
New Extremal Ternary Self-Dual Codes 

Masaaki Harada * 

Department of Mathematics 
Okayama University 
Okayama 700, Japan 

Dedicated to Professor Hiroshi Kimura on His 60th Birthday 

Abstract 

Compared to binary self-dual codes, few methods are known to construct 
ternary self-dual codes. In this paper, a construction method for ternary 
self-dual codes is presented. Using this method, a number of new extremal 
ternary self-dual codes are obtained from weighing matrices. In addition, 
a classification is given for extremal ternary self-dual codes of length 40 
constructed from Hadamard matrices of order 20. 

1 Introduction 

A linear [n, k] code Cover GF(p) is a k-dimensional vector subspace of GF(p)n, 
where GF(p) is the Galois field with p elements, p prime. The elements of Care 
called codewords and the weight wt(x) of a codeword x is the number of its non-zero 
coordinates. The distance between codewords x and y is the weight wt(x - y). The 
minimum weight of C is defined by min{ wt(x) 10 #- x E C}. An [n, k, d] code is 
an [n, k] code with minimum weight d. A matrix whose rows generate the code C 
is called a generator matrix of C. We say that the matrix generates C. Two codes 
C and C f over G F(p) are equivalent if there exists an n by n monomial matrix P 
over GF(p) with C f = C . P = {xP I x E C}. The dual code C1- of C is defined 
as C1- = {x E GF(p)nl x . y = 0 for all y E C}. C is self-orthogonal if C ~ C1-, 
and self-dual if C = C1-. Codes over G F(3) are called ternary. A ternary self-dual 
[n, n/2, d] code exists if and only if n == 0 (mod 4), and the minimum weight d is 
bounded by d ~ 3[n/12] + 3, where [ ] denotes the Gauss symbol (Mallows and 
Sloane [17]). If d = 3[n/12] + 3, the code is called extremal. 

A weighing matrix W(n, k) of order n and weight k is an n by n (O,l,-l)-matrix 
such that W· W T = kIn, k ~ n, where In is the identity matrix of order nand W T 
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denotes the transpose of W. A weighing matrix W (n, n) is also called a Hadamard 
matrix. We say that two weighing matrices Wi and W2 of order n and weight k are 
equivalent if there exist monomial matrices of O's, 1 's and -1 's P and Q such that 
Wi =p·W2 ·Q· 

All ternary self-dual codes of length::; 20 have been classified in [5], [16] and 
[21]. It was shown in [13] that there are exactly two inequivalent extremal self-dual 
[24, 12,9] codes. Two families of self-dual codes, namely the extended quadratic 
residue codes and the Pless symmetry codes, are well known (cf. [16]). In these 
families, the first few codes are extremal ternary self-dual codes. For larger lengths, 
extremal ternary self-dual codes exist for lengths::; 48, 56, 60 and 64, and do not 
exist for lengths 72, 96, 120, 144, ... , and the existence of extremal codes of other 
lengths is undecided (cf. [6, Section 7]). Recently Huffman [11] has enumerated 
extremal self-dual codes of lengths 28, 32 and 36 with monomial automorphisms of 
prime order r 2:: 5 and length 40 with monomial automorphisms of prime order r > 5. 
It is the aim of this paper to construct a number of new extremal ternary self-dual 
codes from weighing matrices and Hadamard matrices. Table 1 contains information 
on the existence of known extremal ternary self-dual codes of length n ::; 60. In 
the table, the first, fourth and seventh columns denote the lengths n, the second, 
fifth and eighth columns give the number N of known inequivalent extremal codes 
of length n, and the third, sixth and ninth columns provide the references for these 
results. 

Table 1: Known Extremal Ternary Self-Dual Codes 

n N reference n N reference n N reference 
4 1 [16] 24 2 [13] 44 2::1 [5] 
8 1 [16] 28 2: 14 [11] 48 2::2 [1], [20] 
12 1 [16] 32 2: 239 [11] 52 unknown 
16 1 [5] 36 2:1 [11], [20] 56 2::1 [5] 
20 6 [21] 40 2:11 [2], [7], [11] 60 2::2 [1], [20] 

Compared to binary self-dual codes, few methods are known to construct ternary 
self-dual codes. In Section 2, construction methods for ternary self-dual codes are 
presented. One of these methods is used in Section 4 to construct a number of new 
extremal ternary self-dual codes from weighing matrices. In Section 3, a classification 
is given for extremal ternary self-dual codes of length 40 constructed from Hadamard 
matrices of order 20. 

