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A bstract. We give miscellaneous constructions for I-rotational 

(4q+l,5,?\)-BIBD's, being q an odd prime power, investigating their 

possible resolvability whenever q - (mod 10). Concerning Steiner 

2-designs, the strongest result that we obtain, is the explicit 

construction of a I-rotational (4q+l,5,1)-BIBD (with a multiplier of 

order 5) for each prime q == 1 (mod 30) such that (11 + 5-[5) /2 is not a 

cube (mod q). 

As a particular consequence of our constructions, we get new 

(125,5,1) and new (156,6,1) BIBD's. The only ones with these 

parameters previously known were those obtainable from the 

3-dimensional affine and projective geometries over Z 5' 

1. Introduction 

We assume familiarity with the concepts of balanced incomplete 

block design (BIBD) and resolvable balanced incomplete block design 

(RBmD). 
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A (v+1,k,A)-BIBD is said to be l-rotational over a group G of order v, 

if admits G as an automorphism group fixing one special point 00 

and acting sharply transitively on the other points. 

Existence results on I-rotational Steiner 2-designs are the following. 

Theorem 1.1 (Phelps and Rosa [12]). There exists a I-rotational 

(v+1,3,l)-BIBD over 2v if and only if v == 2, 8 (mod 24). 

Theorem 1.2 (Moore [11]). For any prime power q == 1 (mod 4) 

there exists a I-rotational (3q+I,4,1)-BIBD over 23 EfJ :IF q being :IF q the 

field of order q. 

Some recursive constructions for I-rotational Steiner 2-designs with 

block size 4 are given by Liaw [9]. 

Greig [8] gives constructions for I-rotational Steiner 2-designs with 

block size 6 and 8. Abel and Greig [2] give constructions for 1-

rotational Steiner 2-designs with block size 5. 

About I-rotational designs with4\ higher index see e.g. [2, 6, 7]. 

In this paper we propose miscellaneous constructions for 
2 

I-rotational (4q+1,5,A )-BIBD's over 2 2EfJ :IF q or I-rotational 

(4p+l,5,A)-BIBD's over 2 4p ' for p an odd prime. 

Throughout the paper we win use the following notation. 

Notation. For a given prime power q, we denote by w a primitive 

root in :IF q' and by F (~) the set of ordered quintuples of pairwise 

distinct elements from :IF q • 

G will denote a group of order 4 (hence G = 24 or G = z~). 
2 

Each element (a,b) of 22 will be written as ~. 
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IT will denote the projection of G EB 1F q over 1F q' 

For a given 5-set A = {(g" Xl), ... , (gs, xs)} C GEB 1F q and a given 

element w of 1F q, we denote by wA the set {(g" WXt), ... , (gs, wXs)}. 

Also, the list of differences from A will be denoted by ~ A. 

For realizing our constructions we will use the following standard 

method. 

Find a family l' of 5-subsets of G EB 1F q whose list of differences covers 

(G EB 1F q) - (Gx {O}) exactly /\ times. Take a symbol 00 and consider the 

incidence structure (V, :8) with point set V = (GEB 1Fq) U {oo} and block 

family :8 consisting in all the translates (under G EB 1F q) of the 

members of l' (called base blocks) plus /\ times all the sets of type 

(G x {h}) U {oo}, h E 1F q' This structure is a I-rotational (4q+ 1,5,/\ )­

BlED over GEB 1F q' Using the same notation and terminology as in [5], 

l' is a (G$ 1F <p Gx to}, 5, 1) difference family. But here, we will refer to 

l' as a I-rotational (4q,5, 1) difference family over G EB 1F q' 

Let l' be a I-rotational (4q,5, I) difference family over G EB 1F q and let 

w be a primitive n-th root of unity in 1F q' We say that w is a 

multiplier of order n of the family l' if whenever A E 1', wA E 1'. In 

such a case we have that the map w defined on (GEB 1F q) U {oo} by 

the rule w( 00 ) = 00 and w (g, x) = (g, wx) for any (g, x) E GEB 1F q' is an 

automorphism of the BIBD generated by 1'. 

A BIBD is said to be cyclically resolvable when it admits a cyclic group 

of automorphisms acting sharply transitively on a resolution of the 

BIBD. All the resolvable I-rotational Steiner 2-designs over G EB IF q 

that we obtain in this paper admit a resolution on which 1F q acts 

sharply transitively. Thus, when q is a prime they are cyclically 

resolvable. 
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[1] is a paper concerning the construction of cyclically resolvable 1-

rotational Steiner 2-designs with block-size 4. 

The following lemma is useful for checking the possible resolvability 

of a BIBD generated by a I-rotational (4q,5,A) difference family. 

Lemma 1.3. Let l' be a I-rotational (4q,5.A) difference family over 

G I:D F q and let rr be the projection of GI:D JF q over JF q' Then the BIBD 

generated by l' admits a resolution invariant under GI:D JF q provided 

that l' is partition able in A subfamilies 1'0,1'" ... , 1'~-1 satisfying the 

following condition: 

U rr(A) = JF~ for j = 0,1, ... , A-1. 
AEf'j 

Proof. If the above condition holds, it is easily seen that 

Rj,h = {A + (g, h) I A E 1'j; g E G} U {(Gx{h}) U {O()}} 

j = 0, 1 •... , A-I; h E IF q' 

are the parallel classes of a resolution of the BIBD generated by 1'. 

