A Nonabelian CI-group

Zheng Yu Gu

Department of Mathematics, Yunnan Normal University Kunming, 650092, People's Republic of China

Cai Heng Li

Department of Mathematics, University of Western Australia Nedlands, WA 6907, Australia

Abstract

In this note, we prove that the alternating group A_4 is a CI-group and that all disconnected Cayley graphs of A_5 are CI-graphs. As a corollary, we conclude that there are exactly 22 non-isomorphic Cayley graphs of A_4 .

Let G be a finite group and set $G^{\#} = G \setminus \{1\}$. For a subset $S \subseteq G^{\#}$ with $S = S^{-1} := \{s^{-1} \mid s \in S\}$, the Cayley graph is the graph $\operatorname{Cay}(G, S)$ with vertex set G and with x and y adjacent if and only if $yx^{-1} \in S$. For an automorphism σ of G, it easily follows that $\operatorname{Cay}(G, S) \cong \operatorname{Cay}(G, S^{\sigma})$. The graph $\operatorname{Cay}(G, S)$ is called a CI-graph of G if, whenever $\operatorname{Cay}(G, S) \cong \operatorname{Cay}(G, T)$, there is an element $\sigma \in \operatorname{Aut}(G)$ such that $S^{\sigma} = T$ (CI stands for Cayley Isomorphism). A finite group G is called a CI-group if all Cayley graphs of G are CI-graphs.

Ádám (1967) conjectured that all finite cyclic groups were CI-groups, and this conjecture was disproved by Elspas and Turner (1970). Since then, a lot of work has been devoted to seeking CI-groups in the literature (see for example [2, 3, 9]). So far, the known CI-groups are the following groups:

- (1) $\mathbb{Z}_8, \mathbb{Z}_9, \mathbb{Z}_n, \mathbb{Z}_{2n}$ and \mathbb{Z}_{4n} , where *n* is odd square-free, see [9, 10];
- (2) $Q_8, \mathbb{Z}_p^2, \mathbb{Z}_p^3$, where p is a prime, see [3, 5, 11];
- (3) D_{2p} , F_{3p} (the Frobenius group of order 3p), where p is a prime, see [2, 6].

Recently, an explicit list of groups which contains all finite CI-groups was produced by C. E. Praeger and the second author in [8] (also see [6]). Unfortunately, even with this knowledge, it is still a very hard problem to obtain a complete classification of finite CI-groups. By [6], the candidates of indecomposable CI-groups may be divided into three classes, two of them consist of infinite families, and the other contains 9 "sporadic" groups: \mathbb{Z}_8 , \mathbb{Z}_9 , $\mathbb{Z}_9 \rtimes \mathbb{Z}_2$, $\mathbb{Z}_9 \rtimes \mathbb{Z}_4$, $\mathbb{Z}_2^2 \rtimes \mathbb{Z}_3$, $\mathbb{Z}_2^2 \rtimes \mathbb{Z}_9$, \mathbb{Q}_8 ,

Australasian Journal of Combinatorics <u>17(1998)</u>, pp.229-233

 $Q_8 \rtimes \mathbb{Z}_3$ and $Q_8 \rtimes \mathbb{Z}_9$. With the assistance of computer, B. D. McKay determined cyclic CI-groups of order at most 37, and in particular proved that \mathbb{Z}_8 and \mathbb{Z}_9 are CI-groups (unpublished). By [11], Q_8 is a CI-group. In this note, we shall prove that $\mathbb{Z}_2^2 \rtimes \mathbb{Z}_3$ ($\cong A_4$) is a CI-group. However, it is not known which of the other sporadic candidates (that is, $\mathbb{Z}_9 \rtimes \mathbb{Z}_2$, $\mathbb{Z}_9 \rtimes \mathbb{Z}_4$, $\mathbb{Z}_2^2 \rtimes \mathbb{Z}_9$, $Q_8 \rtimes \mathbb{Z}_3$ and $Q_8 \rtimes \mathbb{Z}_9$) are CI-groups.

