD is of type 2^{m+1} and $0 \leq u \leq m-1$.

The application of theorem 3.4 requires a (5, λ) - DGDD of type $4^{\mathrm{m}} \mathrm{s}^{1}$.
Notice that we may choose $s=0$ if $m \equiv 1(\bmod 5), s=4$ if $m \equiv 0$ or $4(\bmod$ $5)$ and $s=\frac{4(m-1)}{3}$ if $m \equiv 1(\bmod 3)$. Further, we may apply the following [14]

Theorem 3.6 There exists a $(5,1)-$ DGDD of type $4^{m} 8^{1}$ for all $m \equiv 0$ or $2(\bmod 5), m \geq 7$ with the possible exception of $m=10$.

The following two theorems are the directed versions of theorem 2.11 and theorem 2.18 of [6].

Theorem 3.7 If there exist a $\operatorname{RMGD}[5,1,5,5 \mathrm{~m}]$; a $(5, \lambda)$-DGDD of type 4^{m}; a maximum $\operatorname{DP}(20+h, 5, \lambda)$ with a hole of size h and an $\operatorname{ODP}(20+h, 5, \lambda)$ then there exists and an $\operatorname{ODP}(20 \mathrm{~m}+\mathrm{h}, 5, \lambda)$.

Theorem 3.8 If there exists a $(k, 1)$ - DGDD of type 5^{m}; a $(5, \lambda)$-GDD of type 4^{k} and a maximum $\operatorname{DP}(20+h, 5, \lambda)$ with a hole of size h and an $\operatorname{ODP}(20+h, 5, \lambda)$ then there exists an $\operatorname{ODP}(20 m+h, 5, \lambda)$.

Again the following theorem is the directed version of theorem 2.4 of [6]
Theorem 3.9 If there exists a $(6,1)$ - DGDD of type $5^{\text {m }}$ and a maximum $\mathrm{DP}(20+h, 5, \lambda)$ with a hole of size h then there exists a maximum $D P(20(m-1)+4 u+h, 5, \lambda)$ with a hole of size $4 u+h$.

Lemma 3.1 There exists a $(6,1)$ - DGDD of type 5^{7}.
Proof Let $X=z_{35}$ with groups $\{i, i+7, i+14, i+21, i+28\}, i \in z_{7}$. Then the blocks are $<15170211>(\bmod 35)<2210131820>(\bmod 35)$.

4. Directed Packing With Index 3

We first mention that the result for $\mathrm{v} \equiv 0$ or $1(\bmod 5)$ was established in corollary 1.1. For all other values of v we proceed as follows.

Lemma 4.1 Let $v \equiv 2(\bmod 10), v \geq 12$, be an integer. Then $\operatorname{DU}(v, 5,3)=$ DD(v, 5, 3).

Lemma 4.2 Let $v \equiv 4(\bmod 10)$ be a positive integer. If there exists a maximum $\operatorname{DP}(v, 5,1)$ with a hole of size 4 and a $\operatorname{MDC}(v, 5,2)$ then $\operatorname{DU}(v, 5$, $3)=\mathrm{DD}(\mathrm{v}, 5,3)$.

Proof For all $v \equiv 4(\bmod 10) v \geq 14$ the construction is as follows:

1) Take a maximum $\operatorname{DP}(v, 5,1)$ with a hole of size 4 , say, $\{a, b, c, d\}$.
2) Take a $\operatorname{MDC}(v, 5,2)$. This design has a triple say $\{a, b, c\}$ the ordered pairs of which appear in three blocks [5].

Lemma 4.3 (i) There exists a maximum $\operatorname{DP}(26,5,3)$ with a hole of size 6. (ii) There exists a maximum $\operatorname{DP}(v, 5,1)$ with a hole of size 4 for $v=34$, 54, 74, 94.

Proof (i) for a maximum $\operatorname{DP}(26,5,3)$ with a hole of size 6 take the blocks of maximum $\operatorname{DP}(26,5,1)$ with a hole of size 6 [19] together with the blocks of maximum $\operatorname{DP}(26,5,2)$ with a hole of size 6 which can be constructed by taking a DT[5, 2, 5]. Add a point to the groups and on the first four groups construct a $\operatorname{DB}(6,5,2)[20]$ and then take this point with the last group to be the hole.
(ii) For $v=34$ let $X=z_{2} \times z_{15} \cup\left\{\infty_{i}\right\}_{i=1}^{4}$. Then the blocks are
$<(0,1)(1,11)(1,2)(1,7)(0,0)\rangle \bmod (-, 15)$
$<(1,1)(0,0)(1,2)(1,0)(1,4)\rangle \bmod (-, 15)$
$<(1,12)(0,2) \infty_{1}(0,0)(1,9)>\bmod (-, 15)$
$\left.<(1,14)(0,0) \infty_{2}(0,5)(1,8)\right\rangle \bmod (-, 15)$
$\left\langle(0,7)(1,5) \infty_{3}(0,0)(1,12)\right\rangle \bmod (-, 15)$
$\left.<(1,6)(0,3)(0,0) \infty_{4}(1,14)\right\rangle\left\langle(1,7)(0,4)(0,1) \infty_{4}(1,0)\right\rangle$
$\left.<(1,8)(0,5)(0,2) \infty_{4}(1,1)\right\rangle\left\langle(1,9)(0,6) \infty_{4}(0,3)(1,2)\right\rangle$
$\left.<(1,10)(0,7) \infty_{4}(0,4)(1,3)\right\rangle\left\langle(1,11)(0,8) \infty_{4}(0,5)(1,4)\right\rangle$
$\left.<(1,12)(0,9) \infty_{4}(0,6)(1,5)\right\rangle\left\langle(1,13)(0,10) \infty_{4}(0,7)(1,6)\right\rangle$
$\left.<(1,14)(0,11) \infty_{4}(0,8)(1,7)\right\rangle\left\langle(1,0) \infty_{4}(0,12)(0,9)(1,8)\right\rangle$
$\left\langle(1,1) \infty_{4}(0,13)(0,10)(1,9)\right\rangle\left\langle(1,2) \infty_{4}(0,14)(0,11)(1,10)\right\rangle$
$\left\langle(1,3)(0,12) \infty_{4}(0,0)(1,11)\right\rangle\left\langle(1,4)(0,13) \infty_{4}(0,1)(1,12)\right\rangle$
$\left.<(1,5)(0,14) \infty_{4}(0,2)(1,13)\right\rangle$
$<(1,4+j)(0,4+j)(0,11+j)(0,6+j)(0, j)>j \in z_{9}$,
$<(1,4+t)(0,4+t)(0,11+t)(0, t)(0,6+t)>t=9,10, \ldots, 14$
$<(0, k)(0,3+k)(0,6+k)(0,9+k)(0,12+k)>k=0,1,2$.
For $v=54$ apply Theorem 3.5 with $m=5, h=2, e=0, u=1$ and $\lambda=3$ and see [20] for a (5,3) - DGDD of type 2^{5} and 2^{6} and for a maximum $\operatorname{DP}(12,5,3)$ with a hole of size 2 take a maximum $\operatorname{DP}(12,5,2)$ and a maximum $\operatorname{DP}(12,5,1)$ with a hole of size $2[8,19]$.

For $v=74$ take a $T[5,1,7]$ and inflate the design by a factor of 2 , that is, replace each quintuple by the blocks of a $(5,1)$-DGDD of type 2^{5} [20]. To the groups add 4 new points and construct a maximum $\operatorname{DP}(18,5,1)$ with a hole of size 4 [19].