Obviously, this resolution is invariant under GI:D JF q' 0 

2. I-rotational (4q,5,A )-DF's over Z ~ 6) F q. A generalization 

of a construction by Abel and Greig 

Abel and Greig (2] have recently given constructions for I-rotational 

(4q+I,5,1)-BIBD's over Z~ $ JF q starting from two blocks of type 

{(0o • Xl). (0o • x2), (00, X3), (lo. ~), (0" xs)} and {(0o , Y1), (10, Y2), 
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(l0,Y3), (0" Y4), (01, Ys)}· Here, we slightly improve their results and 

generalize their construction considering also the case where 'J\ = 5. 

In this section, for a fixed prime power q, with each lOtuple X = (x" 
10 

... , XlO) E: IF q we associate the following quintuples: 

Theorem 2.1. There exists a I-rotational (4q+ 1 ,5,5)-BIBD over 

Z~ ~ IF q for any odd prime power q f 5. 

Proof. Fix X = (x" ... , XlO) E: IF 1~ in such a way that both (Xb X2. X3, X4, 

xs) and (Xo, X7, xs. x9, xlO) belong to IF(~). Consider the 5-subsets A" 

A2 of Z~ ~ IF q defined as follows: 

It is easily seen that 

Let S = {wi I 0 ~ i < T}. Since ± S = IF~ and each Xi/j is a quintuple of 

non-zero elements of IF <1' we have that (± Xi,j)S covers IF ~ exactly 5 

times. It follows that the differences from the family 

f' = (sAj I s E: S, i = 1, 2) 
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cover (Z~eIFq) - (Z~x{O}) exactly 5 times, namely l' is a I-rotational 

(4q,5,5) difference family. The assertion follows. 0 

The smallest designs that we obtain applying the previous theorem 

have parameters (21,5,5) and (29,5,5). In the parameter tables of 

small BIBD's given by Mathon and Rosa [10] it is pointed out that 

there are at least 109 non-isomorphic known (21,5,5)-BIBDs. We do 

not know if our I-rotational (21,5,5)-BIBD's are among them or not. 

However, our I-rotational (29,5,5)-BIBD's are new. In fact, according 

to Mathon and Rosa again, the only known (29,5,5)-BIBD (discovered 

by Hanani) is simple. Instead, our (29,5,5)-BIBD's have 7 blocks 

repeated 5 times. 

Theorem 2.2. There exists a I-rotational (4q+ 1 ,5,5)-RBIBD over 

Z~ e IF q for any prime power q = 1 Ot+ 1. 

Proof. Construct a I-rotational (4q,5,5) difference family l' as in the 

proof of Theorem 2.1 but choosing as X an arbitrary ordering of the 

set of 10th roots of unity in IF q' For j = 0, 1, ... , 4, set Sj = {w i+jt I 0 ~ i 

< t} and 1'j = (sAj I s E Sj' i = 1, 2). Since the Sj's partition Sand 

±S=IF~, we have that the 1'j'S partition 1'. Also, we have U JT(A) = 
AEf'j 

S j X. On the other hand, since X is the set of 10th roots of unity and S j 

is a system of representatives for the cosets of these roots for any j, 

we have that SjX = IF~. Then, applying Lemma 1.3 the assertion 

follows. 0 

In the case where q == 1 (mod 10) again, a more appropriate choice 

of the 10tuple X could lead to a I-rotational, possibly resolvable, 

(4q+l,5,1)-BIBD. In fact we have: 
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Theorem 2.3. Let q = 10t+l be a prime power and let 2~ be the 

largest power of 2 dividing t. A 10tuple X E IF 1~ may possibly satisfy 

some of the following conditions: 

i) Each Xi,j is a system of representatives for the cosets of 5th 

powers in IF q • 

ii) X = ± Y where Y is a system of representatives for the cosets of 

5 th powers in IF <I' 

iii) Each Xi,j is a system of representatives for the cosets of 2~ 5 th 

powers in the group of 2e th powers. 

iv) X is a system of representatives for the cosets of 2e l0th powers 

in the group of 2e th powers. 

We have: 

If (i) holds, then there exists a I-rotational (4q,5, 1) difference 

family l' without non-trivial multipliers. 

If (i) and (ii) hold, then the BIBD generated by l' is resolvable. 

If (iii) holds, then there exists a I-rotational (4q,5,1) difference 
• family 1" admitting w 2 10 as a multiplier of order t/2e. 

If (iii) and (iv) hold, then the BIBD generated by 1'1 is resolvable. 

Proof. First of all, starting from X, construct the sets A1, A2 as in the 

proof of Theorem 2.1. 

Assume that (i) holds and set S = {w Si I 0 ~ i < t}. As ± S is the set of 

5th powers in IF <I' we have that (± Xi,j)S = IF ~ for each ~/j. It follows 

that the family l' = (sAj Is E S, i = 1, 2) is a I-rotational (4q,5,1) 

difference family. 

Assume that (i) and (ii) hold and let l' be the difference family 

described above. We have: U rr(A) = SX = ± SY. On the other hand, 
AE'F 

since ± S is the group of 5th powers and Y is a system of 
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representatives for the cosets of this group, we have :!:: SY = IF ~. Then 

the assertion follows from Lemma 1.3. 
e. . 

Assume that (iii) holds and set S' = {w 2 101 + J I a ~ i < t/2e ; 0 ~ j < 2e }, 
e . 

namely S' = TU where T = {w 2 101 I 0 ~ i < t/2e } is the group of 

2 ~ 1 ath powers and U = {w j I a ~ j < 2e } is a system of 

representatives for the cosets of the group, say V, of 2fth powers. 

Since :!:: T is the group of 2e 5th powers and each Xi,j is a system of 

representatives for the co sets of this group in V, we have that 

(:!::Xi,j)T = V for each ~,j' This implies that (:!::Xi,j)S' = (:!::Xi,j)TU = VU = 

14': for each ~,j. It follows that the family 1" = (s'~ Is' E S', i = 1, 2) is 

a I-rotational (4q,5, 1) difference family. 

