


t-subsets, then Tl and T2 are said to be mutually t-balanced. If Tl and T2 are 
disjoint then T (TI , T2) is a (v, k, t) trade of volume m. The foundation of 
the trade, f ound(T), is the set of elements of V covered by TI or T2. The single 
collection Tl is often referred to as a trade in D. 

Example 1.2 Let D2 = PG(2,2) = (V2,82) be a 2 - (7,3,1) design, that is, 
PG(2,2), with 112 {1, ... ,7} and 82 = {124,235,346,457,561,672,713}. Each 
of the seven collections of four blocks from B2, with an element of V2 omitted, is 
a trade of volume four in D2. For example, TI = {124, 156,235, 346} trades with 
T2 = {125, 146,234, 356}. 

Definition 1.3 (K. Gray [4]) A set of blocks which is a subset of a unique t-(v, k, At) 
design D is a defining set of that design. A defining set is minimal if it does not 
properly contain a defining set of D, and smallest if no defining set of D has fewer 
blocks. 

There is a strong relationship between defining sets and trades. 

Theorem 1.4 ([4]) Let D = (V, 8) be a simple t (v, k, At) design and S �~� B. Then 
S is a defining set of D if and only if S n T i= 0 for every trade T �~� B. 0 

Example 1.5 In the design D2 of Example 1.2, any set of three blocks not containing 
a common element is a smallest defining set of D2. In particular, 82 = 3. 

Let q be a prime or prime power of the form q = 4h 1. Seberry [10] has conjectured 
that the Hadamard design H cyclically generated from the starter block consisting of 
the quadratic residues in GF[q] contains a defining set of 2h 1 blocks; in particular, 
fewer than half the blocks of H are contained in a smallest defining set. In contrast 
to Seberry's conjecture, it is shown in this paper that the proportion of blocks in 
a smallest defining set of the cyclic Hadamard design Dd approaches 1 as d -+ 00. 

This is the first known asymptotic result for the size of a smallest defining set. 

2 Asymptotic results for smallest defining sets of 
designs associated with PG(d, 2) 

K. Gray [5] showed that the cardinality s of a smallest defining set of a symmetric 
2 - (v, k, A) design D satisfies 

2(v - 1) 
�s�~� k+l . 

If in addition, D = (V, 8) is a cyclic design, an independent lower bound can be 
given. The block with x added modulo v to the elements of block B will be denoted 
B + x. Similar notation will also be used to describe sets of blocks. 
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Theorem 2.1 Suppose D = (V, B) is a cyclic symmetric 2 - (v, k,).) design and 
T ~ B is a trade of volume m. If m does not divide v) then the cardinality s of a 
smallest defining set of D satisfies 

v 
s> -. -m 

Proof. Suppose that V = {I, ... , v} and B = {B + x I x E V} for some starter 
block B E B. If T ~ B is a trade of volume m, then so also is T + x for each 
x E V. Moreover, if m does not divide v, then there are v distinct trades of the form 
T + x ~ B. Each block of B is in precisely m of these trades, so by Theorem 1.4, 
s2:v/m. 0 

Let 5d be a smallest defining set of design Dd and let Rd = Bd \ Sd, Sd = 15d l 
and rd = IRdl. K. Gray's bound implies that Sd 2: 4 for d > 2. However, it will be 
shown in Corollary 2.4 that Dd always contains a trade of volume four. As Dd is 
cyclic, Sd 2: (2d+l - 1) /4 by Theorem 2.1. In this section we will improve the lower 
bound for Sd even further, eventually showing that Sd 2: 2d+1 - 2(d/2)+1 - 2. 

To avoid any confusion between vector space and projective dimensions, we shall 
only refer to the vector space dimension of subspaces of PG(d, 2). So for exam­
ple, the dimension of PG(d, 2) is d+ 1, and d-subspaces of PG(d, 2) are hyperplanes. 

