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Abstract 
The aim of this paper is to examine various interesting results from 
the theory of general cub~c curves in projective planes of characteristic 
two. This leads to calculations involving nets of conics in the plane, 
invariants of the curves, syzygies, and Hessians. It is emphasized that 
classical methods, (that is those developed for geometries over fields of 
zero characteristic), do not always suffice for geometries of differing char
acteristics. For example, we give here a Hessian of a cubic curve that 
is a function of degree four in the coefficients of the curve for charac
teristic two, whereas the classical one has degree three. (The Hessian is 
used to calculate the points of inflection of a curve.) Particular attention 
is paid to the case of the planes PG(2, q), where q = 2h, for then the 
arithmetical and combinatorial properties of the curves come to the fore. 

1. Introduction 

Many problems in algebraic geometry are solved by reduction to special cases. For 
example, an inflection may be assumed to be a certain point, and this may imply 
that certain coefficients of a curve are zero. In this paper we emphasise "global" 
solutions to problems in the algebraic geometry of projective planes over fields of 
characteristic two. That is, many of the theorems and calculations here will be valid 
for all cubic curves, singular, non-singular, degenerate or non-degenerate. While it 
is of course harder to obtain results like this, the elegant simplicity and generality 
of the results obtained justify the labour involved. The fact that 1 + 1 = 0 in fields 
of characteristic two means that it is often easier to make complicated calculations 
than in other fields. Also, the case of cubic curves in projective planes is the smallest 
non-trivial example of algebraic curves in projective spaces and so it is the natural 
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starting point for a global approach. Syzygies between invariants are the basis 
for many global properties in algebraic geometry. For example, Euler's relation 
for a hypersurface f of order n, L.xiof /OXi = nf(x), is really a syzygy between 
the points x, the tangent hyperplanes, and any hypersurface f of order n. This 
syzygy is of degree 1 in the coefficients of f. However, there are syzygies of higher 
degree, each of which corresponds to a general geometric property holding for any 
hypersurface of order n. Of the many applications of the theory of algebraic curves 
that of coding theory is at present most fashionable; see [15] and [20]. 

Let us note a few technical points about this paper. First, the notation has 
been moulded to suit the special case of cubic curves of characteristic two. Also, 
many of the definitions and results of Chapter 2, and of some of those in Chapter 
3 are standard. We calculate specific formulae that relate various geometrical (ie. 
invariantative) properties of the curves. Theorem 4.7 (about the xyz term of cubic 
curves), is well-known: it is a special case of the so-called Hasse invariant; see 
[18],[29]. A generalization of that theorem to hypersurfaces of degree n + 1 in 
PG(n,q) is given in [14]. Still, it is a useful exercise for the reader to follow the 
elementary proof that we give, being also valid for all cubic curves of PG(2, q), q 
even. 

There are the syzygies of Theorem 3.10, which afford generalizations to curves 
(and also hypersurfaces) over any field. However the author does not know the 
formulae for these generalizations. Then there are the more intricate calculations 
of Chapter 4, which tell much about the properties of pencils and nets of conics in 
the plane. Sometimes the properties are the same for odd and even characteristics, 
but often they are different. 

In any case, the philosophical direction of the paper comes from various papers 
by Beniamino Segre - e.g. [25,26,27]. He was one of the first to point out that 
"esoteric" properties of "simple" algebraic curves and varieties, indeed of conics and 
quadrics, are of great use in combinatorics. However, using these properties involves 
an understanding of a strange mixture of classic~l and finite geometry. That is, one 
must understand when intuition fails. Indeed, for plane algebraic curves, it seems 
to fail when the order of the curve is at least the characteristic of the field. Thus, 
quadratic curves are anomalous in characteristic two, while cubics are anomalous 
in characteristics two and three. 

Thus is produced an imbroglio from the seemingly simple algebraic object that 
is the cubic curve. 

2 . Notation and Definitions 

The results we state or use without proof about points, lines and conics in planes 
of characteristic two may be obtained from the references [19], [25], or [26]. Many 
of the classical notions we use can be obtained from [28] while some of the more 
modern parts of the theory are contained in [18]. 

Notation 2.1. The following notations hold throughout this paper. 
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Z 
z+ 
K 
Kn 

1T = 1T(K) 

GF(q) 
PG(2, q) 
X 

M 

the ring of integers 
the set of positive integers 
a field of characteristic 2 
the vector space of 1 x n rows over K, where n E Z+ 
the projective plane over K corresponding to K3 
the Galois field of order q = 2h, where h E Z+ 
the same as 1T(GF(q)) 
a point of 1T; i.e. a non-zero vector (Xo, Xl, X2) of K3 
a line of 1T; i.e. a non-zero 3 x 1 column vector over K 
a general matrix M = (mij) over K 
a general automorphism of K 
the matrix (mj"i) obtained from M and (J 

the matrix MeT, where (J : k f---t k2 , for k E K 
(X1X2, XOX21 XOX1)t, where X = (Xo, Xl, X2) E K3 

Note that a point X and a line yare incident in 1T if xy = 0 as matrices. Also, be 
careful not to confuse the notation M2 with the product of M with itself. In this 
paper 2 always means the automorphism associated with squaring each element of 
a field of characteristic two. (It is possible that 2 is not an automorphism of K 1 but 
only a 1-1 mapping that preserves addition and mUltiplication. However for finite 
and many other fields of even characteristic squaring is certainly an automorphism. 
In any case we don't need this automorphism property very often.) Each mapping (J 

corresponds to a correlation of the plane to its dual, when it acts on the homogeneous 
(non-zero) row and column vectors in K3. (Notice that i and j are interchanged in 
the notation of MeT above.) Thus if x is a point, x 2 is a line, and vice-versa. The 
mapping X f---t X, for all points X E 1T, is a quadratic Cremona transformation from 
the plane to its dual. Also, the mapping x f---t xt is a polarity of 1T. 

