Factorizations of Complete Multigraphs

B. J. Battersby^{*}, D. E. Bryant[†]

Centre for Combinatorics Department of Mathematics, The University of Queensland Queensland 4072, Australia

C.A. Rodger[‡]

Department of Discrete and Statistical Sciences 120 Math Annex Auburn University Auburn, Alabama 36849-5307, U.S.A

Dedicated to the memory of Derrick Breach, 1933–1996

Abstract

In this paper, several general results are obtained on the Oberwolfach problem that provide isomorphic 2-factorizations of $2K_n$. One consequence of these results is that the existence of a 2-factorization in which each 2-factor of $2K_n$ consists of one cycle of length x and one of length n-x is completely settled. The techniques used to obtain these results are novel, using for example the Lindner-Rodger generalizations of Marshall Hall's classic embedding theorem for incomplete latin squares.

1 Introduction

Let λK_n denote the multigraph on n vertices in which each pair of vertices is joined by exactly λ edges. An m-cycle $(v_0, v_1, \ldots, v_{m-1})$ is a graph with vertex set $\{v_0, \ldots, v_{m-1}\}$ and edge set $\{v_i v_{i+1} \mid i \in \mathbb{Z}_m\}$, reducing the subscript modulo m. An m-cycle system or order n and index λ is an ordered pair (V, C), where C is a collection of m-cycles whose edges partition the edges of λK_n defined on the vertex set V (so |V| = n). There have been many results obtained concerning the existence

^{*} Research supported by Australian Research Council grant A49532750.

 $^{^\}dagger \, {\rm Research}$ supported by an Australian Postdoctoral Research Fellowship and ARC grant A49532750.

[‡] Research supported by ONR grant N000014-95-0769 and NSF grant DMS-9531722.

of *m*-cycle systems of λK_n (and of other graphs). Such results date back to 1847 when Kirkman [8] settled the existence problem for 3-cycle systems of K_n (Steiner triple systems), but most papers on this subject have been written over the past thirty years. A survey of these results can be found in [10].

It has also been of interest to study *m*-cycle systems that have additional properties. A parallel class of an *m*-cycle system (V, C) of λK_n is a set of cycles in *C* that form a 2-factor of λK_n . An *m*-cycle system (V, C) of λK_n is said to be resolvable if *C* can be partitioned into parallel classes. The existence problem for resolvable 3-cycle systems of K_n (Kirkman triple systems) was first posed and solved in the case n = 15by Kirkman in 1850 [9]; it was solved for all *n* by Ray-Chadhuri and Wilson in 1971 [12]. A different generalization of their result was then obtained: resolvable *m*-cycle systems of K_n were shown to exist iff *m* is odd and $n \equiv m \pmod{2m}$ in [1, 7] after various people had contributed preliminary results (see [10] for a survey).

However a much more general conjecture still remains unsolved (and is likely to do so for a long time): in 1967 Ringel asked whether for any integers m_1, \ldots, m_t with $n = \sum_{i=1}^{t} m_i$, there exists a 2-factorization of K_n in which each two factor consists of t cycles, one of each length m_1, m_2, \ldots, m_t ; so each 2-factor is isomorphic to each other 2-factor in this 2-factorization. Of course, if $m_1 = m_2 = \cdots = m_t$ then Ringel is asking for a resolvable m_1 -cycle system of K_n . It is known that solutions to Ringel's question (also known as the Oberwolfach Problem) do not exist when $m_1 = 4, m_2 = 5$ and n = 9, and when $m_1 = 3, m_2 = 3, m_3 = 5$ and n = 11, but it is widely believed that these are the only exceptional cases.

Of course, a solution to the Oberwolfach problem requires n to be odd, because every vertex must have even degree. This restriction on n is avoided by considering 2-factorizations of $2K_n$. In this paper we obtain several general results concerning the existence of isomorphic 2-factorizations of $2K_n$. In particular, we completely settle the Oberwolfach problem in the case where t = 2 (see Theorem 3.2). The techniques we use to prove these results are also of interest, being novel approaches to this problem. For example, the Lindner-Rodger generalizations (Theorem 2.2, see [11]) of Hall's classic theorem [5] on embedding incomplete latin rectangles is the main tool required to prove Theorem 2.3.