For $v=94$ take $a(\{5,6\}, 1)-G D D$ of type $9^{5} 1^{1}$ and inflate the design by a factor of 2 , that is, replace each block by the blocks of a $(5,1)$ - DGDD of type 2^{5} and 2^{6}. To the groups add two points and on the first five groups construct a $\operatorname{DP}(20,5,1)$ with a hole of size $2[19]$ and take these two points with the last group to be the hole of order 4.

Corollary $\mathrm{DU}(\mathrm{v}, 5,3)=\mathrm{DD}(\mathrm{v}, 5,3)$ for $\mathrm{v}=34,54,74,94$.
Proof By the previous lemma there exists a $\operatorname{DP}(v, 5,1)$ with a hole of size 4. Furthermore there exists a $D C(v, 5,2)$ for the stated values of v in lemma [5] such that there is a triple the ordered pairs of which appear in three blocks. Hence $D U(v, 5,3)=D D(v, 5,3)$ by lemma 4.2.

Lemma 4.4 Let $v \equiv 14(\bmod 20)$ be a positive integer then $D U(v, 5,3)=D D(v$, $5,3)$.

Proof For $v=14$ the construction is as follows:

1) Take the following blocks of a $\operatorname{DP}(14,5,1)$ on $Z_{12} \cup\{a, b\}$ where the first three blocks are taken under the action of the permutation α and the last two under the action of the permutation β where $\alpha=\left(\begin{array}{lll}0 & 1 & 2\end{array}\right)(456$ 7) (8 910 11) and $\beta=(810)(46)(9$ 11) (57).
<7111 a $0><0$ b 914$\rangle<061182>$, <a $84115><9586 \mathrm{~b}\rangle$.

Close observation of this design shows that $(0,5),(5,0),(5,7),(7,5),(1$, $6),(6,1),(2,7),(7,2),(7,6)$ and $(6,5)$ appear in zero blocks. Further, this design has the following two blocks <9 586 b> <a $10697>$. Replace these blocks by the blocks <9 580 b> <a $10297>$.
2) Take a $D C(14,5,2)[5]$. Close observation of this design shows that we may permute the points so that the ordered pairs of $\{5,6,7\}$ appear in three blocks and it has the two blocks <9 810 b> <a $10219>$ which we replace by <9 $816 \mathrm{~b}><a 10619>$. It is easy to see that the above two steps yield the blocks of a $\operatorname{DP}(14,5,3)$.

For $v=34,54,74,94$ the result follows from the corollary.
For $v=134$ apply Theorem 3.9 with $m=7, h=6$ and $u=2$ and $\lambda=3$.
For all other values of v simple calculations show that v can be written in the form $v=20 m+4 u+h+s$ where m, u, h and s are chosen so that

1) There exists a RMGD[5, 1,5,5m].
2) There exists a $(5,3)-$ DGDD of type $4^{\mathrm{m}} \mathrm{s}^{1}$.
3) $0 \leq u \leq m-1, s \equiv 0(\bmod 4)$ and $h=6$.
4) $4 u+h+s=14,34,54,74,94$.

Now apply Theorem 3.4 with $\lambda=3$ to get the result.
Lemma 4.5 Let $v \equiv 4(\bmod 20), v \geq 24$, be an integer. Then $\operatorname{DU}(v, 5,3)=$ DD(v, 5, 3).

Proof For all such v, the construction is as follows:

1) Take a ($v-1,5,1$) optimal packing design in decreasing order [4] [17].

The complement graph of this design contains $v-1$ edges and $v-1$ vertices each having degree 2. So we may assume that (e,a), (d, b) and (d, c) are arcs of the complement graph.
2) Take a $B[v+1,5,1]$ in increasing order and place the point $v+1$ at the beginning of each block. Assume we have the block $\langle v+1 a b c v\rangle$. In this block change $v+1$ to d and in all other blocks change $v+1$ to v. Further, assume in this design we have the block $<x$ e $z w$ w where $\{x, z, w\}$ are arbitrary numbers, different from a and d, arranged in increasing order. In this block change v to a.
3) Take a $D P(v, 5,2)$ with a hole of size two say $\{d, v\}[5]$.

Further, permute the points of this design so that we have the block $<w z d x a>$. In this block change a to v.
It is clear that the above three steps yield the blocks of an $\operatorname{ODP}(v, 5,3)$ for all $v \equiv 4(\bmod 20) v \geq 24$.

Lemma 4.6 Let $v \equiv 7$ or $9(\bmod 10), v \geq 7$ be an integer. Then $D U(v, 5,3)=$ DD(v, 5, 3).

Proof For $v \equiv 7$ or $9(\bmod 20) v \geq 29$ it has been shown that maximum $\mathrm{DP}(\mathrm{v}, 5,1)$ with a hole of size 7 or 9 exists [7]. By taking 3 copies of a maximum $\operatorname{DP}(v, 5,1)$ with a hole of size 7 or 9 we get a maximum $\operatorname{DP}(v, 5$, 3) with a hole of size 7 or 9 . Hence, to complete the proof of this lemma we need to show that $\operatorname{DU}(\mathrm{v}, 5,3)=\mathrm{DD}(\mathrm{v}, 5,3)$ for $\mathrm{v}=7,9,17,19,27$.
For $v=7,9,19,27$ see next table.

v	Point Set	Base Blocks	
7	$\mathrm{Z}_{4} \cup \mathrm{H}_{3}$	$\begin{aligned} & <012 h_{1} h_{2}>+i, i \in z_{2} \\ & <h_{3} h_{1} 210>+i, i \in z_{2} \\ & \left\langle h_{2} 021 h_{3}>+i, i \in z_{2}\right. \end{aligned}$	$\begin{aligned} & <h_{2} h_{1} 230>+i, i \in z_{2} \\ & <032 h_{1} h_{3}>+i, i \in z_{2} \\ & <h_{3} 203 h_{2}>+i, i \in z_{2} \end{aligned}$
9	$\mathrm{Z}_{2} \times \mathrm{Z}_{3} \cup \mathrm{H}_{3}$	$\begin{aligned} & \left\langle(0,0)(0,1) h_{1}(1,1) h_{2}\right\rangle \\ & \left\langle h_{2}(0,0)(1,2)(0,1) h_{3}\right\rangle \\ & \left\langle(0,0)(1,1)(1,0) h_{2} h_{1}\right\rangle \\ & \left\langle h_{3} h_{2}(1,0)(0,0)(1,2)\right\rangle \end{aligned}$	$\begin{aligned} & \left.<h_{1}(1,0)(0,1) h_{3}(0,0)\right\rangle \\ & <(1,1)(0,0)(0,2)(0,1)(1,1)> \\ & <(1,1) h_{3} h_{1}(1,2)(0,0)> \end{aligned}$

$19 \mathrm{Z}_{2} \times \mathrm{Z}_{8} \cup \mathrm{H}_{3} \quad \mathrm{On}\{i\} \times \mathrm{Z}_{8} \cup \mathrm{H}_{3}$ construct a $\mathrm{DB}[11,5,2], \mathrm{i}=0,1$ [20].
Further take the following blocks
$<(0,0)(0,4)(1,1)(0,1)(1,0)><(1,0)(0,1)(0,3)(1,1)(0,0)>$
$<(0,2)(0,0)(1,1)(1,0)(1,3)><(1,3)(1,5)(1,0)(0,2)(0,0)>$
$<(1,6)(0,0)(1,2)(0,4) h_{1}><h_{1}(1,4)(1,2)(0,0)(0,1)>$
$<(0,1)(1,4)(0,0)(1,5) h_{2}><h_{2}(1,7)(0,0)(0,2)(1,4)>$
$<(0,0)(0,3)(1,6)(1,2) h_{3}><h_{3}(1,7)(0,0)(1,5)(0,3)>$
$27 \mathrm{Z}_{2} \times \mathrm{Z}_{12} \cup \mathrm{H}_{3}$

