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Abstract 

In this paper, several general results are obtained on the Oberwolfach 
problem that provide isomorphic 2-factorizations of 2Kn. One conse­
quence of these results is that the existence of a 2-factorization in which 
each 2-factor of 2Kn consists of one cycle of length x and one of length 
n-x is completely settled. The techniques used to obtain these results are 
novel, using for example the Lindner-Rodger generalizations of Marshall 
Hall's classic embedding theorem for incomplete latin squares. 

1 Introduction 

Let >.Kn denote the multigraph on n vertices in which each pair of vertices is 
joined by exactly >. edges. An m-cycle (Vo, VI, ... , Vm-I) is a graph with vertex 
set {vo, . .. ,Vm-I} and edge set {ViVi+1 ! i E Zm}, reducing the subscript modulo m. 
An m-cycle system or order n and index>. is an ordered pair (V, C), where C is a 
collection of m-cycles whose edges partition the edges of >.Kn defined on the vertex 
set V (so !V! n). There have been many results obtained concerning the existence 
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of m-cycle systems of AKn (and of other graphs). Such results date back to 1847 
when Kirkman [8] settled the existence problem for 3-cycle systems of Kn (Steiner 
triple systems), but most papers on this subject have been written over the past 
thirty years. A survey of these results can be found in [10]. 

It has also been of interest to study m-cycle systems that have additional proper­
ties. A parallel class of an m-cycle system (V, C) of AKn is a set of cycles in C that 
form a 2-factor of AKn. An m-cycle system (V, C) of AKn is said to be resolvable if C 
can be partitioned into parallel classes. The existence problem for resolvable 3-cycle 
systems of Kn (Kirkman triple systems) was first posed and solved in the case n = 15 
by Kirkman in 1850 [9]; it was solved for all n by Ray-Chadhuri and Wilson in 1971 
[12]. A different generalization of their result was then obtained: resolvable m-cycle 
systems of Kn were shown to exist iff m is odd and n == m (mod 2m) in [1, 7] after 
various people had contributed preliminary results (see [10] for a survey). 

However a much more general conjecture still remains unsolved (and is likely to 
do so for a long time): in 1967 Ringel asked whether for any integers ml, ... , mt with 

t 

n = I:: mi, there exists a 2-factorization of Kn in which each two factor consists of t 
i=1 

cycles, one of each length ml, m2, ... ,mt; so each 2-factor is isomorphic to each other 
2-factor in this 2-factorization. Of course, if mi = m2 = ... = mt then Ringel is 
asking for a resolvable mi-cycle system of Kn. It is known that solutions to Ringel's 
question (also known as the Oberwolfach Problem) do not exist when mi = 4, m2 = 5 
and n = 9, and when mi = 3, m2 3, m3 = 5 and n = 11, but it is widely believed 
that these are the only exceptional cases. 

Of course, a solution to the Oberwolfach problem requires n to be odd, because 
every vertex must have even degree. This restriction on n is avoided by considering 
2-factorizations of 2Kn . In this paper we obtain several general results concerning 
the existence of isomorphic 2-factorizations of 2Kn . In particular, we completely 
settle the Oberwolfach problem in the case where t = 2 (see Theorem 3.2). The 
techniques we use to prove these results are also of interest, being novel approaches 
to this problem. For example, the Lindner-Rodger generalizations (Theorem 2.2, see 
[11]) of Hall's classic theorem [5] on embedding incomplete latin rectangles is the 
main tool required to prove Theorem 2.3. 

Define an {ml' m2, ... , mt}-2-factor of a graph G to be a 2-factor of G in which 
t 

there are t cycles, one of each length mI, m2,"" mt; so G has I:: mi vertices. An 
i=1 

{ml' m2, . .. , mt}-2-factorization of G is a 2-factorization of G in which each 2-factor 
is a {ml' m2, . .. , mt}-2-factor. Any graph theoretical terms not defined here can be 
found in [3]. 

2 General Results 

Proposition 2.1. Let G be a 2s-regular spanning subgraph of 2Kv. There exists an 
edge-disjoint decomposition of G into v s-stars such that: 

(1) each vertex is the center of exactly one s-star; and 
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(2) there exists an s-colouring of E(G) such that for each v E V(G), each colour 
appears on exactly two edges incident with v, one in the star centered on v, and 
one not. 