One of interests of studying CI-groups is to classify Cayley graphs of the corresponding groups. As an application of the result that A_4 is a CI-group, we shall give a classification of Cayley graphs of A_4 .

For a positive integer m, a group G is called an m-CI-group if all Cayley graphs of G of valency at most m are CI-graphs. In [7], it is proved that a nonabelian simple group is a 3-CI-group if and only if it is A_5 . However, it is still an open question whether A_5 is a 4-CI-group (see [7]). We shall prove that all disconnected Cayley graphs of A_5 are CI-graphs.

Theorem 1 The alternating group A_4 of order 12 is a CI-group.

Proof. For a positive integer m, a group G is said to have the m-CI property if all Cayley graphs of G of valency m are CI-graphs. Clearly, the group G has the m-CI property if and only if G has the $(|G^{\#}| - m)$ -CI property. Therefore, to prove that A_4 is a CI-group, we only need to prove that A_4 has the m-CI property for $m \leq 5$.

Let $G = A_4 \cong \mathbb{Z}_2^2 \rtimes \mathbb{Z}_3$. Then G contains three involutions (elements of order 2): a_1, a_2, a_3 , and four subgroups of order 3: $\langle x_i \rangle$ (i = 1, 2, 3, 4). Let $Syl_3(G)$ be the set of Sylow 3-subgroups of G. It is easily checked that the following properties are true:

- (a) $\langle x_i \rangle$ acts (by conjugation) transitively on the set $\{a_1, a_2, a_3\}$;
- (b) $\mathbb{Z}_2^2 = \{1, a_1, a_2, a_3\}$ acts (by conjugation) regularly on the set $\text{Syl}_3(G)$;
- (c) G acts (by conjugation) 2-transitively on $Syl_3(G)$.

(If a Cayley graph Cay(G, S) is a CI-graph, S is called a *CI-subset*.) By (a), we know that G has the 1-CI property. By (a) and (b), it follows that G has the 2-CI property.

Let S be a subset of $G^{\#}$ of size 3 with $S = S^{-1}$. If S consists of three involutions, then $\langle S \rangle = \mathbb{Z}_2^2$. Noting that G has the unique subgroup $\langle S \rangle$ of order 4, S contains all the involutions of G. For any $T \in G^{\#}$ such that $\operatorname{Cay}(G,S) \cong \operatorname{Cay}(G,T)$, we have that $|\langle S \rangle| = |\langle T \rangle|$ and so S = T. Thus S is a CI-subset. Let $S = \{x, x^{-1}, a\}$ and $T = \{x', x'^{-1}, a'\}$, where o(x) = o(x') = 3 and o(a) = o(a') = 2, such that $\operatorname{Cay}(G,S) \cong \operatorname{Cay}(G,T)$. Since $\langle x \rangle$ is conjugate to $\langle x' \rangle$, there exists an element $y \in G$ such that $\{x, x^{-1}\}^y = \{x', x'^{-1}\}$, so $S^y = \{x', x'^{-1}, a^y\}$. Further, as $\langle x' \rangle$ is transitive on the set of all involutions of G, there exists an integer j such that x'^j maps a^y to a', and so $S^{yx'} = \{x', x'^{-1}, a^y\}^{x'^j} = \{x', x'^{-1}, a'\} = T$. Thus S is a CI-subset, and so G has the 3-CI property.

(For $s \in S$, an edge $\{u, v\}$ of Cay(G, S) is called an *s*-edge if $vu^{-1} = s$.) Let S be a subset of $G^{\#}$ of size 4 with $S = S^{-1}$, and let

$$R_1 = \{a_1, a_2, x_1, x_1^{-1}\}$$
 and $R_2 = \{x_1, x_1^{-1}, x_2, x_2^{-1}\}.$

Then an a_1 -edge of $\operatorname{Cay}(G, R_1)$ is not an edge of a cycle of length 3, but every edge of $\operatorname{Cay}(G, R_2)$ is an edge of some cycle of length 3. Thus $\operatorname{Cay}(G, R_1) \not\cong \operatorname{Cay}(G, R_2)$. Since $S = S^{-1}$, S contains 0 or 2 involutions. If S contains two involutions, then by properties (a) and (b), S is conjugate to R_1 (arguing as in the previous paragraph); if S does not contain involutions, then it follows from property (c) that S is conjugate to R_2 . Therefore, all subsets of $G^{\#}$ of size 4 are CI-subsets and G has the 4-CI property.

