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Abstract

In this paper, several general results are obtained on the Oberwolfach
problem that provide isomorphic 2-factorizations of 2K. One conse-
quence of these results is that the existence of a 2-factorization in which
each 2-factor of 2K, consists of one cycle of length z and one of length
n—z is completely settled. The techniques used to obtain these results are
novel, using for example the Lindner-Rodger generalizations of Marshall
Hall’s classic embedding theorem for incomplete latin squares.

1 Introduction

Let MK, denote the multigraph on n vertices in which each pair of vertices is
joined by exactly A edges. An m-cycle (vo,v1,...,Um-1) is & graph with vertex
set {vo, ..., Um—1} and edge set {vivis1 | i € Zy,}, reducing the subscript modulo m.
An m-cycle system or order n and indez \ is an ordered pair (V,C), where C is a
collection of m-cycles whose edges partition the edges of MK, defined on the vertex
set V (so |[V| = n). There have been many results obtained concerning the existence
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of m-cycle systems of AK, (and of other graphs). Such results date back to 1847
when Kirkman [8] settled the existence problem for 3-cycle systems of K, (Steiner
triple systems), but most papers on this subject have been written over the past
thirty years. A survey of these results can be found in [10].

It has also been of interest to study m-cycle systems that have additional proper-
ties. A parallel class of an m-cycle system (V,C) of AK,, is a set of cycles in C' that
form a 2-factor of AK,,. An m-cycle system (V,C) of AK,, is said to be resolvable if C
can be partitioned into parallel classes. The existence problem for resolvable 3-cycle
systems of K, (Kirkman triple systems) was first posed and solved in the case n = 15
by Kirkman in 1850 [9]; it was solved for all n by Ray-Chadhuri and Wilson in 1971
[12]. A different generalization of their result was then obtained: resolvable m-cycle
systems of K, were shown to exist iff m is odd and n = m (mod 2m) in [1, 7] after
various people had contributed preliminary results (see [10] for a survey).

However a much more general conjecture still remains unsolved (and is likely to
do so for a long time): in 1967 Ringel asked whether for any integers my, ..., m; with

t
n =Y m;, there exists a 2-factorization of K, in which each two factor consists of ¢

cyclés,lone of each length my, my, ..., my; so each 2-factor is isomorphic to each other
2-factor in this 2-factorization. Of course, if my = mg = --- = m; then Ringel is
asking for a resolvable m;-cycle system of K. It is known that solutions to Ringel’s
question (also known as the Oberwolfach Problem) do not exist whenm; =4, ms =5
and n = 9, and when m; = 3, my = 3, m3 = 5 and n = 11, but it is widely believed
that these are the only exceptional cases.

Of course, a solution to the Oberwolfach problem requires n to be odd, because
every vertex must have even degree. This restriction on n is avoided by considering
2-factorizations of 2K,. In this paper we obtain several general results concerning
the existence of isomorphic 2-factorizations of 2K,,. In particular, we completely
settle the Oberwolfach problem in the case where ¢ = 2 (see Theorem 3.2). The
techniques we use to prove these results are also of interest, being novel approaches
to this problem. For example, the Lindner-Rodger generalizations (Theorem 2.2, see
[11]) of Hall’s classic theorem [5] on embedding incomplete latin rectangles is the
main tool required to prove Theorem 2.3.

Define an {my,ma, ..., m:}-2-factor of a graph G to be a 2-factor of G in which

t
there are ¢ cycles, one of each length mqy,ms,...,m¢; so G has Y m; vertices. An
i=1
{m1,ma, ..., my}-2-factorization of G is a 2-factorization of G in which each 2-factor
is a {m, ma, ..., m}-2-factor. Any graph theoretical terms not defined here can be
found in [3].

2 General Results

Proposition 2.1. Let G be a 2s-regular spanning subgraph of 2K,,. There exists an
edge-disjoint decomposition of G into v s-stars such that:

(1) each vertez is the center of exactly one s-star; and
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(2) there exists an s-colouring of E(G) such that for each v € V(G), each colour
appears on ezactly two edges incident with v, one in the star centered on v, and
one not.

