






























A matching of blocks which intersect in t or more points gives an ordering of the 
blocks of the trades which results in a smaller trade core than other orderings. This 
is useful when generating trade cores, since smaller trade cores give more stringent 
testing conditions for pointwise defining sets. It is in fact always possible to match 
the blocks of a trade so that the matched blocks intersect in t or more points. 

To see this, construct a bipartite graph from the trade (TI' T2) as follows: the points 
of the graph are the blocks of TI and T2 , and an edge connects a pair of points 
corresponding to blocks BI and B2 precisely when BI E TI , B2 E T2, and IBI n B21 2: 
t. 

A perfect matching M of a graph G is a subset of its edges such that every point 
of G appears in precisely one edge of M. Clearly, matching blocks of TI with blocks 
of T2 so that each pair intersects in t or more points is equivalent to finding a perfect 
matching in the bipartite graph constructed above. 

If X is a subset of the points of a graph G, let r(X) denote the set of all points 
which are adjacent to at least one point of X. The conditions for the existence of a 
perfect matching in the bipartite graph are given by the Marriage Theorem in the 
following form. (For instance, see Lovasz and Plummer [17] for a full discussion of 
this theorem.) 

Theorem 4.16 A bipartite graph G = (A, B) has a perfect matching if and only if 
IAI = IBI and for each X �~� A, IXI :::; Ir(X)I. 0 

Applying the Marriage Theorem shows that such a matching exists if and only if 
the blocks of every subset Xl of TI intersect at least IXII blocks of T2 at t or more 
points. Proving this property will show that the desired matching for trades must 
always exist. 

Lemma 4.17 Let TI be a trade of t-(v, k, At) design D, and let T2 be a collection 
of k-sets containing the same t-sets each with the same multiplicity as in TI . Then 
it is possible to order the blocks of TI and T2 so that each block of TI intersects with 
the corresponding block of T2 in t or more points. 

Proof. Let Xl �~� TI with IXII = m. Then the total number of t-subsets in the 
blocks of X I, counting repeats, is m (;) . 

Choose X 2 �~� T2 such that the blocks of X 2 contain all the t-subsets contained by 
Xl (with multiplicities counted), and there are no blocks in X 2 which contain no 
t-subset in Xl. That is, there are no unnecessary blocks in Since X 2 contains all 
mG) t-subsets contained by Xl, with at most G) of these appearing in each block, 
IX2 1 2: m. 

Consider the bipartite graph constructed from TI and T2 as described above, where 
each vertex represents a block from Tl or T2 and an edge is drawn between two 
vertices precisely when they represent a block from Tl and a block from T2 which 
intersect in t or more points. 
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Since each block in X 2 has at least one t-set in common with some block in Xl, the 
corresponding vertices are neighbours. Thus X 2 ~ f(XI ), giving If(Xdl ~ IX2 1 ~ 
m = lXII, and by the Marriage Theorem a perfect matching must exist. 0 

In order to find every possible minimal trade core, we simply try every possible 
ordering of the k-sets in trade T2 , that is, the k-sets not in our given design, which 
trade with the blocks in the trade TI of the design. Since trades TI and T2 contain 
the same t-sets, we order the k-sets of T2 by matching them to blocks of Tl which 
share a common t-set. We find all such orderings using a simple recursive (depth 
first) search [1], [4]. 

Example 4.18 We find nine trade cores from Example 4.15, as shown in Table 4. 

Table 4: Trade cores produced by recursive search 

Tl C1 C2 C3 C4 C5 C6 C7 Cs C9 

246 247 6 247 6 247 6 256 4 256 4 256 4 346 2 346 2 346 2 

257 256 7 256 7 357 2 247 5 247 5 357 2 247 5 256 7 357 2 

347 346 7 357 4 346 7 346 7 357 4 247 3 357 4 247 3 247 3 

356 357 6 346 5 256 3 357 6 346 5 346 5 256 3 357 6 256 3 

The corresponding bipartite graph, with points labelled using the actual blocks, 
illustrates that each of the orderings which gives a trade core is in fact a perfect 
matching. The graph is shown in Figure 1, with the perfect matching corresponding 
to trade core C1 shown in bold lines. 

4.3 

Recall that for a pointwise defining set P we have n(P : D) = 11~:~t~~1 (see Theorem 
3.2). This result depends on the fact that D is simple. We might hope that a similar 
relationship would exist between Sand P and their automorphism groups, where 
S is the smallest number of blocks of D which contain the pointwise defining set 
P. The simplicity of D ensures that any blockwise partial design S can be uniquely 
positioned within D. However, if P contains any partial blocks which occur in more 
than one block of the design D, there may actually be more than one such S, and 
no property analogous to "simple" holds for P within S. Hence the argument used 
to obtain the above result does not work in this case. 