Finally, let S be a subset of $G^{\#}$ of size 5 with $S = S^{-1}$. Let

$$\begin{array}{l} R_1 = \{a_1, a_2, a_3, x_1, x_1^{-1}\}, \\ R_2 = \{a_i, x_1, x_1^{-1}, x_2, x_2^{-1}\}, & \text{where } \langle x_1^{a_i} \rangle = \langle x_2 \rangle, \\ R_3 = \{a_i, x_1, x_1^{-1}, x_2, x_2^{-1}\}, & \text{where } \langle x_1^{a_i} \rangle \neq \langle x_2 \rangle. \end{array}$$

It is easy to show that $Cay(G, R_1)$ has a subgraph isomorphic to the complete graph K_4 of order 4 (generated by $\{a_1, a_2, a_3\}$), Cay (G, R_2) has no subgraph isomorphic to K_4 but every edge of $Cay(G, R_2)$ is an edge of a cycle of length 3 or 4, and $Cay(G, R_3)$ has no subgraph isomorphic to K_4 and an a_i -edge of $Cay(G, R_3)$ is not an edge of a cycle of length less than 5. It follows that $Cay(G, R_k)$, k = 1, 2, 3, are pairwise non-isomorphic. Since $S = S^{-1}$ and G has exactly 3 involutions, S contains 1 or 3 involutions. First suppose that S contains 3 involutions. Then $S = \{a_1, a_2, a_3, x, x^{-1}\}$ for some element x of G of order 3. By property (b), there exists $a \in \mathbb{Z}_2^2$ such that $x^a = x_1$. Thus $S^a = R_1$ and so S is a CI-subset. Next suppose that $S = \{a, x, x^{-1}, y, y^{-1}\}$ such that $\langle x \rangle^a = \langle y \rangle$ where o(a) = 2 and o(x) = o(y) = 3. By property (c), there exists $g \in G$ such that $\{\langle x \rangle, \langle y \rangle\}^g = \{\langle x_1 \rangle, \langle x_2 \rangle\}^g$. Thus $S^g = \{a^g, x_1, x_1^{-1}, x_2, x_2^{-1}\}$. Since \mathbb{Z}_2^2 acts regularly on $Syl_3(G)$, we have $a^g = a_i$ so that $S^g = R_2$ and S is a CI-subset. Finally suppose $S = \{a, x, x^{-1}, y, y^{-1}\}$ such that $\langle x \rangle^a \neq \langle y \rangle$ where o(a) = 2 and o(x) = o(y) = 3. By property (c), S is conjugate to $T := \{a_h, x_1, x_1^{-1}, x_2, x_2^{-1}\}$ for some involution a_h . Assume that $T \neq R$, and consider A_4 as a permutation group on $\{1, 2, 3, 4\}$. Without loss of generality, we may assume $\{x_1, x_1^{-1}, x_2, x_2^{-1}\} = \{(123), (132), (124), (142)\}.$ Since $\langle x \rangle^a \neq \langle y \rangle, \langle x_1 \rangle^{a_h} \neq \langle x_2 \rangle.$ Therefore, we have $\{a_i, a_h\} = \{(13)(24), (14)(23)\}$, and so we may assume that

> $R_3 = \{(13)(24), (123), (132), (124), (142)\},\$ $T = \{(14)(23), (123), (132), (124), (142)\}.$

Now $T^{(34)} = R_3$, and hence S is conjugate under Aut(G) to R_3 . So S is a CI-subset, and G has the 5-CI property. Therefore, G has the m-CI property for all $m \leq 5$ and so G is a CI-group.