Our notation and terminology follow from [4], [15] for coding theory, [8] for weigh­
ing matrices and [4], [12] for Hadamard matrices. We shall take the elements of G F(3) 
to be either {O, 1, 2} or {O, 1, -I}, using whichever form is more convenient. 
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2 Methods for Constructing Self-Dual Codes 

In this section, several methods for constructing self-dual codes over GF(p) (which 
includes ternary self-dual codes) are presented. 

Proposition 2.1 Let A be an n by n matrix over GF(p) with A . AT = kIn over 
G F (p) and let B be an n by n matrix over G F (p) where p is prime and k is a positive 
integer (0 < k < p). Let P be an n by n monomial matrix of 0 's, 1 's and -1 'so If 
the matrix [ A , B] generates a self-dual code over G F (p), then the following matrix 

G=[A,P·B], 

generates a self-dual [2n, n] code over GF(p). 

Proof. The matrix [ A , B ] generates a self-dual code over GF{p) if and only 
if B . BT = (p - k)In over GF(p). If B . BT = (p - k)In over GF(p) then 
(P . B) . (P . B)T = (p - k)In over GF(p). Thus G generates a self-dual code 
over GF(p). 0 

This method is trivial, but with this proposition and a generator matrix [ A , B] 
of a self-dual code with A =I In, many different generator matrices can be obtained 
which may generate inequivalent self-dual codes. Thus this method is a useful tool 
for constructing new codes. 

In Section 4, extremal ternary self-dual codes are constructed from weighing 
matrices using the following corollary, which is a special case of Proposition 2.1. 

Corollary 2.2 Let A be an n by n (0,1, -I)-matrix with A· AT = In over GF(3) 
and let B be an n by n (0,1, -I)-matrix with B·BT = 2In over GF(3). Let Sn be the 
symmetric group of degree n and let (J be an element of Sn where Sn acts on the set 
of all rows of the matrix B. Let BO" = [bO"-l(l{,"" bu-1(n{V be the matrix obtained 
from B by a permutation (J, where bi is the i-th row of B. Then the following matrix 

GO"=[A, B'!], 

generates a ternary self-dual code of length 2n. 

The matrices A and B in Corollary 2.2 are called type (I) and type (II) matrices, 
respectively, in Ozeki [19]. A method to construct ternary self-dual codes was given 
in [19] using these matrices. Note that the method given here is different from the 
one in [19]. 

Now a method for constructing ternary self-dual codes using Hadamard matrices 
is described. This method is well known (cf., e.g. [2], [5] and [7]). 

Proposition 2.3 Let Hn be a Hadamard matrix of ordern = 2 orn == 8 (mod 12). 
Then the following matrix 

G Hn = [ In , Hn ], 

generates a ternary self-dual code CHn of length 2n. 
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Beenker [2] and Dawson [7] constructed extremal ternary self-dual codes oflengths 
40 and 64 from certain Hadamard matrices using Proposition 2.3. In Section 3, a 
complete classification of extremal ternary self-dual [40,20,12] codes constructed 
from all Hadamard matrices of order 20 is given. Hadamard matrices which generate 
extremal ternary self-dual [64,32,18] codes are also discussed. 

3 Extremal Self-Dual Codes from Hadamard 
Matrices 

This section investigates extremal ternary self-dual codes constructed from Hadamard 
matrices. First the inequivalence of ternary self-dual codes derived from Hadamard 
matrices of order 20 is discussed. Although the following lemma is somewhat trivial, 
it is useful when classifying self-dual codes constructed from Hadamard matrices of 
fixed order. 

Lemma 3.1 Let H and H' be two equivalent Hadamard matrices of order n. Then 
the ternary self-dual codes constructed from H and H' by Proposition 2.3 are equiv­
alent. 