It is well known that for each (d - I)-subspace II of PG(d, 2), there exist precisely 
three distinct blocks (hyperplanes) B 1 , B2, B3 E Bd containing II. For three such 
blocks containing a common (d - 1 )-su bspace, define the function 0 by Bl 0 B2 = B3; 
so Bl 0 B3 = B2 and B2 0 B3 = Bl also. Bi 0 B i , i 1,2,3, is undefined. 

Notation: Let S = {5i I i = 0, 1, ... m} be a collection of mutually disjoint sets. 
The notation B 5051 ", 5m is used to represent the block B if B SoUSl ... USm . 

There should be no confusion with the notation Sd for a smallest defining set of Dd. 

Lemma 2.2 (B. Gray [3]) Distinct blocks B l , B21 B3, B4 E Bd comprise a trade of 
volume four if and only if Bl 0 B2 = B3 0 B4. Moreover, B l , B2, B3, B4 have structure 

Bl = 505153S5 , B2 = 50 S1S4S6 , B3 SOS25455 , B4 = 50S2S356 , 

where Si n Sj = 0 when i -# j, and So and So U Si (i -# 0) are (d - 2)- and (d - 1)­
subspaces of PG(d, 2) respectively. 0 

Example 2.3 In the design D2) 1240156 = 2350346 4570267 = 137. 

Lemma 2.2 implies the following two simple but useful results. The first corollary 
relates the structure of trades of volume four in Dd to the (d - 2)-subspaces of 
PG(d, 2). 

Corollary 2.4 Any set of five distinct blocks in Bd that have a common (d - 2)­
subspace contains a trade of volume four. The blocks of a trade of volume four in Dd 
contain a common (d - 2)-subspace. 0 
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Corollary 2.5 Suppose blocks B 1, B 2, B3, B4 E Bd where these blocks are not neces­
sarily distinct. Then B 1, B2, B3, B4 comprise a trade of volume four if and only if 
B1 0 B2 = B3 0 B4 and {B1' B 2} =I- {B3' B4}. 0 

Theorem 2.6 For d 2:: 2, Sd 2:: 2d+1 - 2(d/2)+1 - 2. 

Proof. If {B1' B2} and {B3, B4} are distinct pairs of blocks in Rd, then B1 0 B2 =I­
B3 oB4 or else B 1, B 2, B3, B4 comprise a trade of volume four by Corollary 2.5. Thus 
r d satisfies the inequality 

(1) 

Completing the square yields 

(rd - ~)2 S 2M2 

This implies 

(2d+4 _ 7)1/2 1 2(d/2)+2 
r < + < --- + 1 = 2(d/2)+1 + 1 for d ~ 2. 
d_ 2 2- 2 

But Sd = 2d+1 1 rd, and the result follows. o 

Corollary 2.7 Let /-ld be the proportion of blocks in the smallest defining set of Dd. 
Then f.1d --+ 1 as d ----t 00. 

Proof. By Theorem 2.6, 

Sd r d 2(d/2)+1 + 1 
/-ld = /Bd/ = 1 - IBdl ~ 1 - _ 1 -+ 1 as d -+ 00. o 

Let B be a fixed block in Bd and define Bi = Bi \ B for each Bi E Bd other than 
B. Let B'd equal the collection of blocks Bi. The design D'd (Vd \ B, B'd) is called 
the residual design (see [11]) of Dd with respect to block B. D'd has parameters 
2 - (2d, 2d-\ 2d- 1 1). The. design D'd consists of the points and hyperplanes of the 
affine space AG(d, 2) (Hirschfeld [7, page 37]). We say blocks Bi, B] E B:t are a 
special pair if Bi 0 B j = B. 

What can be said about trades of volume four in D'd'? 