Definition 2.2. A general conic of 7r is any set of points 

Q(u, v) := {x E 7r I ux2 + vi: = O}, 

where u and v are row vectors of K3, not both ~ero. The nucleus of the conic above 
is defined to be the point v, (if this is non-zero). 

Note. There is a natural correspondence between the conics of 1T and the points 
of PG(5, K). 

This is called the Veronese map: 

Q(u, v) f---t (u, v). 

The conic is non-singular, (which is the same as non-degenerate in this case), if and 
only if its nucleus does not belong to the conic. That is, if and only if 

uv2 + vi) =1= O. 

Note that vi) is equal to the product of the three coordinates of v, as 3 =1 in K. The 
singular conics are then mapped to the points of the cubic primal n : uv 2 + vi) = 0, 
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and the repeated line degenerate conics are mapped to the degenerate Veronese 
surface F of PG(5, K). It is the plane v = 0 contained in n. This situation 
contrasts with the classical case, where the Veronese surface does not degenerate. 

All the tangents of the conic pass through the nucleus, if it is defined. The 
fact is that Euler's relation for a general algebraic curve is identically zero if the 
characteristic of the field divides the order of the curve. This is the case for conics 
in characteristic two. 

Definition 2.3. A general cubic curve of 7r is any set of points 

C(A, a) := {x E 7r I xAX2 + axx = O}, 

where A is a 3 x 3 matrix over K and a E K, such that A and a are not both zero. 

Definition 2.4. The first polar with respect to C = C(A, a) of a point x of7r is the 
conic 

xC := Q(xA, ax), 

if xA and ax are not both zero. 

The tangents of C passing through a general point x of 7r are found by finding 
the intersection of the first polar of x with C, then joining these points to x. 

Definition 2.5. The second polar with respect to C = C(A, a) of a point x of 7r is 
the line 

Cx := Ax2 + ax, 

if this is non-zero. If x E C and Cx is non-zero, Cx is the tangent to C at x. Given 
that C is fixed, let C(x) := x(Cx). Then C(x) = 0 is the equation ofC. 

The classical formula for the second polar of a point x with respect to an algebraic 
curve f = 0 in a projective plane is given by 

(
8

fI8XO) 
Cx:= 8f 18xl . 

8fl8x2 

One can check that the two formulae for Cx above are the same. 

Definition 2.6. A pencil of conics is a linear l-dimensional set of conics of 1r. 

This corresponds to a line in the 5-dimensional space of all conics. A net of conics 
is a linear 2-dimensional set of conics of 7r. This corresponds to a plane in the 
5-dimensional space of all conics. 

Note 2.7. Let C = C(A, a) with a =1= O. Then 

N(C) := {xC I x E 7r} 

is a net of conics associated with the cubic curve C. 

Clearly the net is generated by the first polars of three points of any triangle of 
7r . Since the nucleus of xC is x, there is a unique conic of the net with any given 
nucleus point of the plane. Conversely, any such net is the set of first polar conics of 
a unique cubic curve C(A, a) with a =1= O. It is important to observe that the points 
of C are the points x for which xC is degenerate. 
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Note 2.8. A cubic curve C(A, 0), with IAI := det(A) i- 0 has an associated corre
lation from 7r to its dual given by x t-+ Cx. The cubic is the set of absolute points 
of this correlation. That is, it is the set of points which lie on their image-lines. 

Definition 2.9. A point x of a cubic curve C is called a singularity if there is no 
tangent defined at x. 

Since C(x) = x(Cx), every point x with Cx = 0 is a point of C and so is a 
singularity. Hence the set of singularities of C is given by 

S(C) := {x E 7r I Cx = O}. 

Also, if a =I- 0, every conic of the net N(C) passes through S(C). On the other hand, 
if a = 0, a cubic C(A, 0) is non-singular if and only if A is a non-singular matrix. 
The classical name for a cubic C(A, 0) with IAI i- 0 is equianharmonic. 

3. Properties of cubic curves in characteristic 2 

Here we investigate these curves in greater detail, and show how to construct the 
invariants of a general curve. The term 'invariant' is taken in its widest sense ... it is 
an algebraic construction depending on the coefficients of the curve, that commutes 
with any linear transformation (homography) of the plane. Syzygies, which give 
global properties, are any algebraic relations that hold between the invariants. 

Note 3.1. If a point is a singularity then every line through it is considered to be 
a tangent. 

Theorem 3.2. The set C' of tangent lines to C = C(A, a), classically the dual of 
a sextic curve, is in the case of even characteristic a dual cubic curve (or cubic 
envelope) C' := C(A', a2)t. Let A := (aij), (i,j 0,1,2). Then A' is the 3 x 3 
matrix over K given by 

a
01

) alO , where 

° 
(

all a22 + a12a21 alOa22 + a12a20 
adj(A)t := aOla22 + a02a21 aOOa22 + a02a20 

aOl a12 + a02all aOOa12 + a02alO 

alOa 21 + alla20 ) 
aOOa21 + aOla20 . 
aOOall + aOl alO 

Thus the coefficients of C' are homogeneous quadratic functions of those of C. 