Proof. Since H is equivalent to H', H' = P . H . Q, where P and Q are n by n 
monomial matrices of O's, 1 's and -1 'so Thus it holds that 

[ In , H'] = [ In , p. H . Q ] = P [ In , H] R, 

where R = [P;l g 1 is a 2n by 2n monomial matrix. Here 0 denotes the n by n 

zero matrix. Therefore the two codes are equivalent. 0 

Hall [10] proved that there are exactly three equivalence classes Q, P and N of 
Hadamard matrices of order 20. Denote the Hadamard matrices in classes Q, P and 
N by H 2o ,Q, H 2o ,p and H 20 ,N respectively. From Lemma 3.1, it is enough to consider 
only three inequivalent matrices in order to check the inequivalence of self-dual codes 
from all Hadamard matrices of order 20. Note that any Hadamard matrix of order 
20 generates an extremal [40,20, 12] code by means of Proposition 2.3. 

Now we present a method to distinguish between codes. Let C be a ternary self­
dual [2n, n, d] code. Let M = (mij) be an Ad by 2n matrix whose rows are codewords 
of weight d in C where Ai denotes the number of codewords of weight i in C. For an 
integer k (1 ::; k ::; 2n), let n(jl,'" ,jk) be the number of r (1 ::; r ::; Ad) such that 
m r jl .•. mrjk =I- ° for 1 ::; jl < ... < jk ::; 2n. We consider a set 

S = {n(jl,'" ,jk)1 for any distinct k columns jll'" ,jk }. 

Let M(k) and m(k) be maximal and minimal numbers in S respectively. Since two 
equivalent codes have the same S, these numbers are invariant under the equivalence 
of codes. Since in this case the set of codewords of weight 12 forms a 3-design by 
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the Assmus and Mattson theorem, we examine M(4) and m(4) in order to show 
the inequivalence of the codes constructed from the three inequivalent Hadamard 
matrices. These numbers are given in Table 2, and they result in the following 
theorem. 

Table 2: Extremal Ternary [40,20,12] Codes from Hadamard Matrices 

code 
CH20,Q 

CH20,P 

CH20N 

M(4) (maximal number) m(4} (minimal number) 
144 72 
216 88 
312 72 

Theorem 3.2 Let H2o be a Hadamard matrix of order 20. Then the matrix 
[ 120 , H2o ] generates an extremal ternary self-dual [40,20,12] code. Moreover there 
are exactly three inequivalent self-dual codes derived from all Hadamard matrices of 
order 20. 

Next, consider the extremal ternary self-dual [64,32, 18] codes constructed from 
Hadamard matrices of order 32. Let P32 be the Paley type Hadamard matrix of order 
32 (see [4] for the definition). We remark that the Hadamard matrices constructed 
by Construction 2 in [7] are Paley type Hadamard matrices. The first extremal 
[64,32,18] code was found by Beenker [2], and later Dawson [7] found an extremal 
code from P32 using Proposition 2.3. It was announced in [14] that there are at 
least 66104 inequivalent Hadamard matrices of order 32. It follows from [14] that all 
known matrices except P32 and P32

T are equivalent to H2 0 HI6 or are of Kronecker 

[ ~ ~l . type K = K2 -K2 where KI and K2 are Hadamard matnces of order 16, or the 

transpose of K. It is known [9] that there are exactly five inequivalent Hadamard 
matrices of order 16. Any Hadamard matrix of order 16 has a submatrix consisting 
of four rows which is equivalent to the following matrix 

[ 

++++ ++++ ++++ ++++] 
+ + ++ + + ++ - - -- - --
++++ ---- ++++ ---- . 
++++ ---- ---- ++++ 

(1) 

Throughout this paper, we denote 1 and -1 by + and - respectively. Thus the 
codes constructed from the matrices in [14] (except P32 and P32

T
) contain codewords 

of weight 12. Therefore in order to construct a new extremal code from a Hadamard 
matrix of order 32, one must construct a Hadamard matrix which is inequivalent 
to P32 , H 2 0 H 16 , H4 0 Hs or Kronecker type K or their transposes. To date the 
existence of such a matrix is unknown. 

Now consider the codes constructed in [2] and [7]. The code Cp in [2] has a 
generator matrix of the form [ 1p+l , S] where S is a Hadamard matrix when p is 
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a prime of the form p = 12k - 5 (cf. [2]). As mentioned in [18], the two extremal 
[64,32,18] codes in [2] and [7] are equivalent. In general the transpose ST of S is 
equivalent to a Paley type Hadamard matrix, essentially since -1 is not a quadratic 
residue in this case. It follows from self-duality that the code Gp in [2] is equivalent 
to the code constructed from a Paley type Hadamard matrix when p is a prime of 
the form p = 12k - 5. Thus the codes GH20 ,Q and G19 in [2] are equivalent. 