Lemma 2.8 Let D'd be the residual design of Dd with respect to the fixed block B E 

Bd· Suppose that B l , B 2, B3, B4 =I- B E Bd comprise a trade of volume four in Dd 
and Bi,B] are not a special pair for i,j E {1,2,3,4}. Then B;,B~,Bi,B4 E B'd 
comprise a trade of volume four in D'd. 
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Proof. By Lemma 2.2, the blocks B 1 , B2 , B3 , B4 have structure 

where Si n Sj = 0 when i =I- j. Also, So and So U Si (i =I- 0) are (d - 2)-and (d - 1)­
subspaces of PG(d, 2) respectively. By Hwang's characterisation of basic trades in 
[8], Bi, B2, B;, B4 comprise a trade of volume four if B does not contain Sk for some 
k E {I, ... , 6}. But if B contains Sk for some k, then B contains So U Sk as the 
vector space closure of Sk is So U Sk. Thus Bi 0 Bj = B for some i,j E {1,2,3,4}. 
But by hypothesis Bi ,Bj are not a special pair. This completes the proof. 0 

Let Sd be a smallest defining set of D'd, R'd = Ed \ S'd, sd IS'd1 and r'd = IRdl· 
Lemma 2.8 can be used to give a result similar to Theorem 2.6 for the smallest 
defining sets of D'd. 

Theorem 2.9 For d 2:: 3, sd 2:: 2d+1 - 2(d/2)+2 - 4. 

Proof. Let l be the number of disjoint special pairs with at least one member in 
Rd, so 2l 2:: rd' Choose one block from each of the pairs represented in Rd to form 
the set L. Then ILl = l and by Lemma 2.8, 

G) <; 2d+1 
- 2. 

After completing the square, 

I < (2
d
+4 - 15)1/2 + ~ < 2(d/2)+1 + 1 for d >_ 3 . 

- 2 2 -

o 

Corollary 2.10 Let f.Ld be the proportion of blocks in the smallest defining set of Dd. 
Then f.L'd -+ 1 as d -+ 00. 

Proof. By Theorem 2.9, for d 2:: 3, 

s* r* 2(d/2)+2 + 2 
f.L~ = I B~ I = 1 - I E~ I 2:: 1 - _ 2 -+ 1 as d -+ 00. o 

Let Ld denote the 2 - (2d+1 - 1,3,1) design formed from the points and lines of 
PG(d,2). Let ad equal the size of a smallest defining set of Ld and 17d = 6ad/(2d+1-
1) (2d+ 1 2); so 17d is the proportion of the total number of blocks in a smallest 
defining set of Ld. It is now shown that the sequence {17d}%2 also converges to a 
limit. 

Lemma 2.11 ([4]) Suppose that D' is a subdesign of D. If S is a defining set of D, 
then S contains a defining set of D'. 0 
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Theorem 2.12 The sequence {1Jd}~2 is non-decreasing and bounded above by l. 
Thus it converges. 

Proof. For d> 2, Ld contains (2d+1 1) Ld- 1 subdesigns. Moreover, each block of 
Ld is contained in (2d- 1 - 1) Ld- 1 subdesigns. Thus, by Lemma 2.11 

ad-l (2d+1 - 1) 
ad 2: (2d-1 _ 1) 

This implies that 

o 

Moran [9] has shown that 1J3 = 16/35 and Gower [2] has found a family of mini­
mal defining sets of Ld. However, the limiting value for 1Jd is unknown to the author. 

3 Smallest defining sets of D3, D4 and D5 

In this section, we first extend the counting argument of Theorem 2.6 to determine 
the size and structure of smallest defining sets of D3 and D4. Then we determine 
bounds on the size of a smallest defining set of D5 . 

Lemma 3.1 Suppose Ao B = C and DoE = F, and A, B, C, D, E, FE Rd. Then, 
either {A, B, C} = {D, E, F} or {A, B, C} n {D, E, F} = 0. 

Proof. The only case to consider is I{A, B, C} n {D, E, F}I = 1. Without loss of 
generality, suppose that A = D. Then B 0 C = A = Eo F and so by Corollary 2.5, 
B, C, E, F E Rd comprise a trade of volume four. This is a contradiction. 0 

Let jd equal the number of triples of blocks {A, B, C} ~ Rd with A 0 B = C. 