Assume that (iii) and (iv) hold and let 1" be the difference family 

described above. We have: U rr(A) = S'X = (TU)X. On the other hand 
AE'F' 

we have TX = V because X is a system of representatives for the 

cosets of T in V. Hence (TU)X = UV = 14' ~. Then, applying Lemma 1.3 

the assertion follows. 0 

Remark 2.4. Needless to say that for realizing I-rotational BIBD's 

or RBIBD's using the previous theorem, one needs the help of a 

computer. Abel and Greig [2], essentially using conditions (i) and (ii), 

find a (4q+l,5,1)-RBIBD for all primes q == 1 (mod 10) with q ( 1.151 

with the only exceptions of q = 11, q = 31 and q = 41. 

Anyway, Theorem 2.3 is a slight improvement of the construction 

given by Abel and Greig for two reasons. 

The first reason is that Theorem 2.3 also succeds for q = 31. The 

second reason is that, using (iii) and (iv) we obtain RBIBD's 

possessing a multiplier group of order t/2e that the RBIBD's of Abel 

and Greig do not generally have. 
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In the following table we report the primes q ~ 1.151 for which 

there exists a 10tuple X, also reported, satisfying conditions (iii) and 

(iv) of Theorem 2.3. We conjecture that such a 10tuple X always 

exists for primes q = 1 Ot+ 1 having t odd (namely e = 0) with the 

only exception of q = 11. The first prime q = 10t+l appearing in the 

table and having t even is q = 421. 

q X 

3 1 (1, 2, 4, 11, 16, 12, 9. 13, 6, 23) 

7 1 (1, 2, 5, 6, 14, 7. 23, 47. 31. 43) 

131 (1, 2, 4, 7, 8, 13. 14, 47, 31, 43) 

151 (1, 3, 14, 9, 11, 17. 46, 126, 108, 139) 

191 (1, 2, 4, 8, 11, 3, 95, 112, 28, 174) 

211 (1, 2, 4, 7, 9, 3, 12, 53, 69, 141) 

251 (1, 2, 14, 7, 11, 3, 36, 117, 165, 184) 

271 (1, 2, 4, 6, 7, 3, 19, 113, 89, 189) 

311 (1, 2, 4, 6, 12, 11, 22, 95, 204, 221) 

331 (1, 2, 5, 6, 10, 8, 20, 44, 108, 265) 

421 (1, 4, 16, 344, 343, 64, 418, 48, 401, 363) 

431 (1, 5, 26, 35, 38, 7, 29, 69, 107, 279) 

461 (1,408,172,367,311,4,294,350,58,91) 

491 (1, 2, 8, 4, 10, 5, 21, 65, 237, 312) 

541 (1,4,16, 170,316,64,353,463, 139, 159) 

571 (1, 2, 7, 10, 15, 5, 30, 65, 96, 307) 

631 (1, 2,4, 14, 19, 6, 8, 24,247, 506) 

661 (1, 4, 16, 493, 47. 64, 97, 617, 55, 562) 

691 (1, 2, 5, 6, 7, 8, 10, 25, 138, 208) 

701 (1, 64, 472, 591,297. 4,610, 100, 154, 585) 

751 (1,2,6,7,13,4,12,40,39,699) 
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8 11 (1, 2, 4, 8, 9, 6, 15, 88, 96, 366) 

821 (1, 64, 258, 785, 368, 4, 49, 799, 199, 45) 

911 (1, 3, 20, 11, 21, 9, 34, 100, 209, 554) 

941 (1,256,217,39,465,4,600,802,463,228) 

971 (1, 2, 12, 6, 17, 9, 34, 100, 209, 554) 

991 (1, 2, 4, 11, 20, 3, 27, 39, 330, 465) 

1021 (1, 100, 301, 922, 254, 811, 744, 563, 814, 788) 

1031 (1, 2, 5, 6, 7, 8, 28, 41, 201, 228) 

1051 (1,2,6,7,10,3,17,46,21,785) 

1061 (1, 64, 684, 584, 501, 4, 880, 784, 609, 41) 

1091 (1, 2, 8, 4, 14, 7, 23, 152, 116, 1069) 

1151 (1, 2, 4, 9, 13, 3, 26, 103, 61, 411) 

1.481 is the first prime equivalent to 41 (mod 80) (namely having e 

= 2) for which conditions (iii) and (iv) succeed in finding a 

(4q+l,5,1)-RBIBD. It suffices to use the 10tuple X = (1, 26, 1.251, 

1.033, 1.244, 81, 162, 1.332, 1.021, 149). 

3. I-rotational (4q,S,/\ )-DF's over Z ~ e F q with a multiplier 

of order 5 

In this section, given a prime power q and a fixed primitive 5th root 

of unity £ in JF <I' we associate the following triples with each X = (x" 
(5) 

x2, x3, .14, X5) E: JF q : 
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The reader will may easily check that all the BIBD's here obtained 

arise from I-rotational difference families admitting £ as a 

multiplier. 

Theorem 3.1. There exists a I-rotational (4q+I,5,3)-BIBD over 

Z~ $ F q for any prime power q == 1 (mod 10). 