For $v=17$ the construction is as follows:

1) Take a $\operatorname{DP}(17,5,1)$ (not optimal) [7]. Close observation of this design shows that its complement directed graph is the following:

Further, this design has the following two blocks <1 2613 12> <71032 5> which we replace by <12610 13> <7 1035 4>
2) Take a $D C(17,5,2)[5]$. Close observation of this design shows that we may permute the points so the ordered pairs of the triple
$\{2,5,12\}$ appear in three blocks and it has the two blocks <64 410 13> $<371064>$, which we replace by $<6411312><371062>$.
It is easy to check that the above construction yields the blocks of a $\mathrm{DP}(17,5,3)$.

Lemma 4.7 Let $v \equiv 8(\bmod 10), v \geq 8$, be a positive integer. Then $\operatorname{DU}(v, 5,3)$ $=D D(v, 5,3)$.

Proof For $v=58$ take a $(\{5,6\}, 1)-G D D$ of type $5^{5} 4^{1}$ and inflate this design by a factor of 2 with index 3, that is, replace each block of size 5 and 6 by the blocks of a $(5,3)$ - DGDD of type 2^{5} and type 2^{6}. On the groups construct an optimal $\operatorname{DP}(v, 5,3)$ for $v=10,8$.
For $v=98$ apply Theorem 3.5 with $m=9, u=h=2$ and $e=1$.
For $v=8,18,28, \ldots, 88, v \neq 58$, see next table.
For $v=128$ apply Theorem 3.9 with $m=7, h=0, \lambda=3$ and $u=2$.
For $v=138$ apply Theorem 3.9 with $m=7, h=6, u=2$ and $\lambda=3$.
For all other values of v simple calculations show that v can be written in the form $v=20 m+4 u+h+s$ where m, u, h and s are chosen so that

1) There exists a RMGD[5, 1,5,5m]
2) There exists a $(5,3)-$ DGDD of type $4^{n} s^{1}$
3) $4 \mathrm{u}+\mathrm{h}+\mathrm{s} \equiv 8(\bmod 10), 8 \leq 4 \mathrm{u}+\mathrm{h}+\mathrm{s} \leq 98$
4) $h=6$ if $v \equiv 18(\bmod 20), h=0$ if $v \equiv 8(\bmod 20), 0 \leq u \leq m-1$, and $s \equiv 0$ $(\bmod 4)$.
Now apply Theorem 3.4 to get the result.

8	Z_{8}	<01235> <06543>
18	Z_{18}	$<01235><03711$ 16><0 51512 11> $<0141386><0161078$ 8
28	Z_{28}	```<013712><05132321> <0 109 24 21> <0271917 13> <0 124 7> <0 4 10 19 26> <020 17 13 8> <0 25 17 12 11>```
38	Z_{38}	```<0151421><02373017><0271222 8> <013712><06143231> <0 292713 10> <0 332315 11> <0 13610> <0 8 20 19 34> <0 32 24 22 17> <0 35 29 18 16>```

$48 \mathrm{Z}_{40} \cup \mathrm{H}_{8} \quad \mathrm{On}_{40} \cup \mathrm{H}_{8}$ construct a $\operatorname{DB}[45,5,1]$ such that H_{5} is a block which we delete. Furthermore, take the following blocks
$<1333 h_{6} 020>+i, i \in z_{1,3}<266 h_{6} 3313>+i, i \in z_{7}$ $<013715<05163426><013-309>\cup\left\{h_{1}, h_{2}\right\}$ $<025 h_{1} 2322><031 h_{2} 2419><01 h_{3} 37>$ $<05 h_{4} 1322><010 h_{5} 2135><012 h_{6} 2827>$ $<030 \mathrm{~h}_{7} 2624><031 \mathrm{~h}_{8} 23$ 20>
$68 \mathrm{Z}_{60} \cup \mathrm{H}_{8} \quad O \mathrm{On}_{60} \cup \mathrm{H}_{7}$ take a $\operatorname{DP}(67,5,1)$ with a hole of size 7 , say, H_{7} [7].
$<1040 h_{8} 030>+i, i \in Z_{10}<2050 h_{8} 4010>+i, i \in Z_{20}$ $<012243648>+i, i \in Z_{12}$;
$<483624120>+i, i \in Z_{12}$ twice
$<013712><08183145><0155939$ 32>
<0214941 19><043342916><056502522>
$<01 \mathrm{~h}_{1} 37><05 \mathrm{~h}_{2} 1322><010 \mathrm{~h}_{3} 2135>$
$<015 h_{4} 3149><019 h_{5} 4645><028 h_{6} 2320>$ $<051 h_{7} 4438><056 h_{8} 3937>$
$78 \mathrm{z}_{70} \cup \mathrm{H}_{8} \quad$ On $\mathrm{z}_{70} \cup \mathrm{H}_{3}$ construct a $\operatorname{DP}(73,5,1)$ with a hole of size, 3, say H_{3} [7].
$<1752 \mathrm{~h}_{8} 035>+\mathrm{i}, \mathrm{i} \in \mathrm{z}_{17}<3469 \mathrm{~h}_{8} 5217>+\mathrm{i}, \mathrm{i} \in \mathrm{Z}_{18}$
$<014284256>+i, i \in Z_{14}<564228140>+i, i \in Z_{14}$
$<013712\rangle<08183147\rangle<0153252$ 51>
$<037332767><021544543><062484136>$ $<07465026><053 h_{1} 3825>$
$<05-1526>\cup\left\{h_{4}, h_{5}\right\}<012-2541>\cup\left\{h_{6}, h_{7}\right\}$
$<01 h_{2} 39><014 h_{3} 3154><020 h_{4} 4844>$ $<022 h_{5} 6057><032 h_{6} 6227><052 h_{7} 5145>$ $<058 h_{8} 49$ 47>
$88 \mathrm{Z}_{80} \cup \mathrm{H}_{8}$ On $\mathrm{z}_{80} \cup \mathrm{H}_{7}$ construct a $\operatorname{DP}(87,5,1)$ with a hole of size 7 , say H_{7}, [7].
$<2161 \mathrm{~h}_{\mathrm{c}} 040>+\mathrm{i}, \mathrm{i} \in \mathrm{Z}_{21}<422 \mathrm{~h}_{\mathrm{c}} 6121>+\mathrm{i}, \mathrm{i} \in \mathrm{Z}_{19}$
$<016324864>+i, i \in Z_{16}<644832160>+i, i \in Z_{16}$
twice
$<015731><010214462><019575654>$
<0227165 61> <0 $66585346><03122045>$
$<014695841><015615128><0565450$ 29>
$<075624542><01 h_{1} 37><05 h_{2} 1322>$
$<010 h_{3} 2133><014 h_{4} 2949><016 h_{5} 43$ 34>
$<026 h_{6} 6551><036 h_{7} 2868><073 h_{8} 3130>$.