Proof. This can be shown in various ways. One way would be to use the syzygies 
(algebraic identities) of Theorem 3.10. Another, more direct way would be to take 
a special case of a cubic curve and to show that the formula for C' holds in this 
case. Then one can use the transformation formula of Theorem 3.7 to convert to 
the general case. Example 5.2 gives some of the calculations for the general cubic 
with arbitrary j-invariant with a non-zero. When a = 0 things are easier because 
we are saying that the curve xAx2 = 0 has curve of tangents x(adjA)tx2 = 0, (in 
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dual coordinates). This follows because the tangent at a point x of C is Cx = Ax2 

so that one has to check that 

Once the formula for a 0 is known, it is only necessary to calculate the coefficient 
of a in AI. We leave that as an exercise. 

Definition 3.3. A point of inflection of a cubic curve is a point of the curve such 
that the tangent at that point meets the curve algebraically in a triple intersection. 

Definition 3.4. A" is the matrix of the cubic curve C" := (C /)'. Thus C" = 
C(A", a4 ) is the set of 'tangent points' of the tangent envelope ofC. We can continue 
this process forever, starting with C(O) := C. Thus, if m is an odd positive integer, 
c(m) = C(A (m), a2m )t is defined to be the tangent envelope of c(m-l), while if m is 
an even positive integer, c(m) =- C(A (m), a2m

) is defined to be the set of 'tangent 
points' of the cubic envelope c(m-l). 

Theorem 3.5. If a i- 0, the points of inflection of a cubic curve C are those points 
ofC which are not singularities and are also on the cubic curve C". Naturally, C and 
C" must be independent. Thus we must have the condition that (A", a4 } i- k(A, a); 
i.e. A" i- a3 A. We shall see that this is satisfied if C is non-singular. 

Proof. C" is an invariant of C and since it is a cubic it intersects C in 3 x 3 = 9 
points (Bezout's theorem), which must be invariant points of C. These have to 
be the 9 points of inflection. (This argument is for the 'general case', but it also 
works for special cases if we make the assumption about singularities and about the 
independence of C and C".) 

Note that in the classical (not characteristic two) case, the points of inflection 
are found by using the Hessian cubic curve. The Hessian, for a general plane curve 
f, has equation 

Although the classical equations are of no use here, because the usual Hessian 
vanishes for characteristic two, we can still call the curve C" the Hessian of C. 
Also, the coefficients for C" are homogeneous quartics in those of C, whereas in the 
classical case the coefficients of the Hessian are cubics in those of the original curve. 
Later (after Theorem 3.13) we shall find a Hessian Q, which is a linear combination 
of C and C", that is a cubic in the coefficients of C. The Hessian C" does not work 
when a 0 because C and C" are dependent in this case. However, Theorem 3.14 
solves this. 

Definition 3.6. The syzygetic pencil of a cubic curve is defined to be the pencil 
(or l-dimensional space) of cubics generated by the cubic and its Hessian curve. 
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Equivalently, it is the pencil of cubic curves passing through the set of inflections 
of a fixed cubic curve. Note that this pencil is an invariant of the curve. 

It is useful to know the effect of a coordinate transformation on the equations of 
a cubic curve, and this is solved by the following. 

Theorem 3.1. Let C = C(A, a), and let y = xB be a general point of C, where 
IBI =I=- 0, and B is 3 x 3 over K. Let bo, bI, and b2 be the 3 rows of B. Then x 
belongs to the cubic C((biCb j ) ,alB!), where IBI := det(B) and 

Proof. In the formula above, biCbj means bi(Cbj ). Now y satisfies 

yAy2 + ayfj:::;:: 0 

~ xBA(xB)2 + axBxB = 0 

~ xBAB2x 2 + axBxB = 0 

~ xBAB2x 2 + ax (bij ) x2 + alBlxx = 0 

~ x (biCbj ) x2 + alBlxx = O. 

Note that by choosing the three "base points" bi optimally it is possible to 
simplify the equations of any given cubic. 

Definition 3.8. 

(1) An invariant of a general cubic curve is a rational function of the ten coor
dinates of the curve that permutes with any homographic transformation 
of the type considered in the previous theorem. 

(2) A numerical invariant is an invariant function from the ten coordinates to 
KU{oo}. 

Theorem 3.9. The numerical invariants are the rational functions of IJ.ja 12 , where 

Note that IJ. is of degree 12 in C. The "classical" j-invariant is just a12 jIJ.. 

Proof. It is well known that every numerical invariant is a rational function of j, 
so it is only necessary to verify that j = a12 j IJ. for a special case. This is done in 
Example 5.2. Note that IJ. must be an invariant as IJ. = 0 is the condition that the 
cubic with a = 0 of the syzygetic pencil of C is degenerate. Also, IJ. is a homogeneous 
function of degree 12 in the coefficients of C and so IJ.ja 12 is a numerical invariant. 
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Theorem 3.10. The following are syzygies of cubic curves in 1r. ~[D] denotes the 
~ invariant of any cubic curve D; ~ denotes ~[C]; D(x) denotes the value ofD at 
a general point X; for C', C", ... see Theorem 3.2 and Definition 3.4. 

(1) C'(Cx) = C(x).C"(x). 
(The equation is of degree five in C and of degree six in x.) 

(2) C'(a3Cx + C"x) = ~C(X)2. 
(The equation is of degree fourteen in C and of degree six in x.) 