Define an $\{m_1, m_2, \ldots, m_t\}$ -2-factor of a graph G to be a 2-factor of G in which there are t cycles, one of each length m_1, m_2, \ldots, m_t ; so G has $\sum_{i=1}^t m_i$ vertices. An $\{m_1, m_2, \ldots, m_t\}$ -2-factorization of G is a 2-factorization of G in which each 2-factor is a $\{m_1, m_2, \ldots, m_t\}$ -2-factor. Any graph theoretical terms not defined here can be found in [3].

2 General Results

Proposition 2.1. Let G be a 2s-regular spanning subgraph of $2K_{\nu}$. There exists an edge-disjoint decomposition of G into ν s-stars such that:

(1) each vertex is the center of exactly one s-star; and

(2) there exists an s-colouring of E(G) such that for each $v \in V(G)$, each colour appears on exactly two edges incident with v, one in the star centered on v, and one not.

Proof. Let $V(G) = \mathbb{Z}_{\nu}$. Form a simple bipartite graph B with bipartition V(G) and E(G) by joining $i \in V(G)$ to $e \in E(G)$ if and only if i is incident with e in G. Then $d_B(i) = 2s$ and $d_B(e) = 2$. Give B an equitable 2-edge-colouring with colours α and β . For each $i \in V(G)$, let S(i) be the vertices in B joined to i by an edge coloured α . Since the edge-colouring of B is equitable, i is incident with s edges coloured α , so |S(i)| = s, and $e \in E(G)$ is incident with one edge coloured α , so $\{S(i) \mid i \in V(G)\}$ is a partition of E(G). Since S(i) induces an s-star in G centered at i, we have proved (1).

To prove (2), let B' be a bipartite graph with bipartition $V = \{v_i \mid i \in \mathbb{Z}_{\nu}\}$ and $W = \{w_j \mid j \in \mathbb{Z}_{\nu}\}$ formed by joining v_i to w_j if and only if $\{i, j\}$ is an edge in S(i). Then since each vertex is the center of one s-star and therefore is a pendant vertex in s s-stars, $d_{B'}(v_i) = s = d_{B'}(w_j)$. Give B' a proper s-edge-colouring, then give G an s-edge-colouring by colouring $\{i, j\} \in S(i)$ with the same colour as the edge $\{v_i, w_j\}$ in B'. Since v_i in B' is incident with one edge of each colour, the edges in S(i) are all coloured differently, and since w_j is incident with one edge of each colour, the edges incident with j in G that are not in S(j) are all coloured differently. So (2) has been proved.

For any graph G and any $X \subseteq V(G)$, let $N_G(X)$ be the neighbourhood of X in G. Philip Hall proved the following result.

Theorem 2.1 ([6]). Let B be a bipartite graph with bipartition V and W of the vertex set. B contains a 1-factor if and only if $|X| \leq |N_B(X)|$ for all $X \subset V$.

Proposition 2.2. Let G be a 2s-regular multigraph on ν vertices where $\nu \geq 8(s-1)$. Let $\{F_1, \ldots, F_s\}$ be any 2-factorization of G. Then there exists an edge-disjoint decomposition of G into ν matchings, each of size s, such that each matching contains one edge in F_i for $1 \leq i \leq s$.

Proof. The proof is by induction on s. The result is clearly true when s = 1, so assume that s > 1. Let G(s) be any 2s-regular graph on ν vertices with $\nu \ge 8(s-1)$ and let $\{F_1, \ldots, F_s\}$ be a 2-factorization of G(s). Let $G(s-1) = G(s) - E(F_s)$. Then $\{F_1, \ldots, F_{s-1}\}$ is a 2-factorization of G(s-1), and obviously $\nu \ge 8(s-2)$, so by the induction hypothesis there exist matchings $M(j) = \{e_1(j), \ldots, e_{s-1}(j)\}$ for $1 \le j \le \nu$ such that $\{M(1), \ldots, M(\nu)\}$ is a partition of E(G(s-1)).