(
rd) 3' 2d+1 2 - Jd:::; - 1 - rd· (2) 

Proof. That 3jd :::; rd is an immediate consequence of Lemma 3.1. The left hand 
side of inequality (2) is the number of distinct blocks X 0 Y 1:- Rd for X, Y E Rd , and 
the inequality follows. 0 

Lemma 3.3 There is no defining set of D3 consisting of eight blocks. 

Proof. By inequality (1), r3 :::; 6 and thus S3 2: 9. o 

Theorem 3.4 was obtained by K. Gray and Street [6] by directly considering (d -1)­
subs paces (special triples) of D 3 . An alternative approach is presented. 
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Theorem 3.4 The smallest defining sets of D3 are precisely the sets of nine blocks 
obtained by deleting two disjoint sets of three blocks {A, B, C} and {D, E, F} where 
A 0 B = 0, DoE = F and An B nOn D n E n F 0. 

Proof. By Lemma 3.3, there is no defining set of D3 consisting of eight blocks. We 
now attempt to find a smallest defining set of D3 consisting of nine blocks and thus 
assume that 1'3 = 6. Solving inequality (2) yields j3 ~ 2. But 3j3 :::; 6 by Lemma 3.2 
and thus j3 2. Hence let R3 = {A, B, 0, D, E, F} where AoB = 0 and DoE = F. 
That An B nOn D n E n F = 0, and that R3 does not contain a trade of volume four 
are both consequences of Corollary 2.4. It is then simple to show that R3 does not 
comprise a trade of volume six [6]. Hence we have found a collection S3 = 8 3 \ R3 
which is a smallest defining set of D3 consisting of nine blocks. Moreover, we have 
demonstrated that such a collection S3 is unique up to isomorphism with structure 
as claimed. 0 

Theorem 3.5 There is no defining set of D4 consisting of 23 blocks, that is, r 4 < 8. 

Proof. By inequality (1), 1'4 :::; 8, and if 1'4 = 8, then j4 2 by Lemma 3.2. Thus 
suppose X {A, B, 0, D, E, F} is a collection of six distinct blocks contained in R4 
with A 0 B 0 and DoE = F. An B n 0 is a subspace of PG(4, 2) of dimension 
three. By the intersection theorem for finite subspaces, 

dim(A n B n 0) + dim(D n E n F) - dim(A n B nOn D n En F) :::; dim(D4) = 5. 

Therefore 1 :::; dim(A n B nOn D n En F) :::; 2 and by Corollary 2.4 this dimen­
sion must equal one. Thus the blocks A, B, 0, D, E, F contain precisely one common 
point s, say. The (~) = 15 blocks Xl 0 X 2 , Xi E X, are distinct by Corollary 2.5 
and each contains the element s. Thus nine blocks containing s are excluded from 
R4 . There are 16 blocks in D4 which do not contain the element s. At most one of 
these blocks can belong to R4 . For suppose two of these blocks belong to R 4 , call 
them G and H say. Now s EGo H. Thus, either Go H = Xl or Go H = Xl 0 X 2 , 

where Xl, X 2 E X c R4 ; either way we obtain a contradiction, for if G 0 H = Xl 
then j4 > 2 and Go H -1= Xl 0 X 2 by Corollary 2.5. Thus at least 9 + 15 = 24 blocks 
belong to S4 which completes the proof. 0 

To simplify the construction of smallest defining sets of D4 the following lemmata 
are helpful. 

Lemma 3.6 Let T be a trade of volume m and e E found(T). Then the number of 
occurrences of e in the blocks of T is not equal to 1 or m - 1. 