(3) C'((e+1)a3Cx+eC"x) = a9C(x)C"(x)+ea6CIf(x)(a3C(x)+CIf(x))+e2a3 f(x) 
+e3 ~C(x)2, Ve E K U {oo}. 
(This is also of degree fourteen in C and degree six in x.) 

(4) (eC + fC")' = e2C' + f 2C(3), Ve, f E K. 
(This is of degree eight in C.) 

(5) (a3~)2mC(m)(x) + (~+ a12 )2m c(m+2)(x) = c(m+4) (X), Vm ~ O. 
(This is of degree 2m+4 in C and of degree three in x.) 

(6) (a3C + C")" ~(a3C + CIf). 
(This is of degree sixteen in C.) 

(7) ~[a3eC + (e + l)C"] = ~(~ + a12e + ~e4)3, Ve E K. 
(This equation is of degree 48 in C.) 

Proof. These are algebraic identities which can be verified by a program such as 
MAPLE. Another approach is to verify them for a special case, such as in Example 
5.2, and then to use the fact that they are invariant under linear transformation. 
We leave this to the reader except for the calculation of (5), (6) and (7) ... the 
latter is probably out of reach for most computers at the present time. 

The easiest is probably (6), which deals with the equianharmonic member of the 
syzygetic pencil of C. This member has equation XEX2 = 0, where E = a3 A + A". 
Its envelope of tangents has matrix adj(EY, and so E' = adj(E)t. Furthermore, 
E" adj(adj(E)t)t = det(E)E. Since ~ = det(E) we obtain the result. 

Next, consider syzygy (6) and assume syzygy (4). Then we obtain a12C" +C(4) = 
Ll(a3C +C") which gives C(4) = ~a3C + (a 12 + Ll)C", This is syzygy (5) in the case 
m = O. The cases m > 1 are obtained by applying (4) to the case m = O. 

Now we prove syzygy (7). Consider a general cubic C and assume that a = 1, 
which is no restriction by homegeneity. By syzygy (4) we see that 

(eC + (e + l)C")' = e2C' + (e2 + 1)C(3), and so 

(eC + (e + l)C")" = (e2C' + (e2 + 1)C(3»)' = e4C" + (e4 + 1)C(4) 

= e4C" + (e4 + l)(~C + (Ll + l)C"), by syzygy (5). 

Thus 

(eC + (e + l)CIf
) + (eC + (e + l)C If

)" = (e + Ll(e4 + l))(C + C"), 

N ow this latter cubic is the equianharmonic member of the syzygetic pencil of 
eC + (e + 1 )C

If 
and so ~ [eC + (e + 1 )C"] is the determinant of the matrix of (e + 

~(e4 + l))(C + C"), which is 

(e + ~(e4 + 1))3Ll[C] (e + Ll(e4 + 1))3~. 
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When we introduce the appropriate powers of a for homogeneity in the coefficients 
of C, we obtain Theorem 3.10(7). 

Notes. Let ~ =1= 0 and let I be the correlation 

x I-t (a3C + C")x = (a3 A + A")x2
. 

(1) A point x E C or C" if and only if its second polar Cx E C'. Thus the 
pre-image of C' under the second polar map is C U C". 

(2) A point x E C {=} x'Y E C'. Thus C' is isomorphic to the dual ofC, and 
C" is isomorphic by a collineation (but not in general a homography) to C. 

(3) This equation tells us how a certain pencil of lines defined from the syzygetic 
pencil is incident with C'. The case e = 0 gives syzygy (1) while e = 00 

gives syzygy (2). The function f is an invariant of C for which we do not 
have a simple form. If we suppose that C(x) or C"(x) = 0 we see that there 
are at most two values for e that make the equation zero. Hence it is clear 
that Cx n C" x is a point of C" for all points x E C U C" . 

(4) It follows that the tangent envelope of any member of the syzygetic pencil 
is in a dual syzygetic pencil, and vice-versa. 

(5) a3 AC(x) + (A + a12 )C"(x) = C(4), and any even power ofC is in the same 
syzygetic pencil. 

(6) Any even power of the equianharmonic member of the pencil is equal to 
itself 

(7) The ~-invariant of any member of the syzygetic pencil is given by this 
formula. In particular the four Maclaurin triangles of the pencil can be 
found from the solutions to the quartic ~ + a12e + Ae4 = 0, and these 
are the only singular cubics in the pencil. The twelve lines of these four 
triangles are the lines of the AG(2, 3) that forms the configuration of the 
points of inflection. In this configuration each triangle is a parallel class, 
and the twelve vertices of the triangles are the complement of the AG(2, 3) 
in a subplane PG(2, 4) in the algebraic closure of'Tr; see also Theorem 3.13 
below. 

Theorem 3.11. The number of singularities n = n(C) ofa cubic curve C := C(A, a) 
with a =1= 0 in 7r := 'Tr(K) , where K is the algebraic closure of K, may be calculated 
from the formula: 

n = 3 - rank(a3 A + A"). 

Proof. Since the curve of tangents C' is a cubic envelope, we see that there should 
be at most 3 singularities on a cubic curve. Using the fact that rank(a3 A + A") 
is an invariant it is clear that we only have to look at special cases to prove the 
theorem. These cases are as follows. 