Form a simple bipartite graph B with bipartition $M = \{M_1, \ldots, M_\nu\}$ and $E = E(F_s)$ by joining $M_j \in M$ to $e \in E$ if and only if $M(j) \cup \{e\}$ is an independent set (of size s) in G(s). Note that since each edge in F_s is incident with at most 4 edges in F_i for $1 \le i \le s - 1$, $d_B(e) \ge \nu - 4(s - 1)$ for each $e \in E$. Similarly, each of the s - 1 edges in M(j) for $1 \le j \le \nu$ is incident with at most 4 edges in F_s , so $d_B(M_j) \ge \nu - 4(s - 1)$. So the minimum degree $\delta(B)$ of B satisfies $\delta(B) \ge \nu - 4(s - 1)$.

We now show that B contains a 1-factor, by applying Hall's Theorem. Let $X \subseteq M$. Since $\delta(B) \geq \nu - 4(s-1)$ and B is simple, $|N_B(X)| \geq \nu - 4(s-1)$. Clearly if

 $|N_B(X)| = \nu$ then $|X| \leq |N_B(X)|$, so we can assume that $e \in E - N_B(X)$. Then since $d_B(e) \geq \nu - 4(s-1)$, we have that $\nu - |X| = |M - X| \geq |N_B(e)| \geq \nu - 4(s-1)$, so $|X| \leq 4(s-1) \leq \nu - 4(s-1) \leq |N_B(X)|$. Therefore B has a 1-factor, F.

The result now follows by adding e to M(j) if and only if e is joined to M_j by an edge in F.

Proposition 2.3. Let G be a 2s-regular multigraph on ν vertices and let $\{F_1, F_2, ..., F_s\}$ be any 2-factorization of G. Let $\{G_1, G_2, ..., G_\nu\}$ be an edge disjoint decomposition of G into ν 1-regular subgraphs, each containing s edges, such that $|E(F_i) \cap E(G_j)| = 1$ for any i and j with $1 \le i \le s$ and $1 \le j \le \nu$. Then there exist injective functions $f_i : V(G_1) \to \{1, 2, ..., \nu\}$ for $1 \le j \le \nu$ such that:

(1) If $\{v, w\} \in E(G_1) \cap E(F_i)$ then $\{f_j(v), f_j(w)\} \in E(G_j) \cap E(F_i)$; and

(2) for all $v \in V(G_1)$, $\{f_1(v), f_2(v), \ldots, f_{\nu}(v)\} = \{1, 2, \ldots, \nu\}.$

Proof. For i = 1, 2, ..., s, form a simple bipartite graph B_i with bipartition $V(F_i)$ and $E(F_i)$ by joining $v \in V(F_i)$ to $e \in E(F_i)$ if and only if v is incident with e in F_i . For i = 1, 2, ..., s, B_i is 2-regular and so we can give B_i a 2-edge-colouring with colours α and β such that each vertex of B_i is incident with one edge coloured α and one edge coloured β .

For each $v \in V(G_1)$, let $\{v, w\}$ be the unique edge in G_1 incident with v; then if F_i is the 2-factor containing $\{v, w\}$ then define $f_j(v) = v'$ and $f_j(w) = w'$ where $\{v', w'\} \in E(G_j) \cap E(F_i)$ and the edge joining v to $\{v, w\}$ is the same colour as the edge joining v' to $\{v', w'\}$ in B_i . For $1 \leq j \leq v$, f_j is a function since G_1 is 1-regular, and f_j is injective since G_j is 1-regular. \Box

The following is a generalization of Marshall Hall's theorem proved in [5]. The Lindner-Rodger generalization was proved in [11] (Theorem 3.1), where it is described in terms of patterned holes. Here we change the notation to fit the proof of Theorem 2.3. A row or column ℓ of an array L is said to be *latin* if each symbol occurs in at most one cell of ℓ in L.

Theorem 2.2. Let L' be an $s \times \nu$ array on the symbols $1, \ldots, \nu$ in which each cell contains exactly one symbol, each column is latin, and each symbol occurs in exactly s cells of L'. Then L' can be embedded in a $\nu \times \nu$ array in which each column is latin and each of rows $s + 1, \ldots, \nu$ is latin.

If G and H are two graphs with $V(G) \cap V(H) = \emptyset$, then let $G \vee_t H$ be the graph with $V(G \vee_t H) = V(G) \cup V(H)$ and where $E(G \vee_t H)$ consists of the edges in $E(G) \cup E(H)$ together with t edges joining each vertex in V(G) to each vertex in V(H).