Lemma 4.8 Let $v \equiv 3(\bmod 10)$ be a positive integer, $v \geq 13$. Then $\operatorname{DU}(v, 5,3)=$ DD $(v, 5,3)$ with the possible exception of $v=43$.

Proof For $v \neq 13,43,53,63,73,83$ the construction is as follows:

1) Take a $(v, 5,2)$ minimal covering in increasing order. This design has a pair, say, (a, b) that appears in 6 blocks, [16]. We may permute the points such that (a, b) and (b, a) appear in 3 blocks.
2) Take a ($v, 5,2$) optimal packing in decreasing order and assume that the ordered pairs of $\{a, b, c\}$ appear in zero blocks, [8].
3) Take an optimal $\operatorname{DP}(v, 5,1)$ and assume that the ordered pairs of $\{a, b, c\}$ appear in zero blocks, [7].

For $v=53,73$ take 6 copies of a $\operatorname{PBD}\left(v,\left\{5,13^{*}\right\}, 1\right): 3$ copies in increasing order and 3 copies in decreasing order, where * means there is exactly one block of order 13 [14]. On the block of size 13 construct an optimal $D P(13,5,3)$.

For $v=63,83$, see next table.
For $v=13$ let $X=\{1,2, \ldots, 13\}$ then the blocks are
$<123115><129136><1281113><139124><157610>$
$<193713\rangle<112765><236413\rangle<231095><347128>$ $<381072\rangle\langle 435811\rangle\langle 4610713\rangle<45289\rangle<4791011\rangle$ $<562124><568713\rangle<611974><7531011><713952>$ $<839612\rangle<8451311><846912\rangle<8210712\rangle<911045>$ $\langle 98731\rangle\langle 911865\rangle\langle 1061811\rangle\langle 1061143\rangle\langle 1013963\rangle$ $<112786\rangle<114101213\rangle<11591213\rangle<1171292\rangle\langle 1110921\rangle$ $\langle 11123136\rangle\langle 125741\rangle\langle 1261053\rangle\langle 1210821\rangle\langle 1211321\rangle$ $<13521012\rangle<137432\rangle<1318104\rangle<138531\rangle<13127111\rangle$ <13129108 >
\checkmark point set
$63 \mathrm{Z}_{50} \cup \mathrm{H}_{13}$

Base Blocks

$$
\begin{aligned}
& <1338 \mathrm{~h}_{13} 025>+\mathrm{i}, v \in \mathrm{z}_{13} ;<261 \mathrm{~h}_{13} 3813>+\mathrm{i} \in \mathrm{z}_{12} \\
& <013914><04203048><015473938> \\
& <036-2117>\cup\left\{\mathrm{h}_{1}, \mathrm{~h}_{2}\right\}<043-2722>\cup\left\{\mathrm{h}_{3}, h_{4}\right\} \\
& <09-1930\} \cup\left\{\mathrm{h}_{5}, \mathrm{~h}_{6}\right\} \\
& <013-2744>\cup\left\{\mathrm{h}_{7} \mathrm{~h}_{6}\right\}<041-2823>\cup\left\{\mathrm{h}_{9}, \mathrm{~h}_{10}\right\} \\
& <05-1322\} \cup\left\{\mathrm{h}_{11} \mathrm{~h}_{12}\right\}<05 \mathrm{~h}_{2} 1220><033 \mathrm{~h}_{3} 2523> \\
& <01 \mathrm{~h}_{1} 37> \\
& \left.<038 \mathrm{~h}_{4} 2724\right\}<016 \mathrm{~h}_{6} 3534><01 \mathrm{~h}_{7} 37> \\
& <043 \mathrm{~h}_{5} 2622> \\
& <010 \mathrm{~h}_{8} 2135><015 \mathrm{~h}_{10} 4539><032 \mathrm{~h}_{11} 2019> \\
& <012 \mathrm{~h}_{9} 2846> \\
& <036 \mathrm{~h}_{12} 2926><041 \mathrm{~h}_{12} 3331>
\end{aligned}
$$

$83 \mathrm{Z}_{70} \cup \mathrm{H}_{13} \quad$ On $\mathrm{z}_{70} \cup\left\{\mathrm{~h}_{1}\right\}$ construct a $\mathrm{DB}[71,5,1]$. Further, take the following base blocks:

$$
<014284256>+i, i \in z_{14} \quad<564228140>+i, i \in z_{14}
$$

$$
<0263244><54301808><038 h_{1} 420>
$$

$$
\left.\left.\left.<3325 \mathrm{~h}_{2} 30\right\rangle<05 \mathrm{~h}_{3} 1131\right\rangle<31 \mathrm{~h}_{4} 08\right\rangle
$$

$$
<40 \mathrm{~h}_{5} 1323><5519 \mathrm{~h}_{6} 60><100 \mathrm{~h}_{7} 2543>
$$

$$
\left.<027 \mathrm{~h}_{8} 5011><5329 \mathrm{~h}_{9} 012\right\rangle<01 \mathrm{~h}_{10} 310>
$$

$$
\left.\left.<299 h_{11} 40\right\rangle<06 h_{2} 2139><110 h_{13} 2847\right\rangle
$$

$$
\left.<4827-130\rangle \cup\left\{h_{2}, h_{3}\right\}<92-01\right\rangle \cup\left\{h_{4}, h_{5}\right\}
$$

$$
<2615-03>\cup\left\{h_{6}, h_{7}\right\}<430-530>\cup\left\{h_{8}, h_{9}\right\}
$$

$$
<70-4629>\cup\left\{h_{10}, h_{11}\right\}<330-1449>\cup\left\{h_{12}, h_{13}\right\}
$$

5. Directed Packing With Index 4, 6, 8

Lemma 5.1 Let $v \geq 5$ be a positive integer. Then $D U(v, 5,4)=D D(v, 5,4)$.
Proof For $v \equiv 0$ or $1(\bmod 5)$ the result is contained in Corollary 1.1.
For $v \equiv 2$ or $4(\bmod 5), v \neq 7, \operatorname{DU}(v, 5,4)=2 \operatorname{DU}(v, 5,2)[8]$.
For $v=3(\bmod 5), v \neq 8$, the construction is as follows:

1) Take a $(v-1,5,4)$ optimal packing in increasing order [10].
2) Take $a(v+1,5,4)$ optimal packing in decreasing order. This design has a pair say $(v+1, v)$ that appears in zero blocks. Place the point $v+1$ at the end of each block and change it to v.

For $v=7$ let $X=z_{7}$. Then take the following blocks
$<50124\rangle<62410\rangle<02516\rangle<51460\rangle$ $<01345\rangle<63410\rangle<01365\rangle<65412\rangle$
$<23046><45320\rangle<65432><02536>$ $\langle 12345\rangle\langle 46321\rangle\langle 12356\rangle<46530\rangle$

For $v=8$ let $X=z_{6} \cup\{a, b\}$. Then take the following blocks <01 a $23>(\bmod 6)<32 \mathrm{~b} 1 \mathrm{a}>(\bmod 6)<01-43>\cup\{a, b\}$ $<a b 024>+i, i \in z_{2},<420 b a>+i, i \in z_{2}$

Lemma 5.2 Let $v \geq 5$ be an integer. Then

1) $\mathrm{DU}(\mathrm{v}, 5,6)=\mathrm{DD}(\mathrm{v}, 5,6)-1$ if $\mathrm{v} \equiv 2$ or $4(\bmod 5)$
2) $D U(v, 5,6)=D D(v, 5,6)$ if $v \equiv 0,1$ or $3(\bmod 5)$.