(1) C non-singular: e.g. xg + x~ + x~ + aXOXIX2 = 0; 
(2) C irreducible, 1 singularity: e.g. xr + x~ + XOXIX2 = 0; 
(3) C splits into line and irreducible conic: e.g. xg + XOXIX2 = 0; 
(4) C splits into a triangle of lines: e.g. XOXIX2 = O. 
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Every cubic with a ::f. 0 may be transformed by a homography of IT into one of these 
forms; see e.g. [19]. One only needs to check now that the rank of a3 A + A" in (i) 
above is 4 - i, i = 1,2,3,4. The singularity of (2) is (1,0,0); the two singularities 
of (3) are the intersections of the line and the conic; and the three singularities of 
the triangle (4) are the vertices of the triangle . It is interesting that if C is the case 
(2) above, then C' is the case (3), and CIf is case (4). Thus, given any singular cubic 
(with a ::f. 0), we always reach a triangle by successive application of the tangent 
curve mapping. 

Corollary 3.12. A cubic curve C(A, a) is non-singular ~ ~ = la3 A + Alii ::f. O. 

Theorem 3.13. IfC is a non-singular cubic, then the set of inflections CnC" ofC is 
a set of 9 points in the plane IT. The configuration of these 9 points forms an afline 
plane AG(2, 3) of order 3, embedded in a subplane PG(2, 4) of IT. The four parallel 
classes of lines of the AG(2, 3) are triangles of IT and these are the four degenerate 
cubics of the syzygetic pencil through the points of inflection. The nine inflections 
may also be found as the subgroup of order nine in the abelian group of the cubic 
(over IT). This subgroup is isomorphic to Z3 x Z3. Also, there is a unique syzygetic 
pencil corresponding to every non-singular cubic with a = 0, and vice-versa. 

Proof. The configuration formed by the points of inflection is AG(2, 3); see [18], 
[19]. The new part of this theorem is the fact about the points of inflection being 
contained in PG(2, 4). However, this is trivial in the case of characteristic 2, since 
any AG(2, 3) configuration is contained in a subplane of order 4 in this case. (One 
can also check it for special cases and use the property of invariance of inflection 
points; see Example 5.1.) 

Although we have found a Hessian C" that is of fourth degree in C it is still 
possible to find one of degree 3. This can be done as follows. Let C = C(A, a) as 
usual. Let Q := C((A" + IAIA)/a,a3 + IAI). Then Q is in the syzygetic pencil of C 
since aQ(x) IAIC(x) + C"(x). Suppose we expand A" as a quartic in a. Then the 
constant term is fAIA so that a does divide A" + IAIA. Thus 9 is a cubic in C, which 
we could take for a Hessian for C. However it is not clear that Q is an invariant of 
C. Any cubic curve of the form Q + pC, where p is a quadratic polynomial in the 10 
coefficients of C could also be taken as a Hessian for C. In [8]' Dickson investigated 
cubic curves over GF(2) and also found a Hessian, which he called 1-£. We leave it 
to the reader to check that 1-£ = (aOl a02 + alOa12 + a20a2dC + Q. He obtained his 1l 
by a direct calculation of a line intersecting C triply. So this is a double check of our 
calculations, and of his. He actually stated that 1l was an invariant (or covariant) 
of C, although his calculations only appear to prove that the syzygetic pencil formed 
by C and 1-£ is an invariant. 

Theorem 3.14. Let C = C(A,O), (a = 0), where IAI ::f. 0, so that C is a general 
non-singular equianharmonic plane cubic curve. Then the syzygetic pencil of C is 
generated by C and Q := C(ABA, IA!), where 

B = (a~2 a~2 ~~~) 
aOI alO 0 
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Proof. We just put a = 0 in the formula Q := C((A" + IAIA)/a, a3 + IAI). Then we 
find that ABA is the coefficient of a in A" + IAIA. 

Note that B is also related to the general formula for C' , for if V = C (A, a), 
then V' C(A', a2 )t, where A' = adj(A)t + aBt. Also, A adj(A) = IAII, so that 
IAIC(A,O) = C(A adj(A)A,O). Thus a general member of the syzygetic pencil of 
C(A,O) is given by 

IAIC(A,O) + aC(ABA, IAI) = C(A[adj(A) + aB]A, alAI). 

We see that another Hessian for C(A, 0) could be given by 

C(AA't A, alAI). 

4. Arithmetic Results 

In this section we investigate the case of cubics in the finite projective planes over the 
Galois fields GF(q), where q = 2h. These are the only finite fields of characteristic 
two. Let 7r = PG(2, q), with q 2h, hE Z+, from now on. 

From the general theory of the preceding chapter it is clear that the investigation 
can be split into two major cases: a = 0 ;and a :::/= O. However the case a :::/= 0 is more 
interesting because of its association with nets of conics, so we shall look at that 
case in far greater detail. 

Note 4.1. The theory of cubics with a :::/= 0 is equivalent to that of nets of conics 
of 7r such that every point is the nucleus of a unique conic of the net. See Note 2.7. 

We now give a detailed analysis of these kinds of nets. 

Theorem 4.2. Here we list the various kinds of conics. There are up to homogra
phies four kinds of conics Q( u, v) of the plane 7r. 

(1) uv2 + vv :::/= 0 : the non-degenerate conic has q + 1 points no three collinear. 
There is a unique point not on the conic, called the nucleus of the conic, 
such that the q + 1 lines through the nucleus are the tangents to the conic. 

(2) uv2 + vv = 0, v :::/= 0 : the degenerate conic has two real lines intersecting in 
v. We call this type of conic a line-pair. It has 2q + 1 points. 