Theorem 2.3. Let s, t be positive integers such that t divides 2s. Let G be a 2sregular spanning subgraph of tK_{ν} . Let H be a subgraph of G with maximum degree $\Delta \leq t$ that contains exactly s edges, and in which for $1 \leq i \leq \Delta, H$ contains $t_i \geq 0$ vertices of degree i. Suppose there exist injective functions $f_j: V(H) \rightarrow \{1, 2, \ldots, \nu\}$ for $1 \leq j \leq \nu$ such that: (1) $f_1(H), \ldots, f_{\nu}(H)$ form an edge-disjoint decomposition of G; and

(2) for all $v \in V(H)$, if $d_H(v) < t$ then $\{f_1(v), \ldots, f_\nu(v)\} = \{1, 2, \ldots, \nu\}$.

Finally, let F be any t-factor of $K^{c}_{\nu-(2s/t)} \vee_t H^*$ which contains all the edges in H^* , where H^* is the spanning subgraph of G in which $E(H^*) = E(H)$. Then there exists a t-factorization of $K^{c}_{\nu-(2s/t)} \vee_t G$ in which each t-factor is isomorphic to F.

Remark. As the proof of this Theorem shows, one consequence of these conditions is that if $t = \Delta$ then t must divide $2s - \sum_{i=1}^{\Delta-1} (it_i)$.

Proof. Let $V(G) = \{1, 2, ..., \nu\}$, $V(H) = \{1, 2, ..., h\}$, and let $K_{\nu-(2s/t)}^c$ have vertex set W (so $W \cap \{1, ..., \nu\} = \phi$). Clearly we can assume that $f_1(v) = v$ for all $v \in V(H)$, and that $d_H(v) < t$ or $d_H(v) = t$ for $1 \le v \le h'$ or $h' < v \le h$ respectively (so h' is the number vertices of degree less than t in H).

Form an $h \times \nu$ array L' as follows: for $1 \leq i \leq h$ and $1 \leq j \leq \nu$ let cell (i, j)of L' contain $f_j(i)$. Clearly L' is column latin since f_j is injective, and by property (2) if $d_H(v) < t$ then each of the symbols, $1, \ldots, \nu$ appears exactly once in row vof L'. If $\Delta = t$ then note that the remaining rows $h' + 1, \ldots, h$ of L' need not be latin, but we do have the following property. By (1) E(G) is partitioned by the edges in $f_1(H), \ldots, f_{\nu}(H)$, and for $1 \leq v \leq \nu$ symbol v occurs exactly once in row i for $1 \leq i \leq h'$, thus accounting for $T = \sum_{i=1}^{\Delta-1} (it_i)$ edges incident with v in G; so v must occur in exactly (2s - T)/t cells in rows $h' + 1, \ldots, h$ of L'.

Therefore by Theorem 2.2, L' can be embedded in a $\nu \times \nu$ column latin array that is also row latin in row i for $1 \leq i \leq h'$ and $h < i \leq \nu$. Clearly we can assume cell (i, 1) of L contains symbol i for $1 \leq i \leq \nu$. Let L(i, j) be the symbol in cell (i, j)of L. Finally, for $1 \leq j \leq \nu$, let ℓ_j : $V(G) \cup W \to V(G) \cup W$ be the automorphism $F_j = \ell_j(F)$ of F defined by $\ell_j(i) = L(i, j)$ for $1 \leq i \leq \nu$, and $\ell_j(w) = w$ for all $w \in W$. Then F_1, \ldots, F_{ν} is a t-factorization of $K^c_{\nu-(2s/t)} \vee_t G$, as the following argument shows.

First note that each t-factor of $K_{\nu-(2s/t)}^c \vee_t G$ contains $t(\nu - (2s/t) + \nu)/2 = t(\nu - s/t)$ edges, so F_1, \ldots, F_{ν} contain $\nu^2 t - \nu s$ edges altogether; and $|E(K_{\nu-(2s/t)}^c \vee_t G)| = (\nu - (2s/t))\nu t + 2s\nu/2 = \nu^2 t - \nu s$, so it remains to show that each edge of $K_{\nu-(2s/t)}^c \vee_t G$ occurs in at least one of F_1, \ldots, F_{ν} .

Each edge $e \in E(G)$ is one of F_1, \ldots, F_{ν} because by (1) e occurs in one of H_1, \ldots, H_{ν} , say H_j , and F_j contains $E(H_j)$.