Dawson [7] gave the following question: does a Paley Hadamard matrix of order 
n always generate a ternary self-dual code with minimum weight n/2 + 2 the con­
struction in Proposition 2.3 is used? Beenker [2] found that the minimum weight 
of G43 in [2] is 18 or 21. Moreover C43 and the code constructed from the Paley 
Hadamard matrix of order 44 are equivalent. Thus we have the following: 

Proposition 3.3 Using Proposition 2.3, Paley Hadamard matrices of order n do 
not always generate ternary self-dual codes with minimum weight n/2 + 2. 

4 New Extremal Self-Dual Codes 

In this section, a number of new extremal ternary self-dual codes are constructed 
from weighing matrices using Corollary 2.2. We also compare these new codes with 
known extremal codes. 

First we present the construction of some weighing matrices. Let G and D be 
circulant matrices and R be the back diagonal matrix (see [8] for the definition of 
the back diagonal matrix). A weighing matrix is said to be constructed from two 
circulant matrices G and D if it is of the form 

[ 
C D.R] 

D·R -C . 

Many weighing matrices of this type are given in [8]. 

Proposition 4.1 (Geramita and Seberry [8]) There exist weighing matrices of 
order 2n and weight k constructed from two circulant matrices for 

(1) n ~ 7, k E {0,1,2,4,5,8,10}; 

(2) n ~ 9, k E {0,1,2,4,5,8,10,16}; 

(3) n ~ 11, k E {0,1,2,4,5,8,10,13,16,20}. 

4.1 Extremal [28,14,9] Codes 

Let W14,4, W14 ,5 and W14,lO be the weighing matrices constructed from two circulant 
matrices with the following first rows: 

+ + 00000, + - 00000, 
+0 + 0000, + + -0000 and 

+0 + - - +0, +0 + + + -0, 
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respecti vely. 
Using Corollary 2.2, 16 extremal ternary self-dual codes of length 28 have been 

constructed from W14,4, W 14,5 and W14,10. Table 3 lists for each code the chosen 
matrices, A and B, and the permutation a in Corollary 2.2. 

Table 3: Extremal Ternary [28,14,9] Codes from Weighing Matrices 

code A B a 
C28,1 W 14,4 W14,5 (1,11,6)(2,10,5,14,9,4,13,8,3,12,7) 
C28,2 Wl4,4 W14,5 (1,2,10,4,12,6,14,8,9,3,11,5,13,7) 
C28,3 W 14,4 W14,5 (1,3,11,5,13,7)(2,10,4,12,6,14,8)(9) 
C 28,4 W14,4 W 14,5 (1,14,13,12,3,2)(4,11,10,9,8,7,6,5) 
C 28 ,5 W 14,4 W 14,5 (1,9,8,14,5,11,2,7,13,4,10)(3,6,12) 
C 28 ,6 W 14,4 W14,5 (1,3,2)( 4,8, 7, 6, 5)(9)(10) ... (14) 
C 28 ,7 W 14,4 Wl4,5 (1,14,4,9,5,10,8,13,3,7,12,2,6,11) 
C28,8 W 14,10 W 14,5 (1,7,13,5,11,3)(2,8,14,6,12,4,10)(9) 
C28,9 W14,10 Wl4,5 (1,12,9,6,3,14,11,8,2,13,10,7,4)(5) 

C28,10 W14,10 Wl4,5 (1,11,7,3,13,4,14,10,6,2,12,8,9,5) 
C28,11 W14,10 W14,5 (1,7,14,9)(2,6,13,5,12,4,11,3,10)(8) 
C 28,12 W 14,10 W 14,5 (1,8,7,6,5,4,3,2,14)(9)(10)(11)(12)(13) 
C28,13 W 14,10 W 14,5 (1,7,14,6,13,10,2,9)(3,5,12,4,11)(8) 
C28,14 W14,10 Wl4,5 (1,14,13,12,4,2,8,6,11,10,9,7,5,3) 
C28,15 W14,10 W 14,5 (1,11,6)(2,12,7,10,5,8,3,13,9,4,14) 
C28,16 Wl4,10 Wl4,5 (1,9,10,11,12,13,2)(3,14,8,7,6,5,4) 