Proof For $v \equiv 0$ or $1(\bmod 5)$ the result is contained in Corollary 1.1.
For $v \equiv 2$ or $4(\bmod 5), v \neq 7, \operatorname{DU}(v, 5,6)=\operatorname{DU}(v, 5,4)+\operatorname{DU}(v, 5,2)$ holds.
For $v=7$ let $X=z_{6} \cup\{\infty\}$. Then the blocks are
$<01342>(\bmod 6)<2105 \infty>(\bmod 6)$
$<50 \infty 12>(\bmod 6)<\infty 4310>(\bmod 6)$
For $v \equiv 3(\bmod 5)$, we first treat the values under 100 . For $v=8$ let $X=$ $\mathrm{z}_{5} \cup \mathrm{H}_{3}$. Then the blocks are $<041 \mathrm{~h}_{1} \mathrm{~h}_{2}>(\bmod 5),<\mathrm{h}_{2} \mathrm{~h}_{1} 041>(\bmod 5)$, $<034 h_{1} h_{3}>(\bmod 5),<h_{3} h_{1} 023>(\bmod 5),<h_{2} h_{3} 032>(\bmod 5)$,
$<023 h_{3} h_{2}><134 h_{3} h_{2}><204 h_{3} h_{2}><031 h_{3} h_{2}>$
$<142 h_{3} h_{2}><01234>$ and <43210> twice.
For $v \geq 13$ the construction is as follows.

1) Take a MDC(v-1,5,2) [5]. This design has a triple say, $\{a, b, c\}$ the ordered pairs of which appear in 3 blocks.
2) Take a $\operatorname{DP}(v+1,5,2)$ with a hole of size 2 say $\{v, v+1\}$ [8]. Replace the point $v+1$ by v.
3) Take a $\operatorname{ODP}(v, 5,2)$ [8]. Close observation of this design shows that every ordered pair of this design occurs in exactly two blocks except the pairs of a triple say $\{a, b, c\}$, the ordered pairs of which appear in zero blocks, except $v=68$. We now construct a maximum $\operatorname{DP}(68,5,2)$ with a hole of size 3 by taking a $T[12,1,11]$. Let B be a block of size 12. Remove the last 6 groups and all but 5 points of the 6 th group but we leave the points of B. Let the remaining six groups be G_{1}, \ldots, G_{6} where $\left|G_{6}\right|=5$. Let $B \cap G_{i}=\infty_{i}, i=1, \ldots, 5$. Adjoin a new point ∞_{6} to the groups and on each of the five groups G_{1}, \ldots, G_{5} construct a maximum $\operatorname{DP}(12,5,2)$ with a hole of size two where the hole is $\left\{\infty_{i}, \infty_{6}\right\}, i=1, \ldots, 5$ and on G_{6} construct a $\operatorname{DB}[6,5,2]$. On the blocks of size 5 and 6 of the truncated transversal design we construct a $D B[v, 5,2], v=5,6$. Finally, adjoin the point ∞_{6} to the biock B and construct a $\operatorname{DP}(13,5,2)$ with a hole of size $3[8]$.

It is clear that the above three steps yield the blocks of a $\operatorname{DP}(v, 5,6) v \equiv 3$ $(\bmod 5) 13 \leq v \leq 98$.
For $v=138$ apply theorem 3.9 with $m=7, u=4, h=2$ and $\lambda=6$ and notice that a maximum $\operatorname{DP}(22,5,6)$ with a hole of size 2 is obtained by taking three copies of a maximum $\operatorname{DP}(22,5,2)$ with a hole of size 2 [8].
For $v \geq 108$ write $v=20 m+4 u+h+s$ and then the proof is similar to that of lemma 4.7.

Lemma 5.3 Let $v \geq 5$ be a positive integer. Then $D U(v, 5,8)=D D(v, 5,8)$.

Proof For $v \equiv 0$ or $1(\bmod 5)$ there exists a $\operatorname{DB}[v, 5,8]$.
For $v \equiv 3(\bmod 5) D U(v, 5,8)=2 \operatorname{DU}(v, 5,4)$ holds.
For $v \equiv 2$ or $4(\bmod 5), v \neq 7$, the construction is as follows:

1) Take a $\operatorname{MDC}(v, 5,2)[5]$. This design has a triple, say, $\{a, b, c\}$ the ordered pairs of which appear in three blocks.
2) Take three copies of a maximum $\operatorname{DP}(v, 5,2)$ with a hole of size 2 [8]. Assume the hole is $\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{c}\}$ and $\{\mathrm{b}, \mathrm{c}\}$ respectively.
It is clear that the above two steps yield the blocks of an $\operatorname{ODP}(v, 5,8)$ for all $v \equiv 2$ or $4(\bmod 5) v \neq 7$. For $v=7$ let $X=z_{2} \times z_{3} \cup\{\infty\}$. Then the blocks are
$<(1,0)(0,0)(1,2)(0,1) \infty\rangle \bmod (-, 3) \quad<(0,1)(1,1)(0,0)(1,2) \infty\rangle \bmod (-, 3)$
$<(0,0)(0,1)(1,0)(1,1) \infty>\bmod (-, 3)<\infty(0,1)(1,0)(1,2)(0,0)>\bmod (-, 3)$
$<\infty(1,2)(1,1)(0,1)(0,0)>\bmod (-, 3)<\infty(1,0)(0,0)(0,1)(1,1)>\bmod (-, 3)$
$<(0,0)(0,1) \infty(0,2)(1,2)>\bmod (-, 3)<(1,0)(1,1) \infty(1,2)(0,0)>\bmod (-, 3)$
$<(1,1)(0,2)(0,1)(1,0)(0,0)>\bmod (-, 3)$
$<(1,2)(0,0)(0,1)(1,0)(1,1)>\bmod (-, 3)$
$<(1,0)(0,1)(0,0)(0,2)(1,1)>\bmod (-, 3)$

We now turn our attention to deal with directed packing with index $\lambda=5,7,9$. Notice that if v is odd then, by Theorem 1.2, there exists a $\mathrm{DB}[\mathrm{v}, 5,5]$. Hence, the result for $\lambda=7,9$ is obtained by applying Lemma 1.1. When $v \equiv 0$ or $1(\bmod 5)$, the result has been established in corollary 1.1. Therefore, we need only consider the cases $v \equiv 2$, 4 , or $8(\bmod 10)$, which is done in the next three sections.

6. Directed Packing with Index 5

Lemma 6.1 Let $v \equiv 4(\bmod 20) v \geq 24$ be an integer. Then $\operatorname{DU}(v, 5,5)=$ DD(v, 5, 5).

Proof For all $v \equiv 4(\bmod 20), v \geq 24$ the construction is as follows:

1) Take a maximum $\operatorname{DP}(v, 5,2)$ with a hole of size 2 , say, $\{v-1, v\}[8]$. Assume in this design we have a block containing $\{v \mathrm{v}-3 \mathrm{ab} \mathrm{c}\}$ where $\{\mathrm{v}-$ 3 abc \} are on the right side of v in any order. In this block change v to $\mathrm{v}-1$.
2) Take an $O D P(v-2,5,1)[8]$.
3) Take 2 copies of a $B[v+1,5,1]$ the first in increasing order and the second in decreasing order. Assume in the first copy we have the block <e $\mathrm{f} g \vee v+1>$. In this block change $\mathrm{v}+1$ to $\mathrm{v}-1$ and in all other blocks change $v+1$ to v. Furthermore, assume in the second copy we have the block $<v+1 v v-1 v-2 v-3>$. Delete this block and in all other blocks change $v+1$ to v.
4) Again take 2 copies of $\mathrm{B}[\mathrm{v}+1,5,1]$ the first in increasing order and the second in decreasing order. Assume in the first copy we have the block <e fgv-1v+1> and in the second we have the block <v+1v-1cb $a>$. In these two blocks change $v+1$ to v and in all other blocks of the 2 copies change $v+1$ to $v-1$.