For each $w \in W$ and each $v \in V$ we find t edges joining w to v as follows. Since F is a t-factor of $K_{\nu-(s/t)}^c \lor_t G$, F contains t edges incident with w; suppose that for $1 \leq i \leq x$ w is joined to $v_i \in V$ by y_i edges. Then clearly $d_H(v_i) < t$, so each of $1, \ldots, \nu$ occurs in a cell in row v_i of L. In particular, suppose that v occurs in cell (v_i, j) ; then v is joined to w with y_i edges in F_j . Therefore v is joined to w by at least $\sum_{i=1}^{x} y_i = t$ edges in F_1, \ldots, F_{ν} , so the result is proved.

Corollary 2.1. Let G be a 2s-regular spanning subgraph of $2K_{\nu}$. Let F be any tfactor of $K_{\nu-(s/t)}^c \vee_t G$ such that the edges in the subgraph of F induced by the vertices in G induce an s-star. Then there exists a t-factorization of $K_{\nu-(2s/t)}^c \vee_t G$ in which each t-factor is isomorphic to F. Proof. Let $V(G) = \{1, 2, ..., \nu\}$ and let H be an s-star with $V(H) = \{1, ..., s + 1\}$, where $d_H(s+1) = s$. By Proposition 2.1 (1), there exists a decomposition of G into s-stars $H(1), ..., H(\nu)$ such that the center of H(i) is the vertex i. Furthermore, by Proposition 2.1 (2), for $1 \le j \le \nu$ and for $1 \le v \le s$ there exists an s-edge-colouring of G such that j is incident with exactly one edge e coloured v that is in a star H(i) for some $i \ne j$; so we can define $f_j(v) = i$. Then also by Proposition 2.1 (2) $\{f_1(v), \ldots, f_{\nu}(v)\} = \{1, \ldots, \nu\}$ for $1 \le v \le s$ (since each vertex i in V(G) is incident with exactly one edge coloured v that is in the s-star with center i).

The proof now follows from Theorem 2.3.

3 2-factorizations of $2K_{\nu}$

In this section we first prove, using the results of the previous section, some general results concerning 2-factorizations of graphs. We then prove that for any two integers μ and ν (each at least 2) there is a uniform 2-factorization of $2K_{\mu+\nu}$ in which each 2-factor consists of a cycle of length μ and a cycle of length ν (see Theorem 3.2).

Corollary 3.1. Let G be a 4-regular spanning subgraph of $2K_{\nu}$. Let $n \ge 1$, and let m_1, \ldots, m_n satisfy $m_i \ge 1$ for $1 \le j \le n-1$, $m_n \ge 2$, and $\sum_{j=1}^n m_j = \nu - 1$. Then there exists a $\{2m_1, \ldots, 2m_n\}$ -2-factorization of $K_{\nu-2}^c \lor_2 G$.

Proof. Let $V(K_{\nu-2}^c) = \{1, \ldots, \nu-2\} \times \{0\}$ and $V(G) = \{1, \ldots, \nu\} \times \{1\}$. We may assume that G contains the edges $\{\nu - 2, \nu - 1\}$ and $\{\nu - 1, \nu\}$. Let $M_i = \sum_{j=1}^{i-1} m_j$ (with $M_1 = 0$), and let F consist of the cycles c_1, \ldots, c_n defined as follows. For $1 \leq i \leq n-1$

$$c_i = ((M_i + 1, 0), (M_i + 1, 1), (M_i + 2, 0), (M_i + 2, 1), \dots, (M_{i+1}, 0), (M_{i+1}, 1))$$

and

$$c_n = ((M_n + 1, 0), (M_n + 1, 1), (M_n + 2, 0), (M_n + 2, 1), \dots, (\nu - 2, 0), (\nu - 2, 1), (\nu - 1, 1), (\nu, 1)).$$

Then c_i has length $2m_i$ for $1 \le i \le n$, F is 2-factor of $K_{\nu-2}^c \lor_2 G$. Since the edges in the subgraph of F induced by the vertices in G induce a 2-star, the result follows from Corollary 2.1.