Proof. Let V(G) = Zv. Form a simple bipartite graph B with bipartition V(G) and 
E(G) by joining i E V(G) to e E E(G) if and only if i is incident with e in G. Then 
dB(i) = 2s and dB(e) = 2. Give B an equitable 2-edge-colouring with colours a and 
j3. For each i E V(G), let S(i) be the vertices in B joined to i by an edge coloured a. 
Since the edge-colouring of B is equitable, i is incident with s edges coloured a, so 
IS(i)1 = s, and e E E(G) is incident with one edge coloured 0:, so {S(i) liE V(G)} 
is a partition of E(G). Since S(i) induces an s-star in G centered at i, we have 
proved (1). 

To prove (2), let B' be a bipartite graph with bipartition V = {Vi liE Zv} and 
W = {Wj I j E Zv} formed by joining Vi to Wj if and only if {i,j} is an edge in S(i). 
Then since each vertex is the center of one s-star and therefore is a pendant vertex in 
s s-stars, dBI(Vi) = s = dB1(wj). Give B' a proper s-edge-colouring, then give G an 
s-edge-colouring by colouring {i,j} E S(i) with the same colour as the edge {Vi,Wj} 
in B'. Since Vi in B' is incident with one edge of each colour, the edges in S(i) are all 
coloured differently, and since Wj is incident with one edge of each colour, the edges 
incident with j in G that are not in S(j) are all coloured differently. So (2) has been 
proved. 0 

For any graph G and any X ~ V(G), let Na(X) be the neighbourhood of X in 
G. Philip Hall proved the following result. 

Theorem 2.1 ([6]). Let B be a bipartite graph with bipartition V and W of the 
vertex set. B contains a I-factor if and only if IXI ::; IN B(X) I for all X c V. 

Proposition 2.2. Let G be a 2s-regular multigraph on II vertices where II 2: 8(s-1). 
Let {Fl, ... , Fs} be any 2-factorization of G. Then there exists an edge-disjoint 
decomposition of G into II matchings, each of size s, such that each matching contains 
one edge in Fi for 1 ~ i ~ s. 

Proof. The proof is by induction on s. The result is clearly true when s = 1, so 
assume that s > 1. Let G(s) be any 2s-regular graph on II vertices with II 2: 8(8 -1) 
and let {F1, ... , Fs} be a 2-factorization of G(s). Let G(s - 1) = G(s) - E(Fs). 
Then {F1 , ... , Fs-d is a 2-factorization of G(s - 1), and obviously II ~ 8(s - 2), so 
by the induction hypothesis there exist matchings M(j) = {el(j), ... , es-l(j)} for 
1 ~ j ~ II such that {M(I), ... , M(II)} is a partition of E(G(s - 1)). 

Form a simple bipartite graph B with bipartition M = {Ml' ... , Mv} and E = 
E(Fs) by joining Mj E M to e E E if and only if M(j) U {e} is an independent set 
(of size s) in G (s). Note that since each edge in Fs is incident with at most 4 edges 
in Fi for 1 ::; i ::; s - 1, dB(e) 2: II - 4(s - 1) for each e E E. Similarly, each of 
the s - 1 edges in M (j) for 1 ~ j ::; II is incident with at most 4 edges in Fs , so 
dB(Mj) 2: 1I-4(s-I). So the minimum degree 6(B) of B satisfies 6(B) 2: 1I-4(s-I). 

We now show that B contains a I-factor, by applying Hall's Theorem. Let X ~ 
M. Since 6(B) 2: II - 4(s - 1) and B is simple, INB(X)I 2: II - 4(s - 1). Clearly if 
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INB(X)I v then IXI ::; INB(X)I, so we can assume that e E E - NB(X), Then 
since dB(e) ;::: v - 4(s -1), we have that v IXI = 1M XI;::: INB(e)1 ;::: v - 4(s -1), 
so IXI ::; 4(8 1)::; v - 4(s - 1) ::; INB(X)I. Therefore B has a I-factor, F. 

The result now follows by adding e to M(j) if and only if e is joined to M j by an 
edge in F. 0 

Proposition 2.3. Let G be a 2s-regular multigraph on v vertices and let {Fl' F2 , ... , 

Fs} be any 2-factorization of G. Let {G1 , G2 , ... , Gv} be an edge disjoint decompo­
sition of G into v i-regular subgraphs, each containing s edges, such that IE(Fi) n 
E(Gj)1 1 for any i and j with 1 ::; i ::; sand 1 ::; j ::; v. Then there exist injective 
functions fJ : V (Gd --+ {I, 2, ... , v} for 1 ::; j ::; v such that: 

(i) If {v, w} E E(G1) n E(Fi) then {fj(v), fj(w)} E E(Gj) n E(Fi)i and 

(2) for all v E V(G 1 ), {h(v), h(v), ... , fv(v)} = {I, 2, ... , v}. 