Now we compare the known extremal codes with the codes given here. Huff­
man [11] constructed 14 and 5 inequivalent ternary [28,14,9] codes with monomial 
automorphisms of order r = 7 and 13, respectively. Denote the 14 codes with an au­
tomorphism of order 7 by C'28,1," ., C'28,14, and the 5 codes with an automorphism 
of order 13 by C"28,1, ... , C"28,5, according to the order in [11]. Here we use another 
equivalent invariant to show the inequivalence of some codes. Let di be the number 
of pairs of codewords with distance i among all minimum weight codewords. These 
numbers are invariant under the equivalence of ternary codes. Note that this method 
is essentially the same as the method for binary codes given in Tonchev [22]. For 
these codes, the values M(4), m(4), M(5), m(5) and di (i = 9, 12, 15, 18) are listed 
in Table 4. It follows from this table that at least 16 codes are inequivalent. 

Similarly, Table 5 lists the values M( 4), m( 4), M(5), m(5) and di (i = 9,12,15,18) 
for our codes constructed from weighing matrices. Table 5 implies that these 16 codes 
are new extremal codes. Tables 4 and 5 result in the following proposition. 

Proposition 4.2 There are at least 32 inequivalent extremal ternary self-dual codes 
of length 28. 
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Table 4: Huffman's Extremal Ternary [28, 14,9] Codes 

code M(4) m(4) M(5) m(5) d 9 d 12 d 15 d18 

C'28,1 24 2 10 0 105252 945504 1236312 96768 
C'28,2 24 0 6 0 99372 963144 1218672 102648 
C'28,3 24 4 10 0 103740 950040 1231776 98280 
C'28,4 24 0 10 0 103236 951552 1230264 98784 
C'28,5 24 0 10 0 103740 950040 1231776 98280 
C'28,6 24 0 10 0 103740 950040 1231776 98280 
C'28,7 24 0 12 0 103236 951552 1230264 98784 
C'28,8 24 0 10 0 103236 951552 1230264 98784 
C'28,9 20 0 8 0 108444 935928 1245888 93576 

C'28,10 24 0 10 0 103236 951552 1230264 98784 
C'28,11 24 0 10 0 103236 951552 1230264 98784 
C'28,12 20 0 10 0 104412 948024 1233792 97608 
C'28,13 24 0 10 0 104412 948024 1233792 97608 
C'28,14 16 0 6 0 99372 963144 1218672 102648 
C1/28,1 24 0 6 0 99372 963144 1218672 102648 
C1/28,2 24 0 6 0 99372 963144 1218672 102648 
C"28,3 16 0 6 0 99372 963144 1218672 102648 
C"28,4 24 0 10 0 103740 950040 1231776 98280 
C"28,5 24 0 8 0 103740 950040 1231776 98280 

Table 5: Extremal Ternary [28,14,9] Codes from Weighing Matrices 

code M(4) m(4) M(5) m(5) d 9 d 12 d I5 d I8 

C 28,1 24 0 12 0 104340 948240 1233576 97680 
C 28 ,2 24 0 10 0 104124 948888 1232928 97896 
C 28,3 24 0 10 0 104172 948744 1233072 97848 
C 28 ,4 24 0 10 0 104052 949104 1232712 97968 
C28,5 24 0 12 0 103836 949752 1232064 98184 
C 28,6 24 0 12 0 103524 950688 1231128 98496 
C28,7 24 0 12 0 104100 948960 1232856 97920 
C28,8 24 0 10 0 104388 948096 1233720 97632 
C 28 ,9 24 0 12 0 103956 949392 1232424 98064 

C 28 ,10 24 0 12 0 104244 948528 1233288 97776 
C 28,11 24 0 12 0 104676 947232 1234584 97344 
C 28 ,12 24 0 10 0 103812 949824 1231992 98208 
C 28 ,13 24 0 10 0 103908 949536 1232280 98112 
C 28 ,14 24 0 12 0 103764 949968 1231848 98256 
C 28 ,15 24 0 12 0 103668 950256 1231560 98352 
C 28,16 24 0 12 0 103620 950400 1231416 98400 
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4.2 Extremal [40,20,12] Codes 

At least three extremal ternary [40,20,12] codes have been found using Corollary 2.2. 
The matrices and the permutations for these codes, as described in Corollary 2.2, 
are listed in Table 6. Here W20 ,5, W20,s, W20 ,10 and W20,16 are the weighing matrices 
constructed from two circulant matrices whose first rows are 

+0 + 0000000, + + -0000000, 

+ + + - 000000, + + - + 000000, 

+0 + - - +0000, +0 + + + -0000 

and + + + - + + - + 00, + + + - - - + - 00, 

respectively. The maximal and minimal numbers, M (4) and m( 4), for the three 
codes are listed in Table 7. 