(3) uv2 + vv = 0, v :::/= 0 : the degenerate conic has two imaginary conjugate 
lines rand rq intersecting in v. We call this type of conic an imaginary 
line-pair. It has just the single real point v. 

( 4) v = 0 : the degenerate conic is made up of a line of 7r repeated twice. This 
is called a repeated line-pair. Since there is no well-defined nucleus to such 
a conic it does not appear in the net of a cubic curve C (A, a) with a :::/= O. 

Theorem 4.3. In Tables 1 and 2 we give the classification of pencils of conics in 
the plane 7r. 

There are two main cases: those containing at least one non-degenerate conic 
and those containing only degenerate conics. In the first case it turns out that the 
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pencils are completely specified by the type of quartic polynomial that is given by 
the intersection of the quadratic curves. In Table 1 below, the column headed by 
a gives the number of real points of intersection of the conics of the pencil. Note 
that we use the word 'real' to denote actual algebraic objects that occur over the 
field, and not over some algebraic extension of the field. 

Let iI, jl, kl, and ml denote general different linear polynomials over GF(q). 
Let i2 and j2 denote a general independent irreducible quadratic polynomials over 
GF(q). Let i3 denote a general irreducible cubic polynomial over GF(q) and i4 a 
general irreducible quartic polynomial over GF(q). 

In Table 1, y denotes the number of line-pairs, z denotes the number of imaginary 
line-pairs, and w denotes the number of repeated lines in the pencil. The last 
column gives the number of non-degenerate conics in the plane intersecting a fixed 
non-degenerate conic in the given intersection type. Thus the sum of the numbers 
in the final column is one less than the number of non-degenerate conics in the plane 

it is q5 - q2 - 1. This table .can be found in the author's Ph.D thesis, and is 
valid also for odd q; see [11]. It shows that such a pencil is determined by the type 
of quartic invariant given by the four (possibly imaginary) points of intersection of 
the conics. The pencils (h') and (h") are the only pencils where the numbers of 
degenerate conics in the pencil do not precisely determine the type. 

TABLE 1. Pencils containing non-degenerate conics 

type a inter section y z w fixed conic 
(a) 0 i4 1 2 0 (q + l)q(q - 1)(q - 2)(q - 3)/8 
(b) 0 i2.i2 0 1 1 q(q - 1)(q- 2)/2 
(c) 0 i2.j2 0 1 0 (q + l)q2(q - 2)2/4 
(d) 1 il.il.i2 1 1 0 (q + l)q(q - 1)(q - 2)/2 
(e) 1 i1.il.i1.il 0 0 1 (q + l)(q - 1) 
(I) 1 il.i3 0 0 0 (q + 1)2q2(q - 1)/3 
(g) 2 i1.i1.j1.jl 1 0 1 (q + l)q(q - 2)/2 
(h') 2 i1.i1.i1.jl 1 0 0 (q + l)q(q - 1) 
(hlf) 2 il.jl.i2 1 0 0 (q + l)q2(q - I? /4 
( i) 3 i1.il.jl.k1 2 0 0 (q + l)q(q - 1)(q 2)/2 
(j) 4 i1.jl.kl.ml 3 0 0 (q + l)q(q - l)(q - 2)(q - 3)/24 

There are four types of pencil containing only degenerate conics given by the 
following Table 2. 

TABLE 2. Pencils containing only degenerate conics 

type a y z w 
(1) 1 0 0 q+1 
(2) q+2 q+l 0 0 
(3) q+l q 0 1 
(4) 1 q/2 q/2 1 
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Note. We omit the proofs for the above Tables 1 and 2 as they require many messy 
calculations. Table 2 is not valid for q odd, as can be seen from the type (4) pencils. 
The four normal forms for the pencils of type (1), (2), (3) and (4) respectively are: 

(1) x5 + ).xi = 0; 
(2) XOXl + ).XOX2 = 0; 
(3) x5 + ).XOX2 = 0; 
(4) x5 + ).Xl(XO + Xl) = O. 

See [2] for further information about quadric pencils. 

Lemma 4.4. We consider now only those pencils that contain no repeated line
pairs, for repeated line-pairs do not occur in a net N(C) of a cubic curve. Let 
such a pencil contain X non-degenerate conics, y line-pairs, and z imaginary line
pairs. Suppose the conics of the pencil have a common points. Then the following 
equations hold. 

(1) x+y+z=q+1 
(2) x + 2y = q + a 
(3) a = y - z + 1 

Proof. The number of conics in a pencil is q+ 1, so (1) holds. Since a non-degenerate 
conic contains q + 1 points, a line-pair 2q + 1 points, and an imaginary line-pair 1 
point, counting point-conic incidences gives 

(q + l)a + q2 + q + 1 - a = x( q + 1) + y( 2q + 1) + z. 

Subtracting equation (1) from both sides and dividing by q gives equation (2), while 
(3) is obtained by subtracting (1) from (2). 

From now on let n = n(C) = IS(C)I be the number of real singularities of a 
general cubic curve C with a -=/= 0, and let y(C) and z(C) be the number of real and 
imaginary line-pairs respectively in the net N(C). 

Theorem 4.5. The number of points on a cubic curve C = C(A, a) with a -=/= 0 is 
given by 

ICI = y(C) + z(C) = qn + 2z(C). 

Proof. First, a point p is in C if and only if the conic pC is degenerate. Thus we 
have the equation 

ICI = y(C) + z(C). 