Proof. Fix an arbitrary quintuple X E: F (~) and consider the 5-subsets 

A, B of Z~ $ F q defined as follows: 

It is easily seen that: 

fj,A = tOo} x (±<£>{£-1, £2_1}) 

Setting Ao = A and ~ = £i-1B for 1 ~ i ~ 5, we have that: 

Let S = {w i I 0 ~ i < "ft-}. Since ± <£ > is the group of 10th roots of unity 

in F q and S is a complete system of representatives for the cosets of 

this group, we have that ±<£>S = F~. Hence, the list (±<£>Xi,j)S covers 

1F: exactly 3 times for each ~/j. It follows that the list of differences 

from the family 

l' = (sAj I s E: S, 0 ~ i ~ 5) 
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covers (;Z~$1Fq) - (Z~X {O}) exactly 3 times, namely l' is a I-rotational 

(4q,5,3) difference family. The assertion follows. 0 

Theorem 3.2. There exists a I-rotational (4q+ 1 ,5,3 )-RBIBD over 

;Z~ $ 1F q for any prime power q == 1 (mod 30). 

Proof. Construct a I-rotational (4q,5,3) difference family l' as in the 

proof of Theorem 3.1, but choosing the quintuple X in such a way 

that X+ is a system of representatives for the cosets of <£ > in the 

group of 30th roots of unity in 1F q' For j = 0, 1,2, set Sj = {w i+jt I 0 ~ i 

< -}t} and 1'j = (sAj I s E Sj' i = 1, 2). Since the Sj'S partition S, we have 

that the l' j's partition 1'. Also, we have U JT(A) = SjX+<£>. But X+<€> 
AEf'j 

is the set of 30th roots of unity and S j is a system of representatives 

for the cosets of these roots, so that SjX+<€> = 1F~. Then, applying 

Lemma 1.3 the assertion follows. 0 

Now, in order to give our strongest result, we need the following 

lemmas. 

Lemma 3.3. Let q == 1 (mod 6) be a prime, q > 7. Then there exists 

X E 2(~) such that each of the lists X l ,o, XO,1t X1, t is a system of 

representatives for the cosets of the cubes (mod q). 

Proof. Let ind be the map from 2 ~ into 2 q_1 defined by ind(wi) = i. Of 

course, in order that a 3-subset {a, b, c} of 2 ~ is a system of 

representatives for the cosets of the cubes (mod q), we should have 

ind( {a, b, c}) = 23 (mod 3). Set: 

ind(2) == h (mod 3); ind(3) == i (mod 3); ind(5) == j (mod 3). 

. I X 7) (5) . In the following table we exibhit a working qumtup eEL q' I.e. 

such that Xl,o, Xo, b X1,1 satisfy the condition of the lemma, for each 
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possible triple (h, i, j) with the only exceptions of the triples (0, 0, 0), 

(1, 2, 1) and (2, 1, 2). 

(h, i, j) X 

(0, 0, 1) and (0, 0, 2) (0, 9, -15, 25, 225) 

(0. 1, 0) and (0, 2, 0) (0, 8, 3, 9, 18) 

(0. 1, 1) and (0, 2, 2) (0, 6, 9, 10, 18) 

(0. 1, 2) and (0, 2, 1) (0, 2, 5, 8, 10) 

(1, 0, 0) and (2, 0, 0) (0, 9, 4, 36, 54) 

(1. 0, 1) and (2, 0, 2) (0, 3, 2, 8, 12) 

(I, 0, 2) and (2, 0, 1) (0, 2, 4, 5, 6) 

(1. I, 0) and (2, 2, 0) (0, 5, 4, 8, 10) 

(1, I, 1) and (2, 2, 2) (0, 5, 1, 4, 6) 

(1, 1, 2) and (2, 2, 1) (0. 3, 1, 2, 6) 

(I, 2, 0) and (2, 1, 0) (0, 6, 9, 10, 15) 

(1. 2, 2) and (2, 1, 1) (0, 3, 1, 2, 5) 

For finding a working X also in the case where (h, i, j) = (1, 2, 1) or 

(2, 1, 2), we have to involve also ind(7): 

for ind(7) = ° take X = (0, 1, 2, 5, 9); 

for ind(7) = 1 take X = (0, 1, 2, 5, 8); 

for ind(7) = 2 take X = (0, 1, 2, 3, 10). 

In such a way, we have found a quintuple X satisfying the condition 

of the lemma in the case where 2, 3 and 5 are not all cubes (mod q). 

Now, suppose that 2 and 3 are cubes (mod q) and let p be the 

smallest prime which is not a cube (mod q). Then, each positive 

integer smaller than p is a cube (mod q). Consider the quintuple 

X E: Z(~) defined by: 
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with ff = 1 or -1 according to whether p - 3 or 1 (mod 4) 

respectively. 

We have: 

We can write p± 3 = 2(p± 3)/2, p± 1 = 2(p± 1)/2, p-3ff = 4(p-3ff )/4 

and 3p-ff = 4(3p-ff )/4. On the other hand the integers (p ± 3) /2, 

\f«p± 1)/2, (p-3ff )/4 and (3p-ff )/4 are cubes (mod q) because they 

are smaller than p. It follows that p± 3, p± 1, p-3ff and 3P-ff are all 

cubes (mod q) and hence that X1,o, Xo,,, Xl ,l are systems of 

representatives for the cosets of the cubes (mod q). The assertion 

follows. 0 

Lemma 3.4. Let q == 1 (mod 30) be a prime power and let £ be a 

primitive 5th root of unity in IF q' Then £ -1 and £ 2 -1 lie in distinct 

cosets of the cubes in IF q if and only if (11 + 5{5) /2 is not a cube in 1F q' 

Proof. Firstly note that £ -1 and £ 2 -1 lie in the same coset of the 

cubes in IF q if and only if £ + 1 is a cube in IF q' On the other hand £ + 1 

is a cube if and only if the set C = {±(£+1)5, ±(£2+1)5} is contained in 

the set of cubes. So, for proving the lemma it is enough to show that 

(11 + 5{5) /2 belongs to C. By means of a trivial calculation we have 

that (cf. also [4, p.19]): 
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This implies that (£+1)5 and (£2+1)5 are the roots of the equation 

x2+11x-l = 0 in 1F q• The assertion easily follows. 0 

Lemma 3.5. Let q = 30t+ 1 be a prime such that (11 + 5~) / 2 is not a 

cube (mod q). Then there exists X E Z (~) such that each of the lists 

XC) ,0' X1,o, Xc, h X
'
,1 is a system of representatives for the cosets of the 

cubes (mod q). 