Thus, in order to use the above result it would be necessary to find all possible 
partial designs in D isomorphic to P. But counting the number of partial designs 
isomorphic to P contained within a given blockwise defining set S is of no obvious 
use. 
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246 247 

257 256 

347 357 

356 346 

Trade ~ Trade r; 

Figure 1: Example of a graph and one perfect matching 
for trades of the given 2-(7,3,1) design. 

Example 4.19 Let V = {O, 1, ... ,9, a} and let D be the cyclic 2-(11,5,2) design 
developed from the block 13459, which is the set of quadratic residues (modulo 11). 
Then 

S= {13459,2456a,35670,79a04,90126} 

is a blockwise defining set, and 

P= {459, 245a, 3670, 479aO, 1690} 

is a pointwise defining set contained in it, found by the algorithm described in the 
next section. In this case, n(P : S) = 2, IAut(S)1 = 10 and IAut(P)1 = 1, and clearly 

n(P: S) =I 111~~t;:}II' 

The algorithm presented in Section 5 does not find n(P : D), but uses the fact that 
IAut(P) I must divide IAut(D) I to rule out partial designs which cannot be pointwise 
defining sets. Note that since Aut(P) is a subgroup of Aut(D), we could apply 
more stringent tests to check structures of the groups by looking at the cycles of the 
generators. 

5 Finding Smallest Pointwise Defining Sets 

In order to find a smallest pointwise defining set, we first note that any smallest 
pointwise defining set can be found by removing points from other pointwise defining 
sets, and ultimately from a blockwise defining set. 
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Theorem 3.1 and Remark 4.4 provide necessary conditions on the arrangement of 
elements in a partial design for it to be a defining set. Theorem 3.2 and Lemma 4.10 
provide further necessary conditions, relating to the automorphism group order and 
the trade cores of the design respectively. Hence we can now develop an algorithm 
which systematically constructs and tests progressively smaller partial designs in 
search of a smallest pointwise defining set. 

The major difficulty in designing a viable algorithm to search for pointwise defining 
sets is minimizing the number of partial designs to generate and check. In going from 
blockwise to pointwise defining sets the number of possible partial designs to check 
increases dramatically. For example, there are G) = 35 ways of choosing three blocks 
(containing nine points) from the seven blocks of a 2-(7,3,1) design, but there are 
(29

1
) = 29393 different 9-configurations in the same design. Note that some of these 

different configurations will actually represent the same pointwise partial design; for 
example {1, 145, 0,246,25,0, 0} and {0, 145, 1,246,25, 0, 0} in design F7 of Example 
4.12. 

The algorithm presented here minimizes the number of partial designs to check by 
starting with known blockwise defining sets and methodically removing points from 
them. Any pointwise defining set found is kept, and further points removed in search 
of a smaller pointwise defining set. Partial designs which are not pointwise defining 
sets are also kept, and used as a checklist for further partial designs generated (since 
any partial design contained within one which is not a defining set is also not a 
defining set). This is a form of Tabu search; see for instance Glover [5], [6]. The 
partial designs are actually generated and stored as configurations, but treated as 
partial designs when being completed. 

Initially, n is set to the number of blocks in a smallest blockwise defining set and p 
is calculated as p = nk - 1. 

The three main steps in the algorithm are nested inside each other. They are: finding 
all n-block defining sets for increasing values of n; removing points from an n-block 
defining set to find all p-point defining sets within it; removing further points from 
a p-point defining set to find the smallest defining sets it contains. The value of p is 
reset and the whole process continues until n = born = p, that is, until the search 
has spread the choice of p points across the maximum number of blocks possible. 
The following is a more detailed description of these three steps. 

Step 1: If the list of n-block defining sets is empty, n is incremented and a new list 
of blockwise defining sets generated. The first n-block defining set is chosen 
from the list, step 2 is executed, and then this n-block defining set is deleted 
from the list. 

This step is repeated until the search is exhausted, that is, until n = b or 
n = p. This part of the procedure requires the use of a program to find 
blockwise defining sets, such as that described in [3]. 

Step 2: Points are methodically removed from the blockwise defining set to ensure 

69 



that every p-configuration it contains is generated precisely once. Since two 
configurations may represent identical partial designs, a list of unique partial 
designs is kept for checking new configurations generated, to avoid unnecessary 
work in finding the automorphism group information more than once. 

The configurations are then checked to see whether they comply with the nec­
essary conditions of Theorems 3.1 and 3.2, Remark 4.4 and Lemma 4.10. If 
these tests are passed, complete [2] is called. If the configuration is found to be 
a defining set, step 3 is executed, to find the smallest pointwise defining sets 
within it. The value of p is then set to the number of points in the smallest 
defining sets found. 