By Theorem 1 and its proof, it is easy to obtain a complete classification of Cayley graphs of A_4 .

Corollary 2 Up to isomorphism, there are exactly 22 Cayley graphs of A_4 .

Proof. By the proof of Theorem 1, it easily follows that there are exactly 1, 1, 2, 2, 2, 3 non-isomorphic Cayley graphs of A₄ of valency 0, 1, 2, 3, 4, 5, respectively. Thus there

are exactly 1, 1, 2, 2, 2, 3 non-isomorphic Cayley graphs of A_4 of valency 11, 10, 9, 8, 7, 6, respectively. Therefore, there are exactly 22 non-isomorphic Cayley graphs of A_4 .

Finally, we study isomorphisms of Cayley graphs of A_5 .

Theorem 3 All disconnected Cayley graphs of A_5 are CI-graphs.

Proof. Let $G = A_5$. By [2], the dihedral groups of 2p are all CI-groups where p is a prime. Thus both D_6 and D_{10} are CI-groups, and by Theorem 1, A_4 is a CI-group. Therefore, all proper subgroups of G are CI-groups. Let S, T be subsets of G such that Cay(G, S) and Cay(G, T) are disconnected and isomorphic. Then $\langle S \rangle$ and $\langle T \rangle$ are both proper subgroups of G with the same order. It follows that $\langle S \rangle$ is conjugate in Aut(G) to $\langle T \rangle$. Thus there exists $\sigma \in Aut(G)$ such that $\langle S \rangle = \langle T \rangle^{\sigma}$. Let $S' = T^{\sigma}$. Then $Cay(G, S) \cong Cay(G, S')$ and hence $Cay(\langle S \rangle, S) \cong Cay(\langle S \rangle, S')$. Since $\langle S \rangle$ is a CI-group, there is $\alpha \in Aut(\langle S \rangle)$ such that $S = S'^{\alpha}$. It is easy to show that all automorphisms of $\langle S \rangle$ can be extended to an automorphism of G. Thus there is $\rho \in Aut(G)$ such that the restriction of ρ to $\langle S \rangle$ is α . Hence

$$S = S'^{\alpha} = S'^{\rho} = (T^{\sigma})^{\rho} = T^{\sigma\rho}.$$

Therefore, Cay(G, S) is a CI-graph.

References

- [1] A. Adám, Research problem 2-10, J. Combin. Theory 2(1967), 309.
- [2] L. Babai, Isomorphism problem for a class of point-symmetric structures, Acta Math. Acad. Sci. Hungar. 29(1977), 329-336.
- [3] E. Dobson, Isomorphism problem for Cayley graph of Z³_p, Disc. Math. 147 (1995), 87-94.
- [4] B. Elspas and J. Turner, Graphs with circulant adjacency matrices, J. Combin. Theory 9 (1970), 297-307.
- [5] C. D. Godsil, On Cayley graph isomorphisms, Ars Combin. 15(1983), 231-246.
- [6] C. H. Li, Classifying finite CI-groups, preprint (1997).
- [7] C. H. Li and C. E. Praeger, The finite simple groups with at most two fusion classes of every order, *Comm. Algebra* 24(11) (1996), 3681-3704.
- [8] C. H. Li and C. E. Praeger, On the isomorphism problem for finite Cayley graphs of bounded valency, preprint (1997).

- [9] M. Muzychuk, Ádám's conjecture is true in the square-free case, J. Combin. Theory (A) 72 (1995), 118-134.
- [10] M. Muzychuk, On Ádám's conjecture for circulant graphs, Disc. Math. 167/168 (1997), 497-510.
- [11] M. Y. Xu, On isomorphisms of Cayley digraphs and graphs of groups of order p³, Advances Math. (China) 17 (1988), 427-428.

(Received 12/5/97)