Let r be a general line of 7r. The points on r are the nuclei of a pencil of conics of 
N(C) given by Pr := {xC I x E r}. Suppose there are Xn Yn and Zr conics of type 
non-degenerate, line-pair, and imaginary line-pair, respectively in Pro Consider a 
general point g of 7r. Let meg) be the size of the set 

{(u,vC) I u,v E 7r,U E gC,u E vC,v -=/= g}. 
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Since a point u of 7r has q2 + q + 1 or q + 1 conics of N (C) through it depending on 
whether U E S(C) or not, then 

m(g) = n(q2 + q) + (lgCI- n)q = q2n + qlgCI. 

Also, each conic vC =f. gC is in a unique pencil Pr , where r is the line joining 9 and 
v. Hence 

m(g) = q L O!r q2n + qlgCI, 
ron 9 

where O!r is the number of points common to every conic of Pr . Thus, dividing by 
q and using Lemma 4.4(3) we obtain 

ron 9 

ron 9 

where Yr and Zr are the numbers of real and imaginary line-pairs in the pencil Pro 
Then 

9 t/. C =} IgCI = q + 1 

=} L (Yr - Zr) = qn 
ron 9 

ron 9 ron 9 

=} ICI = qn + 2z(C). 

One can also check that if gC is a real or imaginary line-pair we still get the same 
formula for IC I. 

N ext we consider the properties of nets of conics such that every point of the 
plane is the nucleus of a unique conic of the net. We have seen that this study is 
equivalent to that of the cubic curves in the plane which have a =f. O. The set of 
points of the cubic corresponds to those points of the plane for which the conic with 
that nucleus is degenerate. If the number of degenerate conics of the net of the 
line-pair type is y and the number of imaginary line-pair type is Z then the number 
of points on the corresponding cubic is clearly Y + Z. The possible types of pencils 
of conics contained in the net are given by the pencils with no repeated lines in 
Tables 1 and 2 above. These are: (a), (c), (d), (1), (h'), (hlf), (i), (j) and (2). The 
net contains a pencil of type (2) if and only if the cubic curve contains a line and is 
therefore degenerate. So we consider for the moment only those nets containing no 
pencils of type (2). 
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Theorem 4.6. Suppose that C is non-singular and that it corresponds to a net 
N(C) of conics. Let the number of pencils of the net of type (a) be a, the number 
of type (b) be b, etc. Also let y = y(C). (This is equal to z(C) since n = 0, by 
Theorem 4.5.) Then the following equations are satisfied: 

a = (~), 
c = y(q + 1 - y), 

d= y, 

f = q2 + q + 1 + (4y2 - 6qy - 6y + 2h') /3, 

hI! = y(q _ y), 

i = y - h', 

j = (y(y - 3) + 2h' )/6. 

Proof. We refer closely to Table 1 of pencils containing non-degenerate conics above. 
Note that the set of points p orc such that pC is an imaginary line-pair, is a z-arc 
- it is a set of z = y(C) points such that no three are collinear. We can see this 
from the z-column in Table 1, because there are entries of only 0, 1, or 2 there. Call 
any point of this z-arc a z-point and the remaining y points on C y-points. 

Then we see that any chord of the z-arc is a line l corresponding to the pencil 
PE of type (a). Hence a = (~). 

Next, any line corresponding to a pencil of type (d), is the tangent to C at a 
z-point. Thus d = y. 

Then only remaining lines that intersect the z-arc are the lines of type ( c), which 
intersect in just one point. Since there are y - 1 chords, and a unique tangent to C 
through each of these points, there remain q + 1 - y lines of type ( c) through each 
z-point. Thus c = y(q + 1 - y). 

h' is clearly the number of inflections on C, because a line of this type intersects 
C triply. The remaining tangents at y-points are lines of type (i), so that we obtain 
the equation i = y - h'. 

To obtain the value of j we count the number of unordered pairs of points of 
type y on lines of 7r. Thus 

(~) =3j+i =} j= [(y2- y)/2-y+h']/3 

which gives the equation for j. 
To calculate hI! we count the number of flags of points of type y on lines of 7r. 

Thus 

yq + y = a + d + h' + hlf + 2i + 3j 

=* hI! = (yq + y) _ (y2 _ y)/2 - y - h' - 2(y - h') - (y2 - 3y + 2h')/2 

which gives the equation for h". 
Finally, the total number of lines of 7r is q2 + q + 1 = a + c + d + f + h' + hlf + i + j . 

From this we obtain the formula for f. 
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Theorem 4.7. The number of points on a C (A, a) of 7r is odd if a = 0, or even if 
a =1= O. Thus the parity of the number of points is determined by having an XOXIX2 

term or not. 

Proof. Every plane cubic curve C(A, a) belongs to one of the following cases: 

(1) Degenerate 
We can list all the degenerate cubics and check directly that the theorem 

holds. Note that there is really no need to list those degenerate cubics with 
a =1= 0, since they are covered by case (3) below. 

(2) C (A, 0) non-singular 
C(A, 0) is the set of absolute points of the correlation (or duality) x H 

Ax2. From the paper by Ball [1, Theorem 2.1] it follows that every 
correlation of 7r has an odd number of absolute points, since 2 divides the 
order q of 7r. 

(3) C(A, a), a =1= 0 
In this case Theorem 4.5 shows that the cubic has an even number of 

points, since q is even. 

Note that there is no case with C(A, 0) singular and non-degenerate, since 

C(A,O) singular ===;. IAI 0 

===;. Ax2 = 0 for some point x E 7r 

===;. the line Ax2 ~ C. 