Proof. Let V(G) = Z,. Form a simple bipartite graph B with bipartition V(G) and
E(G) by joining i € V(G) to e € E(G) if and only if 7 is incident with e in G. Then
dp(i) = 25 and dg(e) = 2. Give B an equitable 2-edge-colouring with colours a and
8. For each i € V(G), let S(¢) be the vertices in B joined to ¢ by an edge coloured c.
Since the edge-colouring of B is equitable, ¢ is incident with s edges coloured «, so
|S(i)] = s, and e € E(G) is incident with one edge coloured a, so {S(i) | i € V(G)}
is a partition of E(G). Since S(i) induces an s-star in G centered at 4, we have
proved (1).

To prove (2), let B' be a bipartite graph with bipartition V' = {v; | i € Z,} and
W = {wj | j € Z,} formed by joining v; to w; if and only if {3, j} is an edge in S(3).
Then since each vertex is the center of one s-star and therefore is a pendant vertex in
s s-stars, dp/(v;) = s = dp(w;). Give B’ a proper s-edge-colouring, then give G an
s-edge-colouring by colouring {7,j} € S(i) with the same colour as the edge {v;, w;}
in B'. Since v; in B’ is incident with one edge of each colour, the edges in S(i) are all
coloured differently, and since w; is incident with one edge of each colour, the edges
incident with j in G that are not in S(j) are all coloured differently. So (2) has been
proved. |

For any graph G and any X C V(G), let Ng(X) be the neighbourhood of X in
G. Philip Hall proved the following result.

Theorem 2.1 ([6]). Let B be a bipartite graph with bipartition V and W of the
vertez set. B contains a 1-factor if and only if | X| < |Np(X)| for all X C V.

Proposition 2.2. Let G be a 2s-regular multigraph on v vertices where v > 8(s—1).
Let {Fy,...,Fs} be any 2-factorization of G. Then there exists an edge-disjoint
decomposition of G into v matchings, each of size s, such that each matching contains
one edge in F; for 1 <1i < s.

Proof. The proof is by induction on s. The result is clearly true when s = 1, so
assume that s > 1. Let G(s) be any 2s-regular graph on v vertices with v > 8(s — 1)
and let {Fy,...,F,} be a 2-factorization of G(s). Let G(s — 1) = G(s) — E(F}).
Then {F,...,F,_1} is a 2-factorization of G(s — 1), and obviously v > 8(s — 2), so
by the induction hypothesis there exist matchings M(j) = {ei(j),...,es—1(4)} for
1 < j < vsuch that {M(1),...,M(v)} is a partition of E(G(s —1)).

Form a simple bipartite graph B with bipartition M = {M,...,M,} and F =
E(F,) by joining M; € M to e € E if and only if M(j) U {e} is an independent set
(of size s) in G(s). Note that since each edge in F; is incident with at most 4 edges
in F; for 1 <i<s—1,dg(e) >v—4(s —1) for each e € E. Similarly, each of
the s — 1 edges in M(j) for 1 < j < v is incident with at most 4 edges in Fj, so
dp(M;) > v—4(s—1). So the minimum degree §(B) of B satisfies §(B) > v—4(s—1).

We now show that B contains a 1-factor, by applying Hall’s Theorem. Let X C
M. Since §(B) > v —4(s — 1) and B is simple, |Np(X)| > v — 4(s — 1). Clearly if
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[Ng(X)| = v then |X]| < |Np(X)|, so we can assume that e € F — Np(X). Then
since dg(e) > v —4(s—1), we have that v —|X| = |M - X| > |[Ng(e)| > v—4(s—1),
50 |X] <4(s—1) <v—4(s—1) < |Np(X)|. Therefore B has a 1-factor, F.