This process of generating and testing p-point partial designs within the block­
wise defining set continues for decreasing values of p until all configurations 
have been tested. 

Step 3: If a p-point defining set was found by step 2, p is decremented, each point 
in the defining set found is removed in turn, and the resulting partial designs 
are grouped by isomorphism. Each class is then tested and kept on a list of 
defining sets or non-defining sets as appropriate. The non-defining sets are 
used as another test for possible defining sets, since no partial design contained 
within a non-defining set can be a defining set. 

If any defining sets were found, p is decremented, and a similar search made of 
each of these new defining sets, producing new lists of defining and non-defining 
sets. 

This is repeated until a value of p is reached for which no defining sets are 
found. 

For each isomorphism class of pointwise partial designs the algorithm must keep a 
record of a representative configuration and the order of its automorphism group. 
Since the algorithm generates all configurations from known defining sets, rather than 
all partial designs from the whole design, no calculation of the size of the classes can 
be made. 

The first version of this algorithm did not use step 2. Instead, all possible p-point 
configurations within the given blockwise defining set were generated and classified 
by isomorphism. Then each class was tested, and the search proceeded as in step 
3. Generating all the p-point configurations was found to take an excessive amount 
of time and memory, so the new algorithm finds one defining set, searches it for the 
smallest defining set possible, and then looks for another defining set of the same 
size to continue the search there. This algorithm terminates more quickly, produces 
some initial results more rapidly, and uses less memory. 

Example 5.1 Consider the 2-(11,5,2) design D of Example 4.19. Let 

81 = {13459, 2456a, 35670, 79a04, 90126} 
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and 
52 = {13459, 2456a, 35670, 46781, 57892}. 

Then 51 and 52 are representatives of the two isomorphism classes of smallest block­
wise defining sets. The smallest pointwise defining sets within these were found using 
the algorithm outlined above, and the results are outlined in Tables 5 and 6. In sum­
mary, the smallest pointwise defining sets within five blocks of this design consist of 
20 points; eight non-isomorphic smallest defining sets were found in 51 and 26 in S2. 
The algorithm was not applied to partial designs with six or more blocks, so it is not 
known whether any defining sets with fewer points spread over more blocks exist. 

Comments here relate only to pointwise defining sets within five blocks of the design. 
In Tables 5 and 6, the columns headed "F/', for i = 3,4,5, give the number of 
blocks in each pointwise defining set which contain i elements. Each defining set 
has automorphism group of order 1. Note that no 20-point defining set contains 
only 2 elements in any block, and a minority contain two 3-sets. In fact, of 34 non­
isomorphic 20-point defining sets, one comprises five 4-sets, 21 comprise one 3-set, 
three 4-sets and one 5-set, and 12 comprise two 3-sets, one 4-set and two 5-sets. 
Thus the points of the 20-point defining sets tend to be fairly evenly spread over the 
five blocks. 

Table 5: 20-Point Defining Sets within 51. 

Points of Defining Set F3 F4 Fs 
345 2456a 03567 079 0126 2 1 2 
345 245a 0367 0479a 0126 1 3 1 
345 256 03567 079a 01269 2 1 2 
3459 2456 067 0479a 0126 1 3 1 
3459 2456a 0567 49a 0126 1 3 1 
3459 256a 356 0479 01269 1 3 1 
459 2456 0367 0479a 0126 1 3 1 
459 245a 0367 0479a 0169 1 3 1 

The algorithm for finding pointwise defining sets of designs depends on the methods 
for completing a partial design listed in Section 2. The algorithm and its implemen­
tation are given in detail in Chapter 7 of Delaney [1], and a summary (with user's 
guide) is given in Delaney, Maenhaut, Sharry and Street [4]. 

6 Observations and Open Questions 

Several interesting questions arise with regard to finding pointwise defining sets. Is 
there an optimal partial block size to use when attempting to construct such sets? 
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Table 6: 20-Point Defining Sets within S2. 