Proof. Using Lemma 3.3, choose Y E Z(~) in such a way that Y1,o, Yo,,, 

y ',1 are systems of representatives for the cosets of the cubes 

(mod q). By Lemma 3.4, £ -1 and £ 2 -1 lie in distinct cosets of the 

cubes (mod q). This allows us to choose c E Z ~ in such a way that 

{C(Y2-Y1), £-1, £2_1} is also a system of representatives for the co sets 

of the cubes (mod q). It follows that the normalized quintuple X = cY 

is such that all the ~I/S are systems of representatives for the cosets 

of the cubes (mod q). 0 

Theorem 3.6. Let q = 30t+l be a prime such that (11+5~)/2 is not 

a cube (mod q). Then there exists a i-rotational (4q+l,5,l)-BIBD. 

Proof. By Lemma 3.5, there exists X E Z(~) such that all the Xi,/s are 

systems of representatives for the cosets of the cubes (mod q). Using 

such a quintuple X, consider the sets Ao , A" ... , As defined like in the 

proof of Theorem 3.1 and set S = {w 3i I 0 ~ i < t}. It is easily seen 

that ± < £ >S is the set of cubes (mod q) so that (± < £ > Xi,j)S = Z; for all 

the ~I/S. 

It follows that 

f = (sAt I s E S, 0 ~ i ~ 5) 

is a i-rotational (4q,5, 1) difference family. The assertion follows. 0 
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Remark 3.7. Under the same hypothesis of the above theorem, a 

slightly different I-rotational (4q,5, 1) difference family can be 

realized in the case where t is odd. This family is 1" = (S'Ai I Sf E: S', 

° ~ i ~ 5) where S' = {w 6i I 0 ~ i ( t}. In fact, if t is odd, the quintuple 

X used in the proof of Theorem 3.6 is such that ± Xi,j is a system of 

representatives for the cosets of the 6th powers (mod q) for eaeh 

pair (i, j) E: {O, 1}2. On the other hand, the set of 6th powers is given 

by <£>S' and hence (±<£>JG,j)S' = Z:. 
Note that 1" admits w 6 as a multiplier of order 5t. 

Theorem 3.8. Let q == 1 (mod 30) be a prime such that (11 + 5{5) / 2 

is not a cube (mod q). Then there exists a I-rotational (4q+l,5.1)­

RBIBD if one of the following conditions holds: 

(i):I X = (a, -a, -1. b, -b) E: Z(~) such that the Xi,j'S and {I, a, b} are 

systems of representatives for the cosets of cubes (mod q). 

(ii) t is odd and 3 X E: Z (~) such that the Xi,j'S are systems of 

representatives for the cosets of the cubes (mod q) and X+ is a 

system of representatives for the cosets of 6th powers (mod q). 

Proof. Let l' be the I-rotational (4q,5, 1) difference family obtainable 

applying Theorem 3.6 with a quintuple X satisfying (i). We have: 

U Tf(A) = SX+<£> = ± S{ 1, a, b}<£>. On the other hand, since ± S<£> is 
A€'F 

the set of cubes and {I, a, b} a system of representatives for the 

eosets of the cubes, we have that ± S{l, a, b}<£> = Z~. Then, applying 

Lemma 1.3 the assertion follows. 

Now assume that t is odd and let 1" be the I-rotational (4q,5, 1) 

difference family obtainable applying Remark 3.7 with a quintuple X 

satisfying (ii). We have: U Tf(A) = S'X+<£>. So, since S'<£> is the group 
A€'F 

of 6th powers and X+ is a system of representatives for the cosets of 
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this group, we have S'X+<£> = z~. Then, applying Lemma 1.3 the 

assertion follows. 0 

As application of the above theorem, we find a I-rotational 

(4q+1,5,1)-RBIBD (with a multiplier of order at least 5) for any 

prime q = 30t+ 1 < 1.000 such that (11 + 5{5) / 2 is not a cube (mod q) 

with the only exception of q = 61. In fact, in the next table we 

exibhit a pair (a, b) satisfying (i) or a quintuple X satisfying (ii) for 

each of these primes. 

q (a, b) X 

3 1 (3, 29, 20, 25, 26) 

181 (32, 47) 

211 (4, 16) 

241 (18, 19) 

271 (6, 50) 

421 (17, 31) 

571 (3, 243, 9, 27, 260) 

601 (5, 70) 

631 (22, 23) 

691 (3, 81, 9, 27, 206) 

751 (14, 29) 

991 (6, 216, 36, 311, 363) 

4. A variant construction for I-rotational Steiner 2-designs 

Here, by means of an additional construction, given a prime q == 1 

(mod 30) we show that even in the case where (11 + 5...[5) / 2 is a cube 
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(mod q), there are good chances of realizing a I-rotational (4q,S, 1) 

difference family starting from two blocks of type {(Do. Y1), (00 • Y2), 

(00, Y3), (00 , Y4), (00 , Y5)} and {(Oo , Xl), (00 , X2), (10, X3), (0
" 

X4), 

(11, Xs)}· 

Tbeorem 4.1. There exists a I-rotational (4q+l,5,1)-BIBD over 

Z~ $ Z q for any prime q == 1 (mod 30) but q;E. 1 (mod ISO), provided 

that there exists a quintuple Y E Z(~) such that ind(YrYi I 0 ~ i < j ~ 

S) = Z 15 - to, 3, 6, 9, 12} (mod IS). 