Observation 4.8. It was known by L.E. Dickson that the only cubic curves with 
no real points in PG(2, q), (q even or odd), are those that are made up of three 
imaginary lines of a triangle, that are conjugate over the cubic extension ofGF(q). 
In our case of q even, we see that such a cubic has a =1= 0 (as it has an even number 
of points). Also, we substitute y = h' = 0 in the equations of Theorem 4.6 to see 
that every line of PG(2, q) is the set of nuclei of a pencil of conics of type (f). An 
alternative is to note that pencils of type (j) always correspond to external lines to 
the cubic curve. The quadratic mapping x HeX is in this case a bijective Cremona 
transformation from the points to the lines of PG(2, q). Also, every conic of the net 
of conics of the cubic is non-singular. Every net of conics with this property comes 
from such a cubic with no real points. 

5. Examples 

Example 5.1. The non-conic oval of PG(2,16) 

Lunelli and Sce discovered by computer that there is an oval (or I8-arc) of 
PG(2,I6), that does not contain a conic. There are only two types of I8-arcs 
in PG(2, 16): the conic plus nucleus, and this unusual oval; see [16] and [22]. Here 
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we shall show that it can be given very simply by two cubic curves in a syzygetic 
pencil. See [12], [13] and [24] for the theory of ovals in PG(2, q). 

Consider the cubic C(I,8). Then its tangent curve C' = C(I, 82 )t, while C" 
C(I,84 ). Thus ~(C) = det(83 + 1)1 = (83 + 1)3. C is non-singular if ~ =f=. 0 and so 
we assume that 

8 E GF(16) \ GF(4). 

Certainly C and C" are two distinct non-singular cubics. It is easy to check that the 
set of inflection points on both curves is just the curve C n C" = C(I, 0), which is 
contained in the sub plane PG(2, 4), and that there is the full set of nine inflections 
forming the configuration AG(2, 3). Both C and C" have 18 points in PG(2, 16), so 
the subgroup of index 2 in the group of each curve is the set of inflections (isomorphic 
to Z3 x Z3). The complement of this subgroup in each curve is therefore a 9-arc. 
It can be checked that the Lunelli-Sce oval is given by the symmetric difference of 
the two cubics C and C". 

This representation makes it easy to construct the automorphism group of the 
oval. Clearly the automorphic collineation corresponding to taking fourth powers 
of elements of GF(16) is an automorphism of the oval. Also, the matrices 

(
0 1 0) (0 0 1) (1 0 0) 
100,010, Ob 0, 
o 0 1 1 0 0 0 0 b+l 

where b E GF(4)\GF(2), generate a group of order 18 transitive on the points of 
each 9-arc. Thus the all collineations of PG(2, 16) given above generate a group 
of order 36 which is transitive on the 18 points of the oval. Note that each of 
the automorphisms of the oval fixes C(I, 0), and hence also fixes the PG(2, 4) that 
contains these inflections. 

Example 5.2. Deuring's normal form for a cubic 

In [6], Deuring gave the following normal form for an affine cubic curve C with 
j-invariant (j =f=. 0): 

y2 _ Y = jx 2 + (jx)-l. 

Suppose we homogenise this and substitute <5 = j-l. Thus 

Then we see that 

(

8-1 

C = C(A, 1), where A = ~ 
1 0) o 0 ,so that 
o <5 

A'= 0 ~ ~) and A" = G ~ D 
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(

8-1 

===} ~ = det(A + A") = det ~ 

Deuring's normal form for j = 0 was: 

y2 _ Y = x 3, or equivalently x 3 + y2 Z + yz2 = O. 

This corresponds to the cubic C(A, 0), where 

A= G ~ n 
If we wanted to find the syzygetic pencil formed by this C(A, 0), we refer to Theorem 
3.14 and find that a Hessian curve is C(ABA, IAI), where 

B= 0 ~ ~) 
Since ABA = B, all the inflection points of C (A, 0) lie on the Hessian C (B, 1): xy2 + 
xz2 + xyz = O. This happens to be one of the four Maclaurin triangles of the 
syzygetic pencil. The line x = 0 intersects C (A, 0) in the three points 

(0,1,0), (0,0,1), (0, 1, 1). 

Thus these points are all inflections of Deuring's normal form. 

Exercise 5.3. Prove that C = C" if and only if C is a triangle. 

6. Some Further Problems 

We have obtained some results, especially about syzygetic pencils of cubic curves 
in characteristic 2, that lead naturally to further problems. 

(1) What are the formulae for fields of characteristic 0 and 3 corresponding to 
the syzygies of Theorem 3.10? Generaiize the formulas for curves of any 
order and any characteristic. 

(2) Do there exist other ovals of PG(2, q), q = 2h, that are partially made up 
by the arc contained in a cubic curve? Note that q cannot be too large, by 
results in [21] and [30]. 

(3) Prove that 1 is the average number of inflections of a non-singular cubic of 
PG(2, q) with fixed j-invariant, or "of the same type". Referring to [19, 
Table 11.22, pp. 314-315] one sees that 

I:n/o=l, 
for cubics of the same type in each row. 

(4) Prove that for any field of characteristic not equal to three, the number of 
inflections of a non-singular plane cubic is equal to 2r - t + 1, where r is 
the number of real triangles and t is the number of completely imaginary 
triangles (made up of three imaginary lines with no real points), in the 
syzygetic pencil. 
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