Theorem 3.1. Let μ and ν be integers with $2 \leq \mu < \nu \leq 8(\mu+1)/7$. Suppose there is an $\{m_1, m_2, \ldots, m_{\alpha}\}$ -2-factorization of $2K_{\mu}$, an $\{m_{\alpha+1}, m_{\alpha+2}, \ldots, m_{\beta}\}$ -2factorization of $2K_{\nu}$ and suppose there exist non-negative integers $x_1, x_2, \ldots, x_{\beta}$ and $y_1, y_2, \ldots, y_{\beta}$ such that $x_i \geq y_i$ and $2x_i + y_i = m_i$ for $1 \leq i \leq \beta$ and $\sum_{i=1}^{\beta} y_i = \nu - \mu$. Then there exists an $\{m_1, m_2, \ldots, m_{\beta}\}$ -2-factorization of $2K_{\mu+\nu}$.

Proof. Let $2K_{\mu+\nu} = A \vee_2 B$ where $A \cong 2K_{\mu}$, $B \cong 2K_{\nu}$ and let $s = \nu - \mu$. Pair off each of the $\mu - 1$ 2-factors in an $\{m_1, m_2, \ldots, m_{\alpha}\}$ -2-factorization of A with an $\{m_{\alpha+1}, m_{\alpha+2}, \ldots, m_{\beta}\}$ -2-factor of B to obtain $\{\mu - 1, m_1, m_2, \ldots, m_{\beta}\}$ -2-factors

 $F'_1, F'_2, \ldots, F'_{\mu-1}$ of $A \vee_2 B$. Then, $A \vee_2 B \setminus \{F'_1 \cup F'_2 \cup \cdots \cup F'_{\mu-1}\} \cong K^c_{\mu} \vee_2 G$ where G is 2s-regular on ν vertices. We now apply Proposition 2.2. Note that since $\nu \leq 8(\mu+1)/7$ we have $\nu \geq 8(s-1)$ and the remaining s 2-factors F_1, \ldots, F_s in the $\{m_{\alpha+1}, m_{\alpha+2}, \ldots, m_{\beta}\}$ -2-factorization of B form a 2-factorization of G.

By Proposition 2.2, there is an edge-disjoint decomposition of G into ν matchings $M_1, M_2, \ldots, M_{\nu}$, each of size s, such that for $1 \leq j \leq \nu$ and $1 \leq i \leq s$, $|E(M_j) \cap E(F_i)| = 1$. Hence, by Proposition 2.3, there exist injective functions $f_j: V(M_1) \to \{1, 2, \ldots, \nu\}$ for $1 \leq j \leq \nu$ such that:

- (1) $f_1(M_1), \ldots, f_{\nu}(M_1)$ form an edge-disjoint decomposition of G (since by Proposition 2.3 (1), $f_j(M_1) = M_j$); and
- (2) for all $v \in V(M_1)$, $\{f_1(v), \ldots, f_{\nu}(v)\} = \{1, 2, \ldots, \nu\}$.

Hence the result follows by Theorem 2.3 (with t = 2 and $H = M_1$) if we can find an $\{m_1, m_2, \ldots, m_\beta\}$ -2-factor F of $K^c_{\mu} \vee_2 M^*$, containing all the edges of M^* , where M^* is a matching of size s and $V(M^*) = \{1, 2, \ldots, \nu\}$.

Write M^* as the union of vertex-disjoint graphs G_1, \ldots, G_β where G_i is a matching of size y_i on $(m_i + y_i)/2$ vertices (note that $\sum_{i=1}^{\beta} y_i = s$ and $\sum_{i=1}^{\beta} (m_i + y_i)/2 =$ $(\mu + \nu + \nu - \mu)/2 = \nu$). Also, partition the vertex set of K_{μ}^c into sets X_1, \ldots, X_β of sizes x_1, \ldots, x_β (note that $\sum_{i=1}^{\beta} x_i = \sum_{i=1}^{\beta} (m_i - y_i)/2 = \mu$). Finally, for $1 \le i \le \beta$ let C_i be an m_i -cycle with vertex set $X_i \cup V(G_i)$ and with $E(G_i) \subseteq E(C_i)$ (we can do this since $x_i \ge y_i$ for $1 \le i \le \beta$) and let $F = C_1 \cup \cdots \cup C_\beta$.

Theorem 3.2. For all integers μ and ν , $2 \leq \mu, \nu$, there exists a $\{\mu, \nu\}$ -2-factorization of $2K_{\mu+\nu}$, except that there is no $\{3,3\}$ -2-factorization of $2K_6$.