Proof. Fix an arbitrary quintuple Z satisfying the hypothesis of 

Lemma 3.3. Then consider the quintuple X = _1_ Z. Note that X also 
Z2-Z1 

satisfies the hypothesis of Lemma 3.3 and, moreover, that X2-X1 = 1. 

Set: 
Lo,a = {YrYi I 0 ~ i < j ~ S} U <£> 

~,j =<£>~,j for (i, j) E {O, I}2 - {(O, O)}. 

Since q;E. 1 (mod 150), we have that ind«£» = (0, 3, 6, 9, 12) (mod 

15). This and the hypothesis on Y imply that ind(Lo,o) = Z 15 (mod 

15). Also, for (i, j) E {O, 1}2 - {(O, O)}, since Xi,j is a system of 

representatives for the cosets of cubes (mod q), we have that 

ind(Li,j) = Z 15 (mod 15). In other words, all the l;,j's are systems of 

representatives for the cosets of ISth powers (mod q). 
2 

Now, consider the 5-subsets Ao , A" "0' ~ of Z 2 ~ Z q defined as 

follows: 

We have: 
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Let S = {w 15i I 0 ~ i < (q-I)/30}. Since ± S is the group of 15th powers 

(mod q) and each Li,j is a set of representatives for the cosets of this 

group, we have (:t Li,j)S = Z; for each Li,j' It follows that the list of 

differences from the family 

l' = (sAt I s E S, 0 ~ i , 5) 

2 2 
covers (2 2 e 2 q) - (22 x {O}) exactly once, namely l' is a I-rotational 

(4q,5,1) difference family. The assertion follows. 0 

Remark 4.2. The difference families obtainable using the above 

theorem generally are without non-trivial multipliers. But, under 

the same hypothesis of the theorem, we have that in the case where 

t is odd the family 1" = (s2 Ai I s E S, 0 ~ i ~ 5) is a (4q,5,1) difference 

family admitting w 30 as a multiplier of order t. 

As an example, consider the prime q = 541. For this prime we cannot 

use Theorem 3.6 since (11+5{5)/2 is a cube (mod 541). Anyway, it is 

easy to check that Y = (0, 16, 25. 28, 47) is a quintuple for which 

Theorem 4.1 succeeds in finding a I-rotational (4q+l,5,1)-BIBD. 

5. 1·rotational (4p,5,/\ )-DF's over Z 4 p 

The aim of constructing I-rotational designs with block size 5 over 

2 <4 P appears more difficult than over Z ~ $ 2 p' In this section p will 
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always denote an odd prime and 2 4p will be identified with the ring 

24$2p. 

Theorem 5.1. There exists a 1-rotational (4p+ 1 ,5,5)-BIBD over 24 p 

for any prime p > 5. 

Proof. Consider the 5-subsets A, B of 24 $ 2p defined as follows: 

A1 = {(O, 0), (0, 1), (0, 2), (1, 3), (3, 4)} 

A2 = {(O, 0), (1, -1), (1,4), (3, 2), (3, -2)} 

We have: 

where L" ~, L3, L4 are the following lists of elements of Z:: 
Lo = ± (1, 1, 2, 5, 4) L 1 = L3 = ± (1, 2, 2, 3, 4) ~ = ± (1, 1, 2, 3, 6). 

Let S = {wi I ° ~ i < T}. Since ± S = 2p*, we have that the list LiS 

covers 2: exactly 5 times, i = 0, 1, 2, 3. It follows that 

l' = (s~ Is E S, i = 1, 2) 

is a I-rotational (4p,5,5) difference family. The assertion foHows. 0 

With similar argumentations to those used in Theorem 2.3, one can 

prove the foHowing theorem: 

Theorem 5.2. Let p = lOt+ 1 be a prime and let 2· be the largest 

power of 2 dividing t. Let X E: Z 1pO such that each of the lists 

± (XrX1, x3-x" x3-x2. xe-x7. XlO-X9) 

(X4-x" ~-x2' x4-x3, x1-xS, x2-xS. x3-xS, xrx6. xS-x6, Xo-Xg, Xo-XlO) 
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is a system of representatives for the cosets of 2· 10th powers in the 

group of 2· th powers. 

Then, setting 

A1 = {(O, Xl), (0, X2), (0, X3), (1, X4). (3, xs)}, 

A2 = {(O, ~), (1, X7), (1, xs), (3, x9), (3, Xl0)} and 

S = {w 2 • 10i + j I 0 ~ i < t/2.; ° ~ j < 2·}, 

we have that f = (sAj I s € S, i = 1, 2) is a I-rotational (4p,5,l) 
• 

difference family admitting w 2 10 as a multiplier of order t/2·. 

If, in addition, X is a system of representatives for the cosets of 

2· 10th powers in the group of 2· th powers, then the BIBD generated 

by f is resolvable. 

In the remainder of this section p will be equivalent to 1 (mod 10) 

and £ will denote a primitive 5th root of unity (mod p). Also, with 

h . t 1 X ( ) h' (5) . t th f II . eac qum up e = x,; ... , Xs € {L P we aSSOCla e e 0 oWIng 

sextuples: 

Xo = ± (X2-X" £-1, £2_1), 

X, = (x3-xl, X3-X2, ~-x3, XS-X4' x1-xS, x2-xS), 

X 2 = ± (x4-Xh ~-X2' XS-X3), 

X3 = -Xh 

Theorem 5.3. There exists a I-rotational (4p+ 1,5,3 )-BIBD over Z 4 P 

for any prime p == 11 (mod 20). 