The result now follows by adding e to M(j) if and only if e is joined to M; by an
edge in F. O

Proposition 2.3. Let G be a 2s-reqular multigraph on v vertices and let {Fy, Fs, ...,
F,} be any 2-factorization of G. Let {Gy,Ga,..., Gy} be an edge disjoint decompo-
sition of G into v I-regular subgraphs, each containing s edges, such that |E(F;) N
E(Gj)l =1 for anyt and j with1 <i < s and 1 < j < v. Then there exist injective
functions f; : V(G1) = {1,2,...,v} for 1 < j < v such that:

(1) If {v,w} € E(G) N E(F) then {f;(v), f;(w)} € E(G;) N E(F}); and
(2) for allv € V(Gy), {f(w), f2(v), ..., fu(v)} = {1,2,...,v}.

Proof. For i = 1,2,...,s, form a simple bipartite graph B; with bipartition V (F})
and E(F;) by joining v € V(F;) to e € E(F;) if and only if v is incident with e in
F;. Fori=1,2,...,s, B; is 2-regular and so we can give B; a 2-edge-colouring with
colours o and (3 such that each vertex of B; is incident with one edge coloured o and
one edge coloured f.

For each v € V(G,), let {v,w} be the unique edge in G; incident with v; then
if Fj is the 2-factor containing {v, w} then define f;(v) = v’ and f;(w) = w’ where
{v',w'} € E(G;) N E(F;) and the edge joining v to {v,w} is the same colour as the
edge joining v’ to {v,w'} in B;. For 1 < j <, f; is a function since G is 1-regular,
and f; is injective since G is 1-regular. O

The following is a generalization of Marshall Hall’s theorem proved in [5]. The
Lindner-Rodger generalization was proved in [11] (Theorem 3.1), where it is described
in terms of patterned holes. Here we change the notation to fit the proof of Theorem
2.3. A row or column ¢ of an array L is said to be latin if each symbol occurs in at
most one cell of £ in L.

Theorem 2.2. Let L' be an s X v array on the symbols 1,...,v in which each cell
contains exactly one symbol, each column is latin, and each symbol occurs in ezxactly
s cells of L'. Then L' can be embedded in a v X v array in which each column is latin
and each of rows s +1,...,v is latin.

If G and H are two graphs with V(G) N V(H) = {, then let G V; H be the
graph with V(G v, H) = V(G) U V(H) and where E(G V; H) consists of the edges
in B(G)U E(H) together with ¢ edges joining each vertex in V(G) to each vertex in
V(H).

Theorem 2.3. Let s,t be positive integers such that t divides 2s. Let G be a 2s-
regular spanning subgraph of tK,. Let H be a subgraph of G with mazimum degree
A <t that contains ezactly s edges, and in which for 1 <i < A, H contains t; > 0
vertices of degree i. Suppose there ezist injective functions f; - V(H) = {1,2,...,v}
for1 < j <v such that:
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(1) Ai(H),..., f,(H) form an edge-disjoint decomposition of G; and

(2) for allv € V(H), if dg(v) <t then {f1(v),..., fu(v)} ={1,2,...,v}.

Finally, let F be any t-factor of KC_(2s/t) V; H* which contains all the edges in H*,
where H* is the spanning subgraph of G in which E(H*) = E(H). Then there exists
a t-factorization of K,f_(%/t) V: G in which each t-factor is isomorphic to F.

Remark. As the proof of this Theorem shows, one consequence of these conditions
is that if ¢ = A then ¢ must divide 2s — 327" (it;).

Proof. Let V(G) = {1,2,...,v}, V(H) = {1,2,...,h}, and let KJ_, ,, have vertex
set W (so Wn{l,...,v} = ¢). Clearly we can assume that f;(v) = v for all
v € V(H), and that dy(v) < tor dg(v) =tfor 1 <o < A or B < v < hrespectively
(so A’ is the number vertices of degree less than t in H).