Proof. It is shown in [4] that if $\mu = \nu$ then there exists a $\{\mu, \nu\}$ -2-factorization of $2K_{\mu+\nu}$, except that there is no $\{3, 3\}$ -2-factorization of $2K_6$. Hence we may assume that $2 \leq \mu < \nu$. For any given μ and ν we show that there is a set $S_{\mu,\nu} \subseteq \mathbb{Z}_{\nu} \setminus \{0\}$ which satisfies

- (1) $|S_{\mu,\nu}| = \mu 1;$
- (2) $H_{\nu}(S_{\mu,\nu})$ has a hamilton decomposition; and
- (3) if μ is odd then either $1 \notin S_{\mu,\nu}$ and $2 \in S_{\mu,\nu}$ or $\mu = \nu 1$ and $S_{\mu,\nu} = \mathbb{Z}_{\nu} \setminus \{0, \nu/2\}$.

First, consider the pairs of differences $\{d_1, d_2\} = \{2, 3\}, \{4, 5\}, \ldots$ with $\{d_1, d_2\} \subseteq \mathbb{Z}_{\nu} \mid \{10\}$. For each such pair $\{d_1, d_2\}$, except the pair containing $\nu/2$ when ν is even, $H_{\nu}(\{d_1, d_2\})$ has a hamilton decomposition by [2].

If μ is odd and $\mu < \nu - 1$ then we can choose $S_{\mu,\nu}$ to consist of the elements of $\mu - 1/2$ of these pairs and ensure that $2 \in S_{\mu,\nu}$ and, when ν is even, that the both elements of the pair containing $\nu/2$ are not in $S_{\mu,\nu}$. If μ is even then we let $S_{2,\nu} = \{1\}$ and for $\mu \geq 4$, we can choose $S_{\mu,\nu} = S_{\mu-1,\nu} \cup \{1\}$.

Finally, if ν is even and $\mu = \nu - 1$ then we choose $S_{\mu,\nu} = \mathbb{Z}_{\nu} \setminus \{0, \nu/2\}$. Note that in this case, we pair up the differences as $\{d_1, d_2\}, \ldots, \{d_{\nu-3}, d_{\nu-2}\}$ where $d_1 =$

 $1, d_2 = 2, \dots, d_{\nu/2-1} = \nu/2 - 1, d_{\nu/2} = \nu/2 + 1, d_{\nu/2+1} = \nu/2 + 2, \dots, d_{\nu-2} = \nu - 1$ to see that $H_{\nu}(S_{\mu,\nu})$ has a hamilton decomposition by [2].

Let \mathbb{Z}_{ν} be the vertex set of $2K_{\nu}$ and let $D = \{d_1, d_2, \ldots, d_{\nu-\mu}\} = (\mathbb{Z}_{\nu} \setminus \{0\}) \setminus S_{\nu,\mu}$ where $d_1 < d_2 < \cdots < d_{\nu-\mu}$. Then define the path $P(D) = v_0, v_1, \ldots, v_{\nu-\mu}$ where $v_0 = 0$ and for $i = 1, 2, \ldots, \nu - \mu, v_i = \sum_{j=1}^i (-1)^{j+1} d_j$.

If μ is even, we apply Theorem 3 with $s = \nu - \mu, t = 2, G = H_{\nu}(D), H = P(D), f_j(v) = v + j - 1$ (for j = 1, 2, ..., v and $v \in V(H)$). Hence, we require a 2-factor F, consisting of a μ -cycle and a ν -cycle, of $K^c_{\mu} \vee_2 H^*$ where H^* consists of a path of length $\nu - \mu$ and $\mu - 1$ isolated vertices. We form the μ -cycle of F by using $\mu/2$ vertices from K^c_{μ} and $\mu/2$ isolated vertices from H^* . It is then straight-forward to form a ν -cycle using the remaining $\mu/2$ vertices from K^c_{μ} , the remaining $\mu/2 - 1$ isolated vertices in H^* and the path of length $\nu - \mu$. Hence by Theorem 3 there is a $\{\mu, \nu\}$ -2-factorization of $K^c_{\mu} \vee_2 G$.