Proof. Let £ be a primitive 5th root of unity (mod p) and let X E Z(;) 

such that the list X, has exactly three squares (mod p). Note that 

such a quintuple X surely exists. For instance, one can take X = (0, 3, 
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1, 2, 4) if 2 is a square (mod p) or X = (0, 1, 2, 3, -1) if 2 is a non­

square. Consider the 5-subsets A, B of Z 4 $ Z p defined as follows: 

Set Ao = A and ~ = £i-1B for 1 ~ i ~ 5. We have: 

Let S = {w 2i I ° ~ i ( -it}. Note that <£ >S is the set of non-zero squares 

(mod p). Also, note that each of the Xi'S has exactly three squares 

and three non-squares; in Xt by choice of X, in Xc and X2 because -1 

is a non-square (mod p). It follows that <£ > XiS covers Z; exactly 3 

times (for i = 0, 1, 2, 3) so that 

F = (s~ I S E S, ° ~ i ~ 5) 

is a I-rotational (4p,5,3) difference family. The assertion follows. 0 

Example 5.4. Let us apply the above theorem in the case where 

p = 11. Take £ = 3 as primitive 5th root of unity (mod 11) and check 

that X E z(il = (0. 1, 2, 3, 4) is such that Xl has three squares and 

three non-squares (mod 11). Then we have that 

Ao = {(O, 1), (0, 3), (0, 9), (0, 5), (0, 4)} 

A1 = {(O, 0), (0, 1), (1, 2), (2, 3), (3, 4)} 

A2 = {(O, 0), (0, 3), (1, 6), (2, 9), (3, I)} 

A3 = {(O, 0), (0, 9), (1, 7), (2, 5), (3, 3)} 

A4 = {(O, 0), (0, 5), (l, 10), (2, 4), (3, 9)} 

As = {(O, 0), (0, 4), (1, 8), (2, 1), (3, 5)} 
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are base blocks of a I-rotational (44,5,3)-DF over Z 4 (B Z 11' Using the 

ring isomorphism \jJ: (a, b) E Z 4 $ Z 11 -+ 12b-lla E: Z 44, we may 

identify the above family as a I-rotational (44,5,3)-DF over Z44 with 

base blocks: 

{12, 36, 20, 16, 4} {O, 12, 13, 14, 15} {O, 36, 17, 42, 23} 

{O, 20, 29, 38, 3} to, 16, 21, 26, 31} to, 4, 41, 34, 27} 

In the following theorems saying that p is a good prime, we mean 

that (11 + 5.[5) /2 is not a cube (mod p) 

Theorem 5.5. Let p :: 31 (mod 60) be a good prime. There exists a 

I-rotational (4p+l,5,l)-BIBD over Z4p provided that there exists 

y E: Z(~) such that Y 1 and Y 2 are systems of representatives for the 

cosets of the 6th powers (mod p). 

Proof. Let Y be a quintuple satisfying the assumption. Reasoning like 

in the proof of Lemma 3.5 we deduce that there is a suitable c E: Z; 

for which the normalized quintuple X = cY is such that all the ~'s are 

systems of representatives for the cosets of 6th powers. Starting 

from X. consider the sets Ao, A1, ,." As defined like in the proof of 

Theorem 5.3 and let S = {w 6i I 0 ~ i < -t!-l. It is easily seen that <£> S 

, * 
IS the set of 6th powers (mod p) so that XiS = Z p for i = 0, 1, 2, 3. It 

follows that the family 

r = (s~ I S E S, ° ~ i ~ 5) 

is a I-rotational (4p,5, 1) difference family. The assertion follows. 0 

Theorem 5.6. Let p :: 31 (mod 60) be a good prime. There exists a 

I-rotational (4p+l,5,l)-RBIBD over Z4p provided that there exists 
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X E Z(;) such that Xo, X" X2 and X+ are systems of representatives for 

the cosets of 6th powers (mod p). 

Proof. Let f be the I-rotational (4p,5, 1) difference family obtainable 

as in the proof of Theorem 5.5 using the quintuple X. We have: 

U IT (A) = SX+ <£> = Z ~ because S<£ > is the group of 6th powers and 
AE'F 

X + is by assumption a system of representatives for the cosets of 

this group. Then, applying Lemma 1.3 the assertion follows. 0 

Applying the previous theorem we find a I-rotational (4p+ 1,5,1)­

RBIBD over Z4p for each good prime p = 60t+31 < 1.000. It suffices to 

take X as indicated in the following table. 

p = 31 

p = 211 

p = 271 

p = 571 

P = 631 

p = 691 

p = 751 

p = 991 

x = (3, 29, 20, 28, 11) 

X = (4, 32, 2, 124, 126) 

X = (6, 188, 36, 173, 62) 

X = (3, 243, 9, 551, 236) 

X = (3, 9, 27, 366, 54) 

X = (3, 81, 9, 591, 237) 

X = (3, 81, 9, 157, 136) 

X = (6, 305, 710, 591, 240). 

6. Some new (125,5,1) and (156,6,1) BIRD's 

The only previously known (125,5,1) and (156,6,1) BIBO's were 

those obtainable from the 3-dimensional affine and projective 

geometries over Z 5 [cf. 10]. 

Using the constructions seen in the previous sections it is possible to 

get new (125,5,1)-BIBOs. Also, having a new (l25,5,1)-RBIBD, we 
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immediately get a new (l56,6,1)-BIBD using the same argument that 

one uses in classical geometry for constructing PG(3,5) starting from 

AG(3,5). 