Proof. For i 1,2, ... ,s, form a simple bipartite graph Bi with bipartition V(Fi) 
and E(Fi) by joining v E V(Fi) to e E E(Fi) if and only if v is incident with e in 
Fi . For i 1,2, ... , s, Bi is 2-regular and so we can give Bi a 2-edge-colouring with 
colours a and fJ such that each vertex of Bi is incident with one edge coloured a and 
one edge coloured fJ. 

For each v E V(G 1), let {v,w} be the unique edge in G1 incident with v; then 
if Fi is the 2-factor containing {v, w} then define fj ( v ) v' and fj ( w) = w' where 
{v', w'} E E( G j) n E( Fi ) and the edge joining v to {v, w} is the same colour as the 
edge joining v' to {v', w'} in B i . For 1 ::; j ::; v, fj is a function since G1 is I-regular, 
and fj is injective since Gj is I-regular. 0 

The following is a generalization of Marshall Hall's theorem proved in [5]. The 
Lindner-Rodger generalization was proved in [11] (Theorem 3.1), where it is described 
in terms of patterned holes. Here we change the notation to fit the proof of Theorem 
2.3. A row or column £ of an array L is said to be latin if each symbol occurs in at 
most one cell of £ in L. 

Theorem 2.2. Let L' be an s x v array on the symbols 1, ... ,v in which each cell 
contains exactly one symbol, each column is latin, and each symbol occurs in exactly 
s cells of L'. Then L' can be embedded in a v x v array in which each column is latin 
and each of rows s + 1, ... , v is latin. 

If G and H are two graphs with V(G) n V(H) 0, then let G Vt H be the 
graph with V(G Vt H) = V(G) U V(H) and where E(G Vt H) consists of the edges 
in E(G) U E(H) together with t edges joining each vertex in V(G) to each vertex in 
V(H). 

Theorem 2.3. Let s, t be positive integers such that t divides 2s. Let G be a 2s­
regular spanning subgraph of tKv. Let H be a subgraph of G with maximum degree 
~ ::; t that contains exactly s edges, and in which for 1 ::; i ::; ~,H contains ti ;::: 0 
vertices of degree i. Suppose there exist injective functions fJ : V(H) --+ {I, 2, ... ,v} 
for 1 ::; j ::; v such that: 
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(1) JI(H), ... , fv(H) form an edge-disjoint decomposition of G; and 

(2) for all v E V(H), if dH(v) < t then {JI(v), ... , fv(v)} = {I, 2, ... , v}. 

Finally, let F be any t-factor of K~-(2S/t) Vt H* which contains all the edges in H*, 
where H* is the spanning subgraph of G in which E(H*) = E(H). Then there exists 
a t-factorization of K~-(2S/t) V t G in which each t-factor is isomorphic to F. 

Remark. As the proof of this Theorem shows, one consequence of these conditions 
is that if t = .6. then t must divide 2s - Lt~l(iti)' 

Proof. Let V( G) = {I, 2, ... ,v}, V(H) = {I, 2, ... , h}, and let K~-(2S/t) have vertex 
set W (so W n {I, ... , v} = ¢). Clearly we can assume that JI(v) = v for all 
v E V(H), and that dH(v) < tor dH(v) = t for 1 :::; v :::; h' or h' < v :::; h respectively 
(so h' is the number vertices of degree less than t in H). 

Form an h x v array L' as follows: for 1 :::; i :::; hand 1 ::; j ::; v let cell (i, j) 
of L' contain fj(i). Clearly L' is column latin since fj is injective, and by property 
(2) if dH(v) < t then each of the symbols, 1, ... , v appears exactly once in row v 
of L'. If.6. = t then note that the remaining rows h' + 1, ... ,h of L' need not be 
latin, but we do have the following property. By (1) E( G) is partitioned by the edges 
in JI (H), ... , f v (H), and for 1 :::; v :::; v symbol v occurs exactly once in row i for 
1 ::; i :::; h', thus accounting for T = Lt~l(iti) edges incident with v in G; so v must 
occur in exactly (2s - T)/t cells in rows h' + 1, ... ,h of L'. 