Lemma 6.2 Let $v \equiv 8(\bmod 20)$ be a positive integer. Then $\operatorname{DU}(v, 5,5)=$ DD $(v, 5,5)$.

Proof For $v=8$ the construction is as follows:

1) Take the following blocks of a $\operatorname{ODP}(8,5,2)$ on $X=z_{7} \cup\{a\}$:

$$
\begin{aligned}
& <10452>\ldots<2513 \text { 6 } 6 \ldots<32406>\ldots<10 \text { a } 42> \\
& <21 \text { a } 35>\ldots<6 \text { a } 2>\ldots<43 \text { a } 50>\ldots<54 \text { a } 1 \text { 6> } \\
& <65 \text { a } 20>\ldots<06 \text { a } 3 \text { 1> }
\end{aligned}
$$

Close observation of this design shows that the complement graph of this design consists of 2 isolated vertices and the following directed graph on the remaining 6 vertices.

2) Take an optimal $\operatorname{DP}(8,5,3)$ and assume that $(6,3)$ and $(5,1)$ appear at most twice.
3) Add the block <65431>.

For $v=28$ the construction is as follows:

1) Take a $\operatorname{MDC}(27,5,2)[5]$. This design has a triple, say, $\{a, b, c\}$ the ordered pairs of which appear in 3 blocks.
2) Take a maximum $\operatorname{DP}(29,5,2)$ with a hole of size 2 say $\{28,29\}$. Change the point 29 to 28.
3) Take an $\operatorname{ODP}(28,5,1)$ with a hole of size 4, say, $\{a, b, c, d\}[19]$.

For $v=48,68,88$ the construction is the same as for $v=8$ but in the first step we take a maximum $\operatorname{DP}(v, 5,2)$ with a hole of size 8 for $v=48,68$, 88. So to complete the construction we need to show that there exists a $D P(v, 5,2)$ with a hole of size 8 for the stated values of v.
For $v=48$ let $X=z_{40} \cup H_{8}$ and take the following blocks under the action of the permutation $\alpha=(0,1,2, \ldots, 39)$.
<0251123><2311520><04102436><01 $h_{1} 8$ 39>
$<011 h_{2} 3427><013 h_{3} 328><01 h_{4} 514><02 h_{5} 2027>$
$<015 h_{6} 1036><022 h_{7} 3019><024 h_{8} 1716>$
For $v=68$ see [19].

For $v=88$ take $a(\{5,6\}, 1)$-GDD of type $8^{5} 4^{1}$ and inflate the design by a factor of 2 , that is, replace each block of size 5 and 6 by the blocks of (5 , 1)-DGDD of type 2^{5} and 2^{6} respectively [20]. On the first five groups construct a $D B[16,5,2]$ and take the last group to be the hole. For $v=128$ apply Theorem 3.9 with $m=7, h=0, u=2$ and $\lambda=5$. For all other values of v write $v=20 m+4 u+h+s$ where m, u, h and s are chosen as in Lemma 4.4 with the difference that $h=0$ and $4 u+h+s=8,28,48,68,88$. Now apply Theorem 3.4 to get the result.

Lemma 6.3 (i) Let $v \equiv 2(\bmod 10) v \geq 12$ be a positive integer. Then $D U(v$, $5,5)=D D(v, 5,5)$. (ii) There exists a $\operatorname{DP}(26,5,5)$ with a hole of size 6.

Proof For the first part of the lemma notice that $\operatorname{DU}(v, 5,5)=\operatorname{DU}(v, 5,4)$ $+\operatorname{DU}(\mathrm{v}, 5,1)$.
For the second part of the lemma take the blocks of a $\operatorname{DP}(26,5,1)$ with a hole of size 6 [19] and two copies of a $\operatorname{DP}(26,5,2)$ with a hole of size 6 , lemma 4.3

Lemma 6.4 Let $v \equiv 14(\bmod 20)$ be a positive integer. Then $\operatorname{DU}(v, 5,5)=$ DD(v, 5, 5).

Proof For $v=14$ proceed as follows:

1) Take the following blocks of a $\operatorname{DP}(14,5,1)$ on $X=z_{3} \times Z_{4} \cup\{a, b\}$ $<(0,0$ a $(1,3)(2,3)(0,1)>\bmod (-, 4) \quad<(1,0)(0,1)(2,1)$ b $(0,0)>\bmod (-, 4)$ $<(0,2)(2,3)(2,0)(0,0)(1,2)>\bmod (-, 4)$ $\langle(2, i)(1, i)(1, i+1)(2, i+3) a\rangle, i=0,2$
$<B(2, j+1)(1, j+1)(1, j+2)(2, j)>j=0,2$
Close observation of this design shows that the pairs $((0,0),(1,1)),((1,1)$, $(0,0)),((1,1),(1,3))$ and ((1,3), (1,1)) appears in zero blocks. We may relabel the points such that the pairs $(12,13)(13,12)(13,14)$ and $(14$, 13) appear in zero blocks.
2) Take a $\operatorname{MDC}(14,5,2)[5]$. This design has a triple say $\{12,13,14\}$ the ordered pairs of which appear in 3 blocks.
3) Take a $\operatorname{DP}(14,5,2)$ with a hole of size 2 , say, $\{12,14\}$.

For $v=34,54,74,94$ the construction is as follows:

1) Take an $\operatorname{ODP}(v, 5,2)$ [8].
2) Take a $\operatorname{MDC}(v, 5,2)[5]$. This design has a triple, say, $\{a, b, c\}$ the ordered pairs of which appear in 3 blocks.
3) Take a $\operatorname{DP}(\mathrm{v}, 5,1)$ with a hole of size 4, Lemma 4.3
for $v=134$ apply Theorem 3.9 with $m=7, h=6, u=2$ and $\lambda=5$.
For all other values write $v=20 m+4 u+h+s$ where m, u, h and s are chosen as in lemma 4.4. Now apply theorem 3.4 to get the result.

Lemma 6.5 Let $v \equiv 18(\bmod 20)$ be a positive integer. Then there exists a $D P(v, 5,1)$ with a hole of size 4.

Proof For $v=18,38$ see [19].
For $v=58,78$ see next table.
For $v=98$ take a $(\{5,6\}, 1)$ - GDD of type $9^{5} 2^{1}$ and inflate it by a factor of 2. Replace each block of size 5 and 6 by the blocks of a $(5,1)$-DGDD of type 2^{5} and 2^{6} respectively [20]. Add two points to the groups and on the first five groups construct a maximum $\operatorname{DP}(20,5,1)$ with a hole of size 2 [19]. Then take these two points with the last group to be the hole. For $v=138$ apply Theorem 3.9 with $m=7, h=2, u=4, \lambda=1$ and notice that a $\operatorname{DP}(22,5,1)$ with a hole of size 2 can be constructed on $z_{20} \cup \mathrm{H}_{2}$ by taking the following blocks:
$<1612840>+i, i \in Z_{4}, \quad<05-1413>\cup\left\{h_{1}, h_{2}\right\}(\bmod 20)$, $<013718>(\bmod 20)$.
For all other values of v write $v=20 m+4 u+h+s$ where m, u, h and s are chosen as in Lemma 4.4 with the difference that $4 u+h+2=18,38,58$, 78,98 and $\mathrm{h}=2$ or 6 . Now apply Theorem 3.4 with $\lambda=5$ to get the result and for a $\operatorname{DP}(26,5,1)$ with a hole of size 6 see [19].