The $\{\mu, \nu\}$ -2-factorization of $2K_{\mu+\nu}$ can now be completed since $2K_{\mu+\nu} \setminus (K_{\mu}^c \vee_2 G) \cong 2K_{\mu} + H_{\nu}(S_{\mu,\nu})$ has a $\{\mu, \nu\}$ -2-factorization: we can pair the μ -cycles in a μ -cycle system of $2K_{\mu}$ with the $\mu - 1$ ν -cycles in a hamilton decomposition of $H(S_{\mu,\nu})$.

If μ is odd, we again apply Theorem 3 with $s = \nu - \mu, t = 2, G = H_{\nu}(D), f_j(v) = v + j - 1$ (for j = 1, 2, ..., v and $v \in V(H)$) but this time when $\mu < \nu - 1$ we let H be the graph formed by removing the edge in $H_{\nu}(\{2\})$ from $P(D \cup \{2\})$, so that H contains an isolated edge (namely the edge of H that is also in $H_{\nu}(\{1\})$). When $\mu = \nu - 1, D = \{\nu/2\}$ and we let H = P(D) so that H consists of a single edge. Hence, we require a $\{\mu, \nu\}$ -2-factor F of $K_{\mu}^{c} \vee_{2} H^{*}$ where H^{*} consists of a path containing $\nu - \mu - 1$ edges, an isolated edge and $\mu - 2$ isolated vertices (in the case $\mu = \nu - 1, H^{*}$ consists of an isolated edge and $\mu - 1$ isolated vertices). We form the μ -cycle of F by using $(\mu - 1)/2$ vertices from K_{μ}^{c} , the isolated edge of H^{*} , and $(\mu - 3)/2$ isolated vertices of H^{*} . It is then straight-forward to form a ν -cycle using the remaining $(\mu + 1)/2$ vertices from K_{μ}^{c} and the remaining isolated vertices and paths in H^{*} . Hence by Theorem 3 there is a $\{\mu, \nu\}$ -2-factorization of $K_{\mu}^{c} \vee_{2} G$.

As in the case μ even, we complete the 2-factorization of $2K_{\mu+\nu}$ by pairing the $\mu - 1$ μ -cycles in a μ -cycle system of $2K_{\mu}$ with the $\mu - 1$ ν -cycles in a hamilton decomposition of $H(S_{\mu,\nu})$.

References

- B. Alspach, P. Schellenberg, D. R. Stinson, and D. Wagner. The Oberwolfach problem and factors of uniform odd length cycles. Journal of Combinatorial Theory (A), 52 (1989), 20-43.
- [2] J-C. Bermond, O. Favaron and M. Makéo, Hamilton decompositions of Cayley graphs of degree 4, Journal of Combinatorial Theory (B), 46 (1989), 142-153.
- [3] J. A. Bondy and U.S.R. Murty, Graph Theory with Applications, North Holland, 1976.
- [4] P. Gvozdjak, On the Oberwolfach problem for complete multigraphs, preprint.

- [5] M. Hall, An existence theorem for latin squares, Bull. Amer. Math. Soc., 51 (1945), 387-388.
- [6] P. Hall, On representatives of subsets, J. London Math. Soc. 10 (1935), 26-30.
- [7] D. G. Hoffman and P. J. Schellenberg, The existence of C_k -factorizations of $K_{2n} F$, Discrete Math., 97 (1991), 243-250.
- [8] Rev. T. P. Kirkman, On a problem in combinations. Cambr. and Dublin Math. J., 2 (1847), 191-204.
- [9] Rev. T. P. Kirkman, On the triads made with fifteen things. London, Edinburgh and Dublin Philos. Mag. and J. Sci., 37 (1850), 169-171.
- [10] C. C. Lindner and C. A. Rodger, *Decomposition into cycles II: Cycle systems*, Contemporary design theory, J. H. Dinitz and D. R. Stinson (Editors), Wiley, New York, 1992, 325-369.
- [11] C. C. Lindner and C. A. Rodger, Generalized embedding theorems for partial latin squares, Bull. of the ICA, 5 (1992), 81-99.
- [12] D. K. Ray-Chaudhuri and R. M. Wilson, Solution of Kirkman's schoolgirl problem. Proc. Symp. Pure Math. Amer. Math. Soc., 19 (1971), 187-204.

(Received 9/1/97)