Points of Defining Set F3 F4 F5 
134 245 0567 14678 25789 2 1 2 
134 245a 567 14678 25789 2 1 2 
1345 245 0357 1468 25789 1 3 1 
1345 245a 357 1468 25789 1 3 1 
1349 2456 0567 146 25789 1 3 1 
1349 2456a 567 146 25789 2 1 2 
3459 2456a 567 1678 2589 1 3 1 
3459 456 03567 1678 2789 1 3 1 
3459 456 0357 1468 25789 1 3 1 
3459 456 0567 14678 2589 1 3 1 
3459 456 0567 1678 25789 1 3 1 
3459 456a 03567 678 2789 1 3 1 
3459 456a 0367 678 25789 1 3 1 
3459 456a 3567 1678 2789 0 5 0 
3459 456a 567 14678 2589 1 3 1 
3459 456a 567 1678 25789 1 3 1 
3459 46a 03567 678 25789 2 1 2 
359 2456 0567 14678 2589 1 3 1 
359 2456a 567 14678 2589 2 1 2 
359 456 03567 14678 2589 2 1 2 
359 456 03567 1468 25789 2 1 2 
359 456 0567 14678 25789 2 1 2 
359 456a 03567 4678 2789 1 3 1 
359 456a 3567 14678 2589 1 3 1 
359 456a 567 14678 25789 2 1 2 
359 46a 03567 4678 25789 2 1 2 
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If there is a way of approximating the best block size, does it depend only on the 
parameters of the design, or is it influenced by other characteristics? 

The discussion in this section begins to explore these ideas and others. 

Consider a partial block A of size m satisfying m = max(t + 1, k - t + 1), so m > t 
and k - m < t. Thus including A is potentially significant in itself, since m > t, and 
we also know that any t-set disjoint from A must occur in a different block, since 
m + t > k; there are (v~m) such t-sets. Perhaps m would be an optimal block size 
to use in constructing a pointwise defining set of fewest points. 

For such m to exist, we know that k - t 2: 2, t 2: 2 and k 2: 4, since the inequalities 
above are strict. If such an m were in fact to be an optimal block size for pointwise 
defining sets, one would expect that a statement akin to the following conjecture 
would hold. 

Conjecture 6.1 Consider a t-( v, k, At) design with k - t 2: 2, t 2: 2, k 2: 4. Then 
there exists a smallest pointwise defining set of such a design which consists of at 
most one block of size < m, and all other blocks of size 2: m, where 

m = max(t + 1, k - t + 1). 

Clearly it is not true that all smallest pointwise defining sets of such a design must 
satisfy this condition. The 2-(11,5,2) design satisfies the necessary conditions on the 
parameters, giving m = 4, but we have already seen that it has smallest defining 
sets which include more than one partial block of only three elements. However, it 
seems possible that at least one smallest pointwise defining set should satisfy this 
condition. 

If this is shown to be the case, it will provide a useful upper bound on the number of 
blocks used in the search for smaller and smaller pointwise defining sets. It may also 
prove to be a useful approximation, and perhaps could lead to a precise necessary 
condition on the arrangement of points in any pointwise defining set. Note that all 
the smallest pointwise defining sets of the 2-(11,5,2) design have at most two partial 
blocks containing only three elements. 

It is also interesting to observe characteristics common to all the results obtained so 
far by applying the algorithm described in the previous section to various designs. 

Observation 6.2 For every smallest pointwise defining set S that we have found 
so far for a design D: 
(i) each partial block of S contains at least t + 1 elements; 
(ii) S is a partial design of a smallest blockwise defining set of D, that is, the points 
are all contained within the blocks of a smallest blockwise defining set of D rather 
than being scattered over more blocks of the design. 

To discover necessary conditions for these or similar characteristics to be true of all 
smallest pointwise defining sets of a given design could be very useful in streamlining 
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the search-based algorithm of Section 5, and might also lead to development of quick 
construction-based algorithms. Some theoretical results have been obtained. 

Theorem 6.3 Let D be a t-( v, k, At) design with a smallest pointwise defining set S 
and a minimal blockwise defining set M, such that each block of S is contained in a 
block of M. Then each partial block of S contains at least t + 1 points. 

Proof. Let the partial blocks of S be PI, P2 , ... ,Ps and suppose without loss of 
generality that iPli = w < t + 1. Since S is a partial design contained in M, there 
exists a block B of M such that PI c B. Let M' = M \ B. and let Mil = M' U Pl' 
Since Mil contains the pointwise defining set S as a partial design, Mil itself is a 
pointwise defining set of D. 

We claim that M' is a blockwise defining set of D, and hence that M is not minimal. 
For the w-set PI must occur in some block not in M', and thus M' forces the partial 
block Pl. In other words, M' forces the defining set Mil and hence M' itself is a 
defining set. 0 

But now, by Theorem 6.3, Observation 6.2 (ii) implies Observation 6.2 (i), since a 
smallest defining set is necessarily minimal. However there is no analogy for minimal 
pointwise defining sets; that is, each partial block of a minimal pointwise defining 
set need not contain at least t + 1 points, nor is it necessarily a partial design of a 
minimal blockwise defining set. 

Example 6.4 In Example 1.19 the minimal pointwise defining sets S" and M of PI 
are not contained in any minimal blockwise defining set, nor do their partial blocks 
contain at least t + 1 = 3 points. 
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