Table 6: Extremal Ternary [40,20, 12] Codes from Weighing Matrices 

code A B (J' 

C4O ,wl WZO,lO W ZO ,5 (1,10,9, ... ,3,2)(11)(12)···(20) 
C40 ,wz WZO,lO W ZO ,5 (1, ... ,10)(11,16)(12,17)(13,18)(14,19)(15,20) 
C4O ,w3 W ZO ,16 W ZO ,8 (1,12)(2,13)(3,14)(4,15)(5,16)(6,17)(7,18)(8,19)(9,20)(10,11) 

Table 7: Extremal Ternary [40,20,12] Codes from Weighing Matrices 

code 
C40,wl 

C40,w2 

C40,w3 

M(4) (maximal number) m(4) (minimal number) 
160 48 
160 74 
176 72 

Now we consider the inequivalence of these codes and the known extremal codes. 
Huffman [ll] showed that there are exactly four and eleven inequivalent ternary 
[40,20,12] codes with monomial automorphisms of order r = 13 and 19, respec­
tively. As mentioned in [ll], the equivalence or inequivalence of two extremal codes 
constructed from two different automorphism orders is still open. Thus the equiva­
lence or inequivalence of the six codes in Section 3 and this section, and the above 
15 codes, must be checked. 

First, denote the four codes with an automorphism of order 13 by C40,1, C40 ,2, C40,3 

and C40,4, and the II codes with an automorphism of order 19 by C40,5, ... , C40,15, 

according to the order in [ll]. The maximal and minimal numbers M(4) and m(4) 
for these codes are listed in Table 8. 

It follows from Table 8 and Theorem 2 in [11] that all codes except C40,3 and 
C40,13 are inequivalent. Since our computer search shows that the values d12 for the 
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Table 8: Huffman's Extremal Ternary [40,20,12] Codes 

code M( 4) (maximal) m(4) (minimal) code M(4) (maximal) m(4) (minimal) 
C4O ,1 152 74 C4O ,9 144 72 
C4O ,2 142 74 C4O ,10 156 76 
C4O ,3 148 72 C4O ,11 144 72 
C4O ,4 148 76 C4O ,12 148 68 
C40 ,5 140 72 C4O ,13 148 72 
C4O ,6 168 76 C4O ,14 144 72 
C4O ,7 144 78 C4O ,15 144 72 
C4O ,8 150 76 

two codes C40,3 and C40 ,13 are 2216968 and 2225584, these codes are inequivalent. 
Therefore we have the following proposition. 

Proposition 4.3 The 15 extremal ternary self-dual [40,20,12] codes with monomial 
automorphisms of order r > 5 in [11] are inequivalent. 

Now these 15 extremal codes are compared with the six codes constructed from 
weighing matrices and Hadamard matrices of order 20. The Hadamard matrix H20 ,Q 

has an automorphism of order 19 (cf. [10]). Since an element of order 19 induces 
an automorphism of order 19 in CH20 ,Q' it must have an automorphism of order 19. 
Hence this code must be equivalent to one of the 11 codes in [11]. 

Tables 2, 7 and 8 give the following proposition. 

Proposition 4.4 There are at least 20 inequivalent extremal ternary self-dual 
[40, 20, 12] codes. 

