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Abstract 

In this note, we prove that the alternating group A4 is a CI-group and 
that all disconnected Cayley graphs of A5 are CI-graphs. As a corollary, 
we conclude that there are exactly 22 non-isomorphic Cayley graphs of 
A4 • 

Let G be a finite group and set G# = G \ {I}. For a subset S ~ G# with 
S = S-l := {S-l Is E S}, the Cayley graph is the graph Cay(G, S) with vertex set 
G and with x and y adjacent if and only if yx-1 E S. For an automorphism ()" of 
G, it easily follows that Cay(G, S) 9E Cay(G, S'"), The graph Cay(G, S) is called a 
CI-graph of G if, whenever Cay(G, S) 9E Cay(G, T), there is an element ()" E Aut(G) 
such that So- = T (CI stands for Cayley Isomorphism). A finite group G is called a 
CI-group if all Cayley graphs of G are CI-graphs. 

Adam (1967) conjectured that all finite cyclic groups were CI-groups, and this 
conjecture was disproved by Elspas and Turner (1970). Since then, a lot of work has 
been devoted to seeking CI-groups in the literature (see for example [2, 3, 9]). So 
far, the known CI-groups are the following groups: 

(1) Zs, Zg, Zn, Z2n and Z4n, where n is odd square-free, see [9, 10]; 

(2) Qs, Z;, Z~, where p is a prime, see [3, 5, ll]; 

(3) D2p , F3p (the Frobenius group of order 3p), where p is a prime, see [2, 6]. 

Recently, an explicit list of groups which contains all finite CI-groups was pro­
duced by C. E. Praeger and the second author in [8] (also see [6]). Unfortunately, 
even with this knowledge, it is still a very hard problem to obtain a complete clas­
sification of finite CI-groups. By [6], the candidates of indecomposable CI-groups 
may be divided into three classes, two of them consist of infinite families, and the 
other contains 9 "sporadic" groups: Zs, Zg, Zg ><l Z2, Zg ><l Z4, Z~ ><l Z3, Z~ ><l Zg, Q8, 

Australasian Journal of Combinatorics 17(1998), pp.229-233 



Q8 ~ Z3 and Q8 ~ Zg. With the assistance of computer, B. D. McKay determined 
cyclic CI-groups of order at most 37, and in particular proved that Za and Zg are 
CI-groups (unpublished). By [11], Qa is a CI-group. In this note, we shall prove that 
Z~ ~ Z3 (~ A4) is a CI-group. However, it is not known which of the other sporadic 
candidates (that is, Zg ~ Z2, Zg ~ Z4, Z~ ~ Zg, Q8 ~ Z3 and Q8 ~ Zg) are CI-groups. 

One of interests of studying CI-groups is to classify Cayley graphs of the corre­
sponding groups. As an application of the result that A4 is a CI-group, we shall give 
a classification of Cayley graphs of A4. 

For a positive integer m, a group G is called an m-CI-group if all Cayley graphs 
of G of valency at most mare CI-graphs. In [7], it is proved that a nonabelian simple 
group is a 3-CI-group if and only if it is As. However, it is still an open question 
whether As is a 4-CI-group (see [7]). We shall prove that all disconnected Cayley 
graphs of As are CI-graphs. 

Theorem 1 The alternating group A4 of order 12 is a CI-group. 

Proof. For a positive integer m, a group G is said to have the m-CI property if all 
Cayley graphs of G of valency mare CI-graphs. Clearly, the group G has the m-CI 
property if and only if G has the (IG#I - m)-CI property. Therefore, to prove that 
A4 is a CI-group, we only need to prove that A4 has the m-CI property for m ::; 5. 

Let G = A4 ~ Z~ ~ Z3. Then G contains three involutions (elements of order 
2): aI, a2, a3, and four subgroups of order 3: (Xi) (i = 1,2,3,4). Let Sy13(G) be the 
set of Sylow 3-subgroups of G. It is easily checked that the following properties are 
true: 

(a) (Xi) acts (by conjugation) transitively on the set {al,a2,a3}; 

(b) Z~ = {I, all a2, a3} acts (by conjugation) regularly on the set SyI3(G); 

(c) G acts (by conjugation) 2-transitively on Sy13(G). 

(If a Cayley graph Cay(G, 8) is a CI-graph, S is called a CI-subset.) By (a), we 
know that G has the 1-CI property. By (a) and (b), it follows that G has the 2-CI 
property. 

Let 8 be a subset of G# of size 3 with S = S-1. If 8 consists of three involutions, 
then (8) Z~. Noting that G has the unique subgroup (S) of order 4, 8 contains 
all the involutions of G. For any T E G# such that Cay(G,8) ~ Cay(G,T), we 
have that I (S) I = I (T) I and so S = T. Thus 8 is a CI-subset. Let 8 = {x, x-I, a} 
and T {x', X,-1, al}, where o(x) = o(x') = 3 and o(a) = o(a') = 2, such that 
Cay(G,S) ~ Cay(G,T). Since (x) is conjugate to (x'), there exists an element 
y E G such that {x,x-1}y = {XI,XI- I

}, so SY = {x',x'-\aY }. Further, as (Xl) is 
transitive on the set of all involutions of G, tl.tere exists an integer j such that x,j 

maps aY to a', and so 8 yx'J = {x',x'-\ayy'J = {xl,xl-l,a'} = T. Thus 8 is a 
CI-subset, and so G has the 3-CI property. 