Therefore by Theorem 2.2, L' can be embedded in a v x v column latin array 
that is also row latin in row i for 1 :::; i :::; h' and h < i :::; v. Clearly we can assume 
cell (i, 1) of L contains symbol i for 1 :::; i :::; v. Let L(i,j) be the symbol in cell (i,j) 
of L. Finally, for 1 :::; j :::; v, let £{ V(G) U W -+ V(G) U W be the automorphism 
Fj = £j(F) of F defined by £j(i) = L(i,j) for 1 ::; i ::; v, and £j(w) = w for 
all w E W. Then FI , ... , Fv is a t-factorization of K~-(2s/t) Vt G, as the following 
argument shows. 

First note that each t-factor of K~-(2s/t) Vt G contains t(v - (2s/t) + v)/2 = 

t(v - sit) edges, so FI , ... , Fv contain v2t - vs edges altogether; and IE(K~_(2s/t) Vt 

G)I = (v - (2s/t))vt + 2sv/2 = v2t - vs, so it remains to show that each edge of 
K~-(2S/t) Vt G occurs in at least one of FI , ... ,Fv. 

Each edge e E E(G) is one of FI , ... , Fv because by (1) e occurs in one of 
HI, .. . , Hv, say Hj , and Fj contains E(Hj). 

For each w E Wand each v E V we find t edges joining w to v as follows. Since 
F is a t-factor of K~_(s/t) Vt G, F contains t edges incident with w; suppose that for 
1 :::; i :::; x w is joined to Vi E V by Yi edges. Then clearly dH( Vi) < t, so each of 
1, ... ,v occurs in a cell in row Vi of L. In particular, suppose that v occurs in cell 
(Vi,j); then v is joined to w with Yi edges in Fj . Therefore v is joined to w by at 
least L~=I Yi = t edges in F I , ... ,Fv , so the result is proved. 0 

Corollary 2.1. Let G be a 2s-regular spanning subgraph of 2Kv. Let F be any t­
factor of K~_(s/t) V t G such that the edges in the subgraph of F induced by the vertices 
in G induce an s-star. Then there exists a t-factorization of K~-(2s/t) Vt G in which 
each t-factor is isomorphic to F. 
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Proof. Let V(G) = {I, 2, ... , v} and let H be an s-star with V(H) = {I, ... , s + I}, 
where dH(s + 1) = s. By Proposition 2.1 (1), there exists a decomposition of G into 
s-stars H(I), ... , H(v) such that the center of H(i) is the vertex i. Furthermore, by 
Proposition 2.1 (2), for 1 :::; j :::; v and for 1 :::; v :::; s there exists an s-edge-colouring 
of G such that j is incident with exactly one edge e coloured v that is in a star 
H(i) for some i ::/= j; so we can define fJ(v) = i. Then also by Proposition 2.1 (2) 
{h(v), ... , fv(v)} = {I, ... , v} for 1 :::; v :S s (since each vertex i in V(G) is incident 
with exactly one edge coloured v that is in the s-star with center i). 

The proof now follows from Theorem 2.3. 0 

3 2-factorizations of 2Kv 

In this section we first prove, using the results of the previous section, some general 
results concerning 2-factorizations of graphs. We then prove that for any two integers 
J-L and v (each at least 2) there is a uniform 2-factorization of 2K/-t+v in which each 
2-factor consists of a cycle of length J-L and a cycle of length v (see Theorem 3.2). 

Corollary 3.1. Let G be a 4-regular spanning subgraph of 2Kv. Let n ;::: 1, and let 
ml, ... ,mn satisfy mi ;::: 1 for 1 :::; j :::; n - I, mn ;::: 2, and 2:j=l mj = v - 1. Then 
there exists a {2ml,"" 2mn}-2-factorization of K~_2 V2 G. 

Proof. Let V(K~_2) = {I, ... , v - 2} x {O} and V(G) = {I, ... , v} x {I}. We may 
assume that G contains the edges {v - 2, v-I} and {v 1, v}. Let Mi = 2:~:~ mj 
(with Ml = 0), and let F consist of the cycles Cl," ., Cn defined as follows. For 
l:Si:::;n-l 

Ci = ((Mi + 1,0), (Mi + 1,1), (Mi + 2,0), (Mi + 2, 1), ... , (Mi+l , 0), (Mi +l , 1)) 

and 

Cn = ((Mn + 1,0), (Mn + 1,1), (Mn + 2,0), (Mn + 2, 1), ... , 

(v - 2,0), (v - 2,1), (v - 1,1), (v, 1)). 