4.3 Extremal [44,22,12] Codes 

By Proposition 4.1, we can construct weighing matrices of order 22 and weights 4, 16 
and 20. The first rows of these matrices are the following: 

+ + 000000000, + - 000000000, 

+ + + - + + - + 000, + + + - - - + - 000 and 

+ - - + - + - - - + 0, + - - - - - - + + - 0, 

respectively. We denote these weighing matrices by W22 ,k with k = 4, 16 and 20. 
Similarly a weighing matrix denoted W22 ,17 can be constructed using the following 
first row: 

- + 0 + + + 000 + 0, + + - + + + - - - + -. 
Using Corollary 2.2, six extremal ternary [44,22,12] codes have been constructed 

from weighing matrices W22 ,4, W22,16 and W22,20. Table 9 lists for these codes the 
chosen matrices, A and B, and the permutation (J, in Corollary 2.2. Note that 
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Table 9: Extremal Ternary [44,22,12] Codes from Weighing Matrices 

code A B (J' 

C44,1 W22 ,4 W 22 ,20 (1,22)(2,3, ... ,20,21) 
C44 ,2 W22 ,4 W 22,20 (1,11,21,9,19, 7,17,5,15,3,13)(2,12,22,10,20,8,18,6,16,4,14) 
C44 ,3 W22 ,4 W 22,20 (1,14,5,18,9,22,2,15,6,19,10)(3,16, 7,20,11,13,4,17,8,21,12) 
C44 ,4 W22 ,4 W 22,20 (1,22,21, ... ,4,3,2) 
C44 ,5 W22,16 W 22 ,20 (1,13,3,15,5,17, 7,19,9,21,11,12,2,14,4,16,6,18,8,20,10,22) 
C44 ,6 W22,16 W 22 ,20 (1,11,10, ... ,4,3,2)(12,22,21, ... ,15,14,13) 

[ 122 , W22 ,17 ] and [ 122 ,W22 ,20 ) also generate extremal ternary self-dual codes of 
length 44. These codes are denoted by 0 44,7 and 0 44,8, respectively. 

For length 44, M(3) and m(3) were determined for each of the eight codes, and 
these numbers are listed in Table 10. It follows from Table 10 that there are at least 
eight inequivalent extremal [44,22,12] codes which can be constructed from weighing 
matrices of order 22. In addition, Conway, Pless and Sloane [5] have constructed an 
extremal [44,22,12] code from the Pless symmetry [48,24,15] code by subtracting 
the unique [4,2,3] code. 

Table 10: The Inequivalence of [44,22, 12] Codes 

code M(3) (maximal number) m(3) (minimal number) 
C 44,1 176 100 
C44,2 168 84 
C44,3 178 104 
C44,4 174 96 
C44,5 170 100 
C44,6 170 84 
C44,7 184 88 
C44,8 174 84 

4.4 Extremal Codes for Other Lengths 

Many inequivalent ternary [32,16,9] codes were constructed in [11]. Thus only one 
example is given here of an extremal ternary code of length 32 constructed from a 
weighing matrix using Corollary 2.2. Let W16 ,4 and W16 ,5 be the weighing matrices 
constructed from two circulant matrices with the following first rows: 

+ + 000000, 

+0 + 00000, 

+ - 000000 and 

+ + -00000, 

respectively. Let C32 be a self-dual code with generator matrix of the form 
[ W 16,4 , W 16,5(T ] where 0' = (1, 7,12)(2,6,11,16,5,10,15,4,9, 14,3,8,13). 0 32 is 
an extremal ternary self-dual code of length 32. 

Let W18,17 be the weighing matrix of order 18 and weight 17 constructed in [8] 
from two circulant matrices with first rows: 

+ - - + + + + - -, 0 - + - - - + -. 
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It can easily be checked that the matrix [ h8 , W18,17] generates an extremal ternary 
self-dual code C36 . Only one extremal ternary self-dual code of length 36 is known. 
This is the Pless symmetry code P36 of length 36 (cf. [20]). Let [ Iq+l , Sq] be the 
generator matrix of the Pless symmetry code of length 2 (q + 1). Since it follows from 
Theorem 2.1 in [20] that Sq . S/ = qIq+b Sq is a weighing matrix of order q + 1 
and weight q. It is known [3] that there is a unique weighing matrix of order 18 
and weight 17 up to equivalence. This implies that the two codes P36 and G36 are 
equivalent. 

Similarly, the matrix [ 130 , W30,29] generates an extremal ternary self-dual code. 
W30,29 as given in [8] can be constructed from two circulant matrices with first rows 

O++--+----+--++wd+-+----++----+-. 

Two inequivalent extremal [60,30, 18] codes are known. These are the Pless symme­
try code and the extended quadratic residue code (cf. [16]). The possible equivalence 
of these codes with the code given here has not been checked. 
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