V	Point Set	Base Blocks
58	$\mathrm{Z}_{54} \cup \mathrm{H}_{4}$	$<013712><08183145><015325351>$
		$<030241650><041-2922>\cup\left\{\mathrm{h}_{1}, \mathrm{~h}_{2}\right\}$
		$<043-3328>\cup\left\{\mathrm{h}_{3}, \mathrm{~h}_{4}\right\}$

Lemma 6.6 Let $v \equiv 18(\bmod 20)$ be a positive integer. Then $\operatorname{DU}(v, 5,5)=$ $D D(v, 5,5)$.

Proof For all $v \equiv 18(\bmod 20)$ the construction is as follows:

1) Take a $\operatorname{MDC}(v-1,5,2)$ and assume that the directed pairs of the triple $\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ appear in 3 blocks [5].
2) Take a maximum $D P(v+1,5,2)$ with a hoie of size 2 , say, $\{v, v+1\}$ [8] and change the point $v+1$ to v.
3) Take a maximum $\operatorname{DP}(v, 5,1)$ with a hole of size 4 , say, $\{a, b, c, d\}$.

7. Directed Packing with Index 7

Lemma 7.1 (i) There exists a maximum $\operatorname{DP}(v, 5,1)$ with a hole of size 4 for $v=24,34,44, \ldots, 94$.
(ii) There exists a maximum $\operatorname{DP}(26,5,7)$ with a hole of size 6.
(iii) There exists a maximum $\operatorname{DP}(24,5,7)$ with a hole of size 4.

Proof For $v=34,54,74,94$ see Lemma 4.3.
For $v=24,44,64,84$ the construction is as follows:

1) Take a ($v-1,5,1$) optimal packing in increasing order. The complement graph of this design is the circuit graph C_{n} [17]. So we may assume that the pairs $\{d, v-3\},\{v-3, v-2\},\{v-2, v-1\}$ and $\{e, v-1\}$ appear in zero blocks [4, 17]. Further, assume we have the block $<a b c \vee-$ $3 \vee-1>$. Replace this block by <d abcv-3>.
(2) Take a $B[v+1,5,1]$ in decreasing order and delete the block $<v+1 v v$ $-1 v-2 v-3>$. Assume we have the block $<e d c b a>$ which we replace by <ecbav-1>. In all other blocks place the point $v+1$ at the end of each block and then replace it by v. Now it is readily checked that the above construction yields a $\operatorname{DP}(v, 5,1)$ with a hole of size 4 for all $v \equiv 4(\bmod 20)$ $v \geq 24$ where the hole is $\{v-3, v-2, v-1, v\}$.
(ii) For a maximum $\operatorname{DP}(26,5,7)$ with a hole of size 6 take a maximum $\operatorname{DP}(26,5,1)$ with a hole of size $6[19]$ and 3 copies of a maximum $\operatorname{DP}(26,5$, 2) with a hole of size 6, Lemma 4.3.
(iii) For a $(24,5,7)$ with a hole of size 4 take a maximum $\operatorname{DP}(24,5,1)$ with a hole of size 4 [19], three copies of a maximum $(23,5,2)$ packing design with a hole of size 3 in increasing order [8] and six copies of a $\mathrm{B}[25,5,1]$ in decreasing order. Delete the six blocks <25 $24232221>$. Place the point 25 at the end of each block and then replace it by 24 .

Lemma 7.2 Let $v \equiv 4(\bmod 10), v \geq 14$ be an integer. Then $\operatorname{DU}(v, 5,7)=$ $\mathrm{DD}(\mathrm{v}, 5,7)$.

Proof For $v=14$ let $X=z_{14}$ then take the following blocks under the action of the group Z_{14}
$<63210\rangle$ twice, $<01236><014810\rangle<108410\rangle<025710\rangle$ $<107520\rangle<01379><14980>$.
For $v=24,34, \ldots, 94$ the construction is as follows:

1) Take 2 copies of a $\operatorname{MDC}(v, 5,2)$. This design has a triple the directed pairs of which appear in 3 blocks [5]. Assume the triple in the firs copy is $\{a, b, c\}$ and in the second is $\{a, c, d\}$.
2) Take a maximum $\operatorname{DP}(v, 5,2)$ with a hole of size 2 , say $\{a, c\}[8]$.
3) Take a maximum $\operatorname{DP}(v, 5,1)$ with a hole of size 4 , say $\{a, b, c, d\}$.

For $v=134$ apply Theorem 3.9 with $m=7, u=2, h=6$ and $\lambda=7$.
For $v=144$ apply Theorem 3.8 with $m=7, k=6, h=4$ and $\lambda=7$.
For $v=104,224$, apply Theorem 3.7 with $h=4, \lambda=7$ and $m=5,11$
respectively. For $v=184$ apply Theorem 3.8 with $k=5, \lambda=7, h=4$ and m $=9$. For all other values of v write $v=20 \mathrm{~m}+4 u+h+s$ where m, u, h and s are chosen as in Lemma 4.4 where $4 u+h+s=14,24, \ldots, 94$ and $h=0$ if $v \equiv 4(\bmod 20)$ and $h=6$ if $v \equiv 14(\bmod 20)$. Now apply Theorem 3.4 with $\lambda=$ 7 to get the result.
Lemma 7.3 Let $\mathrm{v} \equiv 8(\bmod 10)$ be a positive integer. Then $\mathrm{DU}(\mathrm{v}, 5,7)=$ DD(v, 5, 7).

Proof $\operatorname{DU}(v, 5,7)=\operatorname{DU}(v, 5,4)+\operatorname{DU}(v, 5,3)$.

Lemma 7.4 Let $v \equiv 12(\bmod 20)$ be a positive integer. Then $\operatorname{DU}(v, 5,7)=$ DD $(v, 5,7)$

Proof For all $v \equiv 12(\bmod 20) v \geq 12$ the construction is as follows:

1) Take a $\operatorname{MDC}(v, 5,2)$ and assume that the directed pairs of $\{a, b, c\}$ appear in 3 blocks [5].
2) Take two copies of a maximum $\operatorname{DP}(v, 5,2)$ with a hole of size 2. Assume the holes are $\{a, b\}$ and $\{a, c\}$ respectively [8].
3) Take a maximum $\operatorname{DP}(v, 5,1)$ with a hole of size 2 , say, $\{b, c\}$.