Proof. This is immediate from Definition 1.1. o 

The following lemma has been proven independently by Billington and Hoffman 
in [1]. 
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Lemma 3.7 Suppose k > 2 and T = (TI' T2) is a (v, k, 2) trade such that any pair 
of elements occurs at most once in the blocks of T1• Then the volume of T is at least 
2(k - 1). 
Proof. Let r e equal the number of occurrences of the element e in the blocks of 
T1. It is simple to show that either rx = 2 for some x E found(T) or the volume 
of T is greater than 2(k - 1). Let BI = xal ... ak-l and B2 = xbl ... bk- l represent 
the two distinct blocks in TI containing the element x where r x = 2. Let Bi and 
B~ represent the two distinct blocks in T2 also containing x. As TI and T2 are 
2-balanced, each of al,"" ak-l, bl , ... , bk- l is contained in precisely one of Bi, B~. 
Let ja = IBI n Bi \ {x}l, so 1 ::; ja ::; k - 2. Without loss of generality, 

where ja + jb = k - 1 and ja, jb 2 1. Note that the minimum of the product jajb 
occurs when {ja, jb} = {I, k 2}. 

Let i1 E {I, ... ,ja}, i2 E {I, ... jb}, i3 E {ja + 1, ... ,k - I}, i4 E {jb + 1, ... , k - I}. 
The pairs {ail' bi2 } and {ai3' bi4 } occur in T2 and thus must also occur in TI. More­
over, each of these pairs must occur in a separate block of TI . This implies the 
volume of T is at least 2 + jajb + (k - 1 - ja)(k -1- jb) = 2 + 2jajb 2 2(k - 1), with 
equality if and only if {ja, jb} = {I, k - 2}. 0 

Recall that D4 = PG( 4,2) is cyclic. Let D4 = (Vt, B4) where V4 = {I, ... , 31} 
and starter block B = {1, 2,3,4,6,8,12,15,16,17,23,24,27,29, 30} ([11, page 191]) 
whence B4 = {B + x I x = 1, ... , 31}. D4 has parameters 2 - (31,15,7). Let block 
B+x be denoted by Bx; so for example, B2 = {3,4,5,6,8, 10,14,17,18,19,25,26, 
29,31,1} and B31 = B. 

Theorem 3.8 The smallest defining sets 84 of D4 consist of 24 blocks and R4 is 
isomorphic to one of the following sets of seven blocks: R! = {B25 , B26 , B 27 , B2S , B29 , 
B30, B31 }, or R~ = {B23 , B 24 , B 26 , B 27 , B 29 , B30, B3d. 

Proof. 

(a) 8l = B4 \ Rl and 81 = B4 \ R~ are defining sets of D4. 

(i) Rl and R~ do not contain a trade of volume four. 

By Corollary 2.5, it suffices to check that there do not .exist four distinct blocks 
A, B, 0, D E Ri such that A 0 B = 00 D. This is demonstrated in Table 1 and 
Table 2. 

(ii) R! and R~ do not contain a trade of volume seven or six. 

Rl is not a trade of volume seven by Lemma 3.6 as the element 29 occurs in 
all blocks of R! except B 29 . Similarly, the only possible trade of volume six 
contained in R! is R! \ B29 . However, these six blocks contain the common 
element 29 and it is easily verified that they are structurally isomorphic to the 
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set R3 of Theorem 3.4. Thus R~ does not contain a trade of volume seven or 
six. 

R~ is not a trade of volume seven by Lemma 3.6 as the element 18 occurs in 
R~ only in block B26 . Again, the only possible trade of volume six contained in 
R~ is R~ \ B 26 = Z, say. The 30 elements other than 18 occurring in Jound(Z) 
can be matched into complementary pairs; that is, for any element contained 
in precisely two blocks of Z, there exists exactly one element contained in 
precisely four different blocks of Z. For example, the element 9 is contained in 
the blocks B 23 and B24 whilst the element 2 is contained in B27 , B29 , B30 and 
B 31 . Let Z' be the set of six blocks of size five formed from Z by deleting all 
elements contained in Z precisely four times. It follows that Z is a trade only 
if Z' is a trade. However, Z' is not a trade by Lemma 3.7. Thus R~ does not 
contain a trade of volume seven or six. 

As R~ and R~ do not contain a trade, Sl and S~ are defining sets of D4. 

(b) By Theorem 3.5, Sl and S~ are smallest defining sets of D4. 