Form an h x v array L' as follows: for 1 < ¢ < hand 1 < j < v let cell (4,5)
of L' contain f;(i). Clearly L' is column latin since f; is injective, and by property
(2) if dy(v) < t then each of the symbols, 1,...,v appears exactly once in row v
of I. If A =t then note that the remaining rows &' + 1,..., h of L’ need not be
latin, but we do have the following property. By (1) E(G) is partitioned by the edges
in fi(H),...,f,(H), and for 1 < v < v symbol v occurs exactly once in row ¢ for
1 < i< W, thus accounting for T = 2" (it;) edges incident with v in G; so v must
occur in exactly (2s — T)/t cells in rows '+ 1,...,h of L.

Therefore by Theorem 2.2, L' can be embedded in a v x v column latin array
that is also row latin in row 7 for 1 < ¢ < A’ and h < ¢ < v. Clearly we can assume
cell (i,1) of L contains symbol ¢ for 1 < i < ». Let L(4, j) be the symbol in cell (4, j)
of L. Finally, for 1 < j <w,let £;: V(G)UW — V(G)UW be the automorphism
F; = £;(F) of F defined by ¢;(¢) = L(i,7) for 1 < i < v, and {;(w) = w for
all w € W. Then Fi,...,F, is a t-factorization of Kﬁ_@s i Vt G, as the following
argument shows.

First note that each t-factor of K¢ .,/ Vi G contains t(v — (2s/t) +v)/2 =
t(v — s/t) edges, so Fy,..., F, contain v*t — vs edges altogether; and |E(K}_,, /) Vi
Q)| = (v — (2s/t))vt + 2sv/2 = V% — vs, so it remains to show that each edge of
K (g5 Ve G occurs in at least one of Fy,...  F,.

FEach edge e € F(G) is one of Fi,..., F, because by (1) e occurs in one of
Hy,...,H,, say H;, and F; contains E(H;).

For each w € W and each v € V we find t edges joining w to v as follows. Since
F is a t-factor of K b—(s/ty Ve G, F contains ¢ edges incident with w; suppose that for
1 < i< 7 wis joined to v; € V by y; edges. Then clearly dg(v;) < t, so each of
1,...,v occurs in a cell in row v; of L. In particular, suppose that v occurs in cell
(vi,7); then v is joined to w with y; edges in F;. Therefore v is joined to w by at
least Y7, y; =t edges in Fi,..., F,, so the result is proved. O

Corollary 2.1. Let G be a 2s-regular spanning subgraph of 2K,. Let F' be any t-
factor of K,f_(s/t) VG such that the edges in the subgraph of F' induced by the vertices
in G induce an s-star. Then there ezists a t-factorization of KJ_ o Vi G in which
each t-factor is isomorphic to F.
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Proof. Let V(G) = {1,2,...,v} and let H be an s-star with V(H) ={1,...,s+ 1},
where dy(s+ 1) = s. By Proposition 2.1 (1), there exists a decomposition of G into
s-stars H(1),..., H(v) such that the center of H (i) is the vertex 4. Furthermore, by
Proposition 2.1 (2), for 1 < j < v and for 1 < v < s there exists an s-edge-colouring
of G such that j is incident with exactly one edge e coloured v that is in a star
H(3) for some i # j; so we can define f;(v) = i. Then also by Proposition 2.1 (2)
{filv),..., (@)} ={1,..., v} for 1 < v < s (since each vertex 4 in V(G) is incident
with exactly one edge coloured v that is in the s-star with center ).

The proof now follows from Theorem 2.3. O

3 2-factorizations of 2K,

In this section we first prove, using the results of the previous section, some general
results concerning 2-factorizations of graphs. We then prove that for any two integers
p and v (each at least 2) there is a uniform 2-factorization of 2K, in which each
2-factor consists of a cycle of length 1 and a cycle of length v (see Theorem 3.2).

Corollary 3.1. Let G be a 4-regular spanning subgraph of 2K,. Let n > 1, and let
mi,...,my satisfym; > 1 forl <j<n-—1,my,>2 and Z?:lm]' =v —1. Then
there exists a {2my, ..., 2my}-2-factorization of KS_4 V2 G.