To complete the proof of this lemma we need to show that a maximum $D P(v, 5,1)$ with a hole of size 2 exists for all $v \equiv 12(\bmod 20)$.
For $v=12$ see [19].
For $\mathrm{v}=52$ take a $T[5,1,5]$ and inflate the design by a factor of 2 and replace each of its quintuples by the blocks of $(5,1)$ - DGDD of type 2^{5}. Add two points to the groups and on each group construct a maximum $\operatorname{DP}(12,5,1)$ with a hole of size 2.
For $v=92$ take a $\operatorname{DT}[5,1,18]$. Add two points to the groups and on each group construct a maximum $\operatorname{DP}(20,5,1)$ with a hole of size two [19].
For $v=32,72$ see next table.
For $v=132$ apply Theorem 3.9 with $m=7, h=0, u=3$ and $\lambda=7$.
For all other values of v the proof is the same as in Lemma 4.7 with the difference that $4 u+h+s=12,32,52,72,92$.

v	Point Set
32	$z_{30} \cup \mathrm{H}_{2}$
72	$\mathrm{z}_{70} \cup \mathrm{H}_{2}$

Base Blocks

$$
\begin{aligned}
& <24181260>+\mathrm{i}, \mathrm{i} \in \mathrm{z}_{6}<09-2619>\cup\left\{\mathrm{h}_{1}, \mathrm{~h}_{2}\right\} \\
& <013715><016211311> \\
& <564228140>+\mathrm{i}, \mathrm{i} \in \mathrm{Z}_{14},<055-3938> \\
& \cup\left\{\mathrm{h}_{1}, \mathrm{~h}_{2}\right\}<013712><08183145> \\
& <015324867><020504641><024686049> \\
& <064573422>
\end{aligned}
$$

Lemma 7.5 Let $v \equiv 2(\bmod 20) v \geq 22$ be an integer. Then
$D U(v, 5,7)=D D(v, 5,7)$.
Proof The proof of this lemma is the same as the previous one. So we need to show that a maximum $\operatorname{DP}(v, 5,1)$ with a hole of size 2 exists for all $v \equiv 2(\bmod 20)$.
For $v=22$ see lemma 6.5.
For $v=42,62$ see [19 P 138].
For $v=82$ let $x=z_{80} \cup \mathrm{H}_{2}$ and take the following blocks under the action of the group $\mathrm{z}_{80}:<644832160>+\mathrm{i}, \mathrm{i} \in \mathrm{z}_{16}$.
$<013712><08183145><015325167>$
$<020416663><0267959$ 55> <0 $38287872>$
$<065544742><061-3930>\cup\left\{\mathrm{h}_{1}, \mathrm{~h}_{2}\right\}$
For all other values of $v, v \neq 142,182$ the proof is the same as in Lemma
4.4 with the difference that $4 u+h+s=22,42,62,82$.

For $v=142$ apply theorem 3.8 with $k=6, \mathrm{~m}=7, \mathrm{~h}=2$ and $\lambda=7$.
For $v=182$ apply theorem 3.8 with $k=5, \mathrm{~m}=9, \mathrm{~h}=2$ and $\lambda=7$.

8. Directed Packing With Index 9

Lemma 8.1 Let $v \geq 5$ be a positive integer. Then $D U(v, 5,9)=D D(v, 5,9)$.
Proof If $v \equiv 2$ or $4(\bmod 10)$ then $\operatorname{DU}(v, 5,9)=\operatorname{DU}(v, 5,7)+\operatorname{DU}(v, 5,2)$. If $v \equiv 8(\bmod 10)$ then $D U(v, 5,9)=\operatorname{DU}(v, 5,6)+\operatorname{DU}(v, 5,3)$.

Conclusion We have determined the values of $D D(v, 5, \lambda)$ for all $v \geq 5$ and $3 \leq \lambda \leq 9$ in section 4-8. These results together with Theorem 1.3, making use of Lemma 1.1 and Theorem 1.2, give the following:

Main Theorem Let $v \geq 5$ be an integer. Then $D D(v, 5, \lambda)=\operatorname{DU}(v, 5, \lambda)$ - e where $e=1$ if $2 \lambda(v-1) \equiv 0$ and $\frac{\lambda v(v-1)}{2} \equiv 1(\bmod 5)$ and $e=0$ otherwise with the exception of $(v, \lambda)=(15,1)$ and the possible exception of $(v, \lambda)=(19,1)$ $(27,1)(43,3)$.

References

[1] R.J.R. Abel, Four MOLS of order 28 and 52, J. Combin. Theory Ser. A 58 (1991), 306-309.
[2] R.J.R. Abel and D.T. Todorov, Four MOLS of order 20, 30, 38 and 44. J. Combin. Theory Ser. A 64 (1993), 144-148.
[3] R.J.R. Abel, A.E. Brouwer, C.J. Colbourn and J.H. Dinitz, Mutually orthogonal Latin squares, in: CRC Handbook of Combinatorial Designs (C.J. Colbourn and J.H. Dinitz, eds) CRC Press, Inc. 1996, 111-142.
[4] J. Yin, A.C.H. Ling, C.J. Colbourn, and R.J.R. Abel, The existence of a uniform 5-GDDs, J. Combinatorial Designs, to appear.
[5] A.M. Assaf, Directed covering with block size 5 and index even, Discrete Math., submitted
[6] \longrightarrow An application of modified group divisible designs, J. Combinatorial Theory, Ser. A 68 (1994) 152-168.
[7] A.M. Assaf, A. Mahmoodi, N. Shalaby and J. Yin, Directed packing with block size 5 and odd v, Australasian J. of Combinatorics 13 (1996) 217-226.
[8] A.M. Assaf, N. Shalaby and J. Yin, On directed packing designs with block size 5 and index $\lambda=2$, Utilitas Math. 50, (1996) 245-254.
[9] A.M. Assaf, N. Shalaby and L.P.S. Singh, Packing designs with block size 5 and index 2: the case v even, J. Combin. Theory, Ser. A (1993) 43-54.
[10] A.M. Assaf and A. Hartman, On packing designs with block sizes and index 4, Discrete Math. 79 (1989/90) 111-121.
[11] T. Beth; D. Jungnickel and H. Lenz, Design Theory, Bibliographishes Institute Mannheim, 1985.
[12] A.E. Brouwer, The number of mutually orthogonal Latin Squares - a table up to order 10,000, Math. Cent. Report ZW 123/79.
[13] C.J. Colbourn, Four MOLS of order 26, J. of Combin. Math. and Combin. Comp., 19 (1995) 207-208.
[14] A.M. Hamel, W.H. Mills, R.C. Mullin, R. Rees, D.R. Stinson and J. Yin, The spectrum of a $\operatorname{PBD}\left(\left\{5, k^{*}\right\}, v\right)$ for $k=9,13$, Ars Combinatoria 36 (1993) 7-26.
[15] H. Hanani, Balanced incomplete block designs and related designs, Discrete Math., 11(1975), 255-369.
[16] W.H. Mills and R.C. Mullin, On λ covers of pairs by quintuples: vodd, preprint.
[17] R.C. Mullin and J. Yin, On Packing pairs by quintuples the case $v \equiv 3,9$ or $17(\bmod 20)$. Ars Combinatoria 35 (1993) 161-171.
[18] R. Roth and M. Peters, Four pairwise orthogonal latin squares of order 24, J. Combin. Theory, Ser. A (1987) 152-155.
[19] N. Shalaby and J. Yin, Directed packing with block size 5 and even v, Designs, Codes and Cryptography, 6 (1995) 133-142.
[20] D.J. Street and W.H. Wilson, On directed balanced incomplete block designs with block size 5, Utilitas Math. 18 (1990) 161-174.
[21] D.J. Todorov, Four MOLS of order 20, Ars Combinatoria, 27 (1989) 63-65.

[^0]: *Research supported by Central Michigan University grant \#42403 for the first author, NSERC grant OGP 0170232 for the second author, and NSFC grant 19671064 for the third author.