( c) st and Si are the only smallest defining sets of D 4 (up to isomorphism). 
There are three cases to consider depending on the value of j4' 

(i) r4 7 and j4 = 2. 
From the proof of Theorem 3.5, it is clear that R4 must be isomorphic to the 
collection R~. 

(ii) r4 7 and j4 = l. 
It is shown that is impossible to construct a set R4 satisfying these equations 
such that S4 = B4 \ R4 is a defining set of D4 unless R4 = R~. Without 
loss of generality let blocks containing a common (d - 1 )-subspace in R4 be 
B24 , B26 and B29 . The next two blocks chosen must not contain a common 
(d - 2)-subspace with B24 , B 26 and B29 and thus without loss of generality 
choose blocks B23 and B27 . These five blocks contain the common element 25. 
There are two cases to consider: 
Case 1: A block containing the element 25 is added to R4 . 

The only block containing 25 that does not force a trade of volume four is 
B23 0 B27 but then j4 = 2. 
Case 2: A block not containing the element 25 is added to R4 . 

Again, without loss of generality, choose first the block B 30 . The one remaining 
choice for a block that does not contain 25 and does not force a trade of volume 
four is B31 . Thus R4 = R~. 
(iii) r4 = 7 and )4 = O. 
If an element s E AnB, then s E AoB. Similarly, if s ¢:. AUB, then s E AoB. 
Let n be the number of times s occurs in the blocks of R4 . By Corollary 2.5. 
and also because )4 = 0, the number of distinct blocks containing s is at least 
n+ (~) + C;n) n', say. The inequality n'::; 15 yields n E {2,3,4}. Let ni 
equal the number of elements that occur in R4 i times. Clearly 

(3) 
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B 25 - BI2 B30 B 23 B4 B27 B2I 

B 26 - B I3 B3I B24 B5 B 28 

B27 - BI4 BI B 25 B6 

B 28 B I5 B2 B 26 

B 29 - B I6 B3 

B30 - B17 

B3I 

Table 1: Circle product of blocks in R! 

B 23 B24 B 26 B27 B 29 B30 B3I 

B 23 - BlO B21 B2 B I9 B14 BI2 

B24 - B 29 B22 B 26 B 20 B 15 

B 26 - B13 B24 B5 B 28 

B27 Bl B 25 B6 

B 29 B16 B3 

B30 - B17 

B3I -

Table 2: Circle product of blocks in R~ 

Similarly, by counting the total number of elements in R4 and the total block 
intersection sizes of R4 , the following standard equations can be obtained. 

105 7.15, 

147 7.G) 
(4) 

(5) 

Solving Equations (3), (4) and (5) yields the solution n2 18, n3 = -17, n4 = 
30 which is clearly impossible. Thus there is no defining set S4 with ]4 = o. 

o 
It has been shown in Section 2 that the number of blocks Sd in a smallest defining 
set of Dd is increasing. A similar result also holds for the number of blocks rd not in 
a smallest defining set of Dd . 

Theorem 3.9 The sequence {rd}%:2 is strictly increasing. 

Proof. We now show how to construct a set X C Bd+I from Rd such that X does 
not contain a trade and IXI = rd + 1. Rd is structurally isomorphic to a collection of 
blocks X', say, in Bd+1 that contain a common element e say (see [7], page 65). Let 
B E Bd+I \ X' and e ~ B. We claim that X = B U X' is one possible construction. 
Certainly X' does not contain a trade as it is structurally isomorphic to Rd which 
does not contain a trade. Thus any trade T ~ X must contain block B in which case 
the element e occurs in all blocks of T except B contradicting Lemma 3.6. Thus X 
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does not contain a trade. Now rd+l 2: IXI > rd and the sequence {rd}~2 is strictly 
~cr~~~. 0 

Theorem 3.10 The size S5 of a smallest defining set of D5 satisfies 52 ~ S5 ~ 55. 

Proof. By Theorem 3.9, r5 2: r4 + 1 = 8. By inequality (1), 

which implies that r5 ~ 11. These results together with the fact that S5 = 63 - r5 
yields the inequality 52 ~ S5 ~ 55. 0 
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