Theorem 6.1. No (125,5,1)-BIBD obtainable using Theorems 2.3, 

3.6, 3.8, 4.1, 5.5 and 5.6 is isomorphic to the BIBD of points and lines 

of AG(3,5). 

Proof. All the (125,5,1)-BIBD's obtainable using Theorems 2.3, 3.6, 

3.8, 4.1 admit Z ~ $ Z 31 as an automorphism group fixing one point, 

while the stabilizer of a point of AG(3,5), namely GL(3,5), does not 

admit Z~$ 231 as a subgroup. 

Now, let 2: be a (125,5,1)-BIBD obtainable using Theorems 5.5 or 5.6. 

The stabilizer of 00 in the full automorphism group of 2: has the 

following property. It admits a subgroup H of order 31 and an 

element £ of order 5 normalizing H. But the same property is not 

satisfied by GL(3,5). 0 

Let us see, concretely, some of these new (125,5,1)-BIBD's. 

a) Applying Theorem 2.3 using the 10tuple X = (1, 2, 4, 11, 16, 12, 9, 

13, 6, 23) we get a I-rotational (125,5,1)-RBIBD whose blocks can be 

obtained developing (mod 2~e 2 31 ) the fonowing blocks: 

Ao = {(0o, 1), (0o• 2), (00, 4), (10. 11), (0" 16)} 

A1 = {(0o• 5). (00. 10), (00. 20),00.24), (0" 18)} 

A2 = {(0o• 25), (00. 19), (01• 7), (10, 27), (0" 28)} 

A3 = {(0o• 12), (10. 9), (10. 13), (0" 6), (0" 23)} 

A4 = {(0o• 29), (10. 14), (10,3), (0" 30). (0" 22)} 

As = {(0o, 21), (10, 8), (10. 15), (01, 26), (0" 17)} 

A6 = {(0o• 0), (01,0), (10,0), (1"O),OO} 
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b) Applying Theorem 3.8 using £ = 2 as a primitive 5th root of unity 

(mod 31) and using the quintuple X = (3, 29, 20, 25, 26), we get a 

I-rotational (125,5,I)-RBIBD whose blocks can be obtained 

developing (mod 2~(9 2 31 ) the following blocks: 

Ao = {(0o, 1), (00, 2), (00, 4), (00, 8), (00, 16)} 

A1 = {(0o, 3), (00, 29), (01.20), (10, 25), (11, 26)} 

A2 = {(0o, 6), (00, 27), (Oh 9), (10. 19), (1" 21)} 

A3 = {(0o, 12), (00, 23), (0" 18), (10, 7), (11, II)} 

A4 = {(0o, 24), (00,15), (°1,5), (10,14). (1" 22)} 

As = {(0o, 17), (0o, 30), (0" 10), (lo, 28), (lh I3)} 

B = {(0o, 0), (Oh 0), (10, 0), (lh 0), 00 } 

c) Applying Theorem 5.6 using £ = 2 as a primitive 5th root of unity 

(mod 31) and using the quintuple X = (3, 29, 20, 28, 11) we get a 

I-rotational (125,5, I)-RBIB D whose blocks can be obtained 

developing (mod 24 (92 31 ) the following blocks: 

A o = {(O, 1), (0, 2), (0, 4), (0, 8), (0, I6)} 

A1 = {(O, 3), (0, 29), (1, 20), (2, 28), (3, 11)} 

A2 = {(O, 6), (0, 27), (1, 9), (2, 25), (3, 22)} 

A3 = {(O, 12), (0,23), (1, 18), (2, 19), (3, I3)} 

A4 = {(O, 24), (0,15), (1, 5), (2, 7), (3, 26)} 

As = {(O, 17), (0, 30), (1,10), (2,14), (3, 2I)} 

A6 = {(O, 0), (1, 0), (2, 0), (3, 0), 00 } 

Using the ring isomorphism '-II: (a, b) E 24 (9 231 -+ 32b-3Ia E 2 124 , we 

may identify the point-set of the above design with 2124 U {oo} and 

its blocks with all the translates (under 2 124 ) of the following blocks: 
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{32, 64, 4, 8, 16} 
{68, 120, 40, 56, 84} 

{24, 108, 36, 100, 88} 
{O, 31, 62, 93, oo} 

{96, 60, 113, 90, II} 
{12, 116, 80, 112, 44} 

{48, 92, 72, 76, 52} 

Each of the above RBIBD's gives rise to a new (l56,6,1)-BIBD 

admitting G $ 231 as an automorphism group (G = 2 ~ in cases a) and 

b), G = 24 in case c». It suffices to proceed as follows. Take a 31-set 

{ 00 0, 00 1 •...• 00 30 }. Using the cyclic difference set D = {I. 5, 11, 24, 25. 

27} in Z3b we get a new (156,6,1)-BIBD with point-set G$ 231 U {oo, 

00 o. 00 h"" 00 30} and blocks obtainable from the. 8 blocks: 

~ U {ooo} 0 ~ i ~ 6, 

developing them (mod G $ 2 31 ) undt?f the rules that 

00 + (g, h) = 00; ooi + (g, h) = OOi+h (mod 31) fOf any (g, h) E G$ 2 31 , 

Of course, it would be interesting to establish how many pairwise 

non-isomorphic (125,5,1) and (l56,6,1)-BIBD's are obtainable using 

the constructions given in this paper. 

In a future joint-work with F. Zuanni, the author will give 

constructions for I-rotational «k-l)q+l,k,l)-BIBD's (or RBIBD's) 

where q is a prime power equivalent to 1 mod k(k+l). This 

constructions generalize the constructions for Steiner 2-designs 

given in Sections 3 and 4. 
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