Proof. Let V(K¢_,) ={1,...,v—2} x {0} and V(G) = {1,...,v} x {1}. We may
assume that G contains the edges {v — 2,v — 1} and {v — 1,v}. Let M; = E;;ll m;j
(with M; = 0), and let F' consist of the cycles ¢,...,c, defined as follows. For
1<i1<n—-1

C; = ((M, + 1, 0), (]\41 + 1, 1), (Mz + 2, 0), (M, + 2, 1), PN (Mi+1;0)7 (M,'_H, 1))
and

cn = (M, +1,0), (M, + 1,1), (M, + 2,0), (M, + 2,1),...,
(V - 270)a (V -2, 1)7 (V -1 1)7 (’/v 1))

Then ¢; has length 2m; for 1 <1 < n, I is 2-factor of KS_, Vo G. Since the edges
in the subgraph of F' induced by the vertices in G induce a 2-star, the result follows

from Corollary 2.1. O
Theorem 3.1. Let u and v be integers with 2 < p < v < 8(u + 1)/7. Suppose
there is an {my,ma,...,ma}-2-factorization of 2K, an {mai1,Mat2, ..., mg}-2-
factorization of 2K, and suppose there exist non-negative integers xi,%s, ..., 25 and
Y1, Y2, - -, Yg such that z; > y; and 2z, +y; = m; for 1 <i < B and Zleyi =V—U.
Then there ezists an {mq,mq, ..., mg}-2-factorization of 2K,,4,.

Proof. Let 2Ky, = AV, B where A = 2K,, B = 2K, and let s = v — u. Pair
off each of the yu — 1 2-factors in an {my,ms,...,ms}-2-factorization of A with
an {Mat1, Mat2, .- ,mp}-2-factor of B to obtain {u — 1 my, my, ..., mg}-2-factors
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F,F},...,F,_ of Avya B. Then, AV, B\{F{UF,U---UF, ,} = K Vs G
where G is 2s-regular on v vertices. We now apply Proposition 2.2. Note that since
v < 8{u-+1)/7 we have v > 8(s — 1) and the remaining s 2-factors F1, ..., Fy in the
{Mas1, Mas2, - - -, Mg p-2-factorization of B form a 2-factorization of G.

By Proposition 2.2, there is an edge-disjoint decomposition of G into v matchings
My, M,, ..., M,, each of size s, such that for 1 < j <wvand 1 <i <s, |[E(M;)N
E(F;)| = 1. Hence, by Proposition 2.3, there exist injective functions f; : V(M;) —
{1,2,...,v} for 1 £ j < v such that:

(1) A(My), ..., f,(M;) form an edge-disjoint decomposition of G (since by Propo-
sition 2.3 (1), f;(M:) = M;); and

(2) for allv € V(My), {fi(v),..., ()} ={L,2,...,v}.

Hence the result follows by Theorem 2.3 (with ¢ = 2 and H = M,) if we can find
an {mi, my, ..., mg}-2-factor F of K| Vo M*, containing all the edges of M*, where
M* is a matching of size s and V(M*) = {1,2,...,v}.

Write M* as the union of vertex-disjoint graphs G, . . ., Gg where G, is a matching
of size y; on (m; + y;)/2 vertices (note that Zle y; = s and Zf=1(mi +yi)/2 =
(p+v+v—p)/2=v). Also, partition the vertex set of K into sets Xi,..., X of
sizes z1, ...,z (note that 37 | z; = S (ms —;)/2 = p). Finally, for 1 <i< g
let C; be an m;-cycle with vertex set X; UV(G;) and with E(G;) C E(C;) (we can
do this since z; > y; for 1 <i < f)and let F=CyU---UCp. O

Theorem 3.2. For all integers p and v, 2 < p, v, there exists a {p, v}-2-factorization
of 2K ,1,, except that there is no {3, 3}-2-factorization of 2Ks.