(For s E 8, an edge {u, v} of Cay(G, 8) is called an s-edge if vu-1 = s.) Let S 
be a subset of G# of size 4 with 8 = S-1, and let 

Rl = {al,a2,x1,x1I
} and R2 = {Xl,X1\X2,X21

}. 
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Then an aI-edge of Cay ( G , R 1) is not an edge of a cycle of length 3, but every edge 
of Cay(G, R2) is an edge of some cycle of length 3. Thus Cay(G, Rl ) ~ Cay(G, R2)' 
Since S = S-I, S contains 0 or 2 involutions. If S contains two involutions, then by 
properties (a) and (b), S is conjugate to Rl (arguing as in the previous paragraph); if 
S does not contain involutions, then it follows from property (c) that S is conjugate 
to R2 . Therefore, all subsets of G# of size 4 are CI-subsets and G has the 4-CI 
property. 

Finally, let S be a subset of G# of size 5 with S = S-I. Let 

where (X~i) = (X2), 
where (X~i) =I- (X2)' 

It is easy to show that Cay(G, Rr) has a subgraph isomorphic to the complete graph 
K4 of order 4 (generated by {at, a2, a3}), Cay( G, R2) has no subgraph isomorphic 
to K4 but every edge of Cay(G, R2 ) is an edge of a cycle of length 3 or 4, and 
Cay(G, Ra) has no subgraph isomorphic to K4 and an ai-edge of Cay(G, R3 ) is not 
an edge of a cycle of length less than 5. It follows that Cay ( G, Rk ), k = 1, 2, 3, 
are pairwise non-isomorphic. Since S = S-1 and G has exactly 3 involutions, S 
contains 1 or 3 involutions. First suppose that S contains 3 involutions. Then 
S {a],a2,a3,x,x- l

} for some element x of G of order 3. By property (b), there 
exists a E Z~ such that xa = Xl' Thus sa = Rl and so S is a CI-subset. Next suppose 
that S = {a,x,x-1,y,y-l} such that (x)a = (y) where o(a) = 2 and o{x) = o(y) = 3. 
By property (c), there exists g E G such that {(x), (yn g = {(Xl), (X2)}g. Thus 
sg = {ag,xI,xll,x2,X21}. Since Z~ acts regularly on Syi3(G), we have ag = ai so 
that sg = R2 and S is a CI-subset. Finally suppose S = {a,x,x-I,y,y-l} such that 
(x)a =I- (y) where o(a) = 2 and o(x) = o(y) = 3. By property (c), S is conjugate to 
T:= {ah,xI,x1

1 ,X2,x2
1} for some involution ah. Assume that T =I- R, and consider 

A4 as a permutation group on {I, 2, 3, 4}. Without loss of generality, we may assume 
{XI,X11

,X2,X21
} = {(123), (132), (124), (142)}. Since (x)a =I- (y), (XI)a h =I- (X2)' 

Therefore, we have {ai, ah} = {(13)(24), (14)(23)}, and so we may assume that 

R3 = {(13)(24), (123), (132), (124), (142)}, 
T = {(14)(23), (123), (132), (124), (142)}. 

Now T(34) = R3 , and hence S is conjugate under Aut(G) to R3 . So S is a CI-subset, 
and G has the 5-CI property. Therefore, G has the m-CI property for all m ::; 5 and 
so G is a CI-group. 0 

By Theorem 1 and its proof, it is easy to obtain a complete classification of Cayley 
graphs of A4. 

Corollary 2 Up to isomorphism, there are exactly 22 Cayley graphs of A4 . 

Proof. By the proof of Theorem 1, it easily follows that there are exactly 1, 1,2,2,2,3 
non-isomorphic Cayley graphs of A4 of valency 0, 1,2,3,4,5, respectively. Thus there 
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are exactly 1,1,2,2,2,3 non-isomorphic Cayley graphs of A4 of valency 11, 10,9,8,7, 
6, respectively. Therefore, there are exactly 22 non-isomorphic Cayley graphs of 
A4 . 0 

Finally, we study isomorphisms of Cayley graphs of A5. 

Theorem 3 All disconnected Gayley graphs of A5 are GI-graphs. 

Proof. Let G = A5. By [2], the dihedral groups of 2p are all CI-groups where p is a 
prime. Thus both D6 and DlO are CI-groups, and by Theorem 1, A4 is a CI-group. 
Therefore, all proper subgroups of G are CI-groups. Let S, T be subsets of G such 
that Cay(G, S) and Cay(G, T) are disconnected and isomorphic. Then (S) and (T) 
are both proper subgroups of G with the same order. It follows that (S) is conjugate 
in Aut(G) to (T). Thus there exists (J E Aut(G) such that (S) = (T)O'. Let S' = TO'. 
Then Cay(G,S) ~ Cay(G,S') and hence Cay((S),S) ~ Cay((S),S'). Since (S) is 
a CI-group, there is a E Aut( (S)) such that S = S,a. It is easy to show that all 
automorphisms of (S) can be extended to an automorphism of G. Thus there is 
P E Aut( G) such that the restriction of p to (S) is a. Hence 

S = S,a = S'P = (TO')P = TO'P. 

Therefore, Cay(G, S) is a CI-graph. o 
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