Proof. It is shown in [4] that if 4 = v then there exists a {u, v}-2-factorization of
2K 1y, except that there is no {3, 3}-2-factorization of 2Ks. Hence we may assume
that 2 < p < v. For any given y and v we show that there is a set S,, C Z, \ {0}
which satisfies

@) [Supl =n-1
(2) H,(S,,) has a hamilton decomposition; and
(3) if pis odd then either 1 ¢ S, , and 2 € S, or p = v—1and S,, = Z,\{0,v/2}.

First, consider the pairs of differences {d1,d2} = {2,3},{4,5},... with {dy,ds} C
Z, | {10}. For each such pair {di,d>}, except the pair containing v/2 when v is even,
H,({dy,d;}) has a hamilton decomposition by [2].

If u is odd and pu < v — 1 then we can choose S, to consist of the elements of
i — 1/2 of these pairs and ensure that 2 € S,,, and, when v is even, that the both
elements of the pair containing /2 are not in S, . If yt is even then we let Sy, = {1}
and for p > 4, we can choose S, = S,-1, U {1}.

Finally, if v is even and p = v — 1 then we choose S, = Z, \ {0,v/2}. Note
that in this case, we pair up the differences as {di,ds}, ..., {dy—3,dy—2} where d; =
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1d2——2 d,,/21——-l//2 ld,,/g-——l//z-l—l d,,/2+1—1//2+2,...,d,,_2:l/—].tO
see that H (SW) has a hamilton decomposition by [2].

Let Z, be the vertex set of 2K, and let D = {dy,dy, ...,d,_,} = (Z,\ {0})\ S,
where dy < dy < --+ < d,_,. Then define the path P(D) = v, v1,...,v,_, where
vo=0andfori=1,2,...,v—p, v,= ) (-1)*d;

If u is even, we apply Theorem 3 with s = v — u,t = 2,G = H,(D),H =
P(D),fi(v) =v+j—-1(forj =1,2,...,v and v € V(H)). Hence, we require a
2-factor F', consisting of a p-cycle and a v-cycle, of K Vo H* where H* consists of a
path of length v — 12 and p — 1 isolated vertices. We form the p-cycle of F' by using
/2 vertices from K and p1/2 isolated vertices from H*. It is then straight-forward
to form a v-cycle using the remaining 1/2 vertices from K,the remaining p/2 — 1
isolated vertices in H* and the path of length v — . Hence by Theorem 3 there is a
{u, v}-2-factorization of Kf V, G.

The {u,v}-2- factonza,tlon of 2K),1, can now be completed since 2K, \ (K Vs,
G) 2 2K, + H,(S,,) has a {p, v}-2-factorization: we can pair the p-cycles in a u-
cycle system of 2K, with the y —1 v-cycles in a hamilton decomposition of H (S, ).

If i is odd, we again apply Theorem 3 with s = v — u,t = 2,G = H,(D), f;(v) =
v+7—1(forj=12,...,vand v € V(H)) but this time when p < v — 1 we
let H be the graph formed by removing the edge in H,({2}) from P(D U {2}), so
that H contains an isolated edge (namely the edge of H that is also in H,({1})).
When = v —1,D = {v/2} and we let H = P(D) so that H consists of a single
edge. Hence, we require a {1, v}-2-factor F of K 5 V2 H* where H* consists of a path
containing v — p — 1 edges, an isolated edge and u — 2 isolated vertices (in the case
p# = v —1 H* consists of an isolated edge and y — 1 isolated vertices). We form
the p-cycle of F' by using (u — 1)/2 vertices from K, the isolated edge of H*, and
(p — 3)/2 isolated vertices of H*. It is then straight- forward to form a v-cycle usmg
the remaining (p + 1)/2 vertices from K ﬁ and the remaining isolated vertices and
paths in H*. Hence by Theorem 3 there is a {u, v}-2-factorization of KV, G.

As in the case p even, we complete the 2-factorization of 2K, by pairing the
p# — 1 p-cycles in a p-cycle system of 2K, with the 4 — 1 v-cycles in a hamilton
decomposition of H(S,,). O
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