Then Ci has length 2mi for 1 :::; i :::; n, F is 2-factor of K~_2 V2 G. Since the edges 
in the subgraph of F induced by the vertices in G induce a 2-star, the result follows 
from Corollary 2.1. 0 

Theorem 3.1. Let J-L and v be integers with 2 :::; J-L < v :::; 8(J-L + 1)/7. Suppose 
there is an {ml,m2, ... ,ma }-2-factorization of 2K/-t, an {ma+l,ma+2, ... ,m,B}-2-
factorization of 2Kv and suppose there exist non-negative integers Xl, X2, ... , x,B and 
Yl, Y2,···, Y,B such that Xi ;::: Yi and 2Xi + Yi = mi for 1 :::; i :::; f3 and 2:~=1 Yi = V p. 
Then there exists an {ml' m2,"" m,B}-2-factorization of 2K/-t+v' 

Proof. Let 2Kf-L+v = A V2 B where A ~ 2Kf-L' B ~ 2Kv and let s = v - J-L. Pair 
off each of the J-L - 1 2-factors in an {ml' m2, ... , m a }-2-factorization of A with 
an {ma+l' ma+2, ... ,m,B}-2-factor of B to obtain {J-L - 1 ml, m2, ... , m,B}-2-factors 
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F{, F~, ... , F~_l of A V2 B. Then, A V2 B \ {F{ U F~ U '" U F~_l} ~ KZ V2 G 
where G is 2s-regular on v vertices. We now apply Proposition 2.2. Note that since 
II :s: 8(p, + 1)/7 we have v ~ 8(s - 1) and the remaining s 2-factors Fl , ... , Fs in the 
{ma+l' m a+2, . .. ,mp}-2-factorization of B form a 2-factorization of G. 

By Proposition 2.2, there is an edge-disjoint decomposition of G into v matchings 
M l , M2 , .•• , MI/, each of size s, such that for 1 :s: j :s: v and 1 :s: i :s: s, IE(Mj) n 
E(Fi) 1 = 1. Hence, by Proposition 2.3, there exist injective functions fj : V(Ml ) -+ 
{I, 2, ... , v} for 1 :s: j :s: v such that: 

(1) it (MI), ... ,fl/(MI ) form an edge-disjoint decomposition of G (since by Propo­
sition 2.3 (1), fj(Md = Mj); and 

(2) for all v E V(MI ), {fl(V), ... , fl/(v)} = {I, 2, ... , v}. 

Hence the result follows by Theorem 2.3 (with t 2 and H = Ml) if we can find 
an {mIl m2,' .. 1 mp}-2-factor F of KZ V2 M*, containing all the edges of M*, where 
M* is a matching of size sand V(M*) = {I, 2, ... , v}. 

Write M* as the union of vertex-disjoint graphs G1 , ... , G p where Gi is a matching 

of size Yi on (mi + Yi)/2 vertices (note that L:~=l Yi s and L:~=l (mi + Yi)/2 = 
(p, + v + v - p,)/2 = v). Also, partition the vertex set of KZ into sets Xl"'" Xp of 

sizes Xl," ., Xp (note that L:f=l Xi = L:f=l (mi - Yi)/2 p,). Finally, for 1 :s: i :s: f3 
let Ci be an mi-cycle with vertex set Xi U V(G i ) and with E(Gi ) ~ E(Ci ) (we can 
do this since Xi ;:::: Yi for 1 :s: i ::; (3) and let F = Cl U ... U Cpo 0 

Theorem 3.2. For all integers p, and v, 2 :s: p" v, there exists a {p" v }-2-factorization 
of 2K/1>+I/, except that there is no {3, 3}-2-factorization of 2K6 · 

Proof. It is shown in [4] that if J1 = v then there exists a {p" v }-2-factorization of 
2K/1>+I/, except that there is no {3,3}-2-factorization of 2K6 • Hence we may assume 
that 2 :s: p, < v. For any given p, and II we show that there is a set 8/1>,1/ ~ ZI/ \ {O} 
which satisfies 

(1) 18/1>,1/1 p, - 1; 

(2) HI/(8/1>,I/) has a hamilton decomposition; and 

(3) if p, is odd then either 1 ~ 8/1>,1/ and 2 E 8/-L,1/ or p, v-I and 8/1>,1/ = ZI/ \ {O, v /2}. 

First, consider the pairs of differences {d1 , d2 } = {2, 3}, {4, 5}, ... with {d1, d2 } ~ 
ZI/ 1 {10}. For each such pair {dll d2 }, except the pair containing v /2 when v is even, 
HI/( {d1, d2 }) has a hamilton decomposition by [2]. 

If J1 is odd and p, < v-I then we can choose 8/1>,1/ to consist of the elements of 
p, - 1/2 of these pairs and ensure that 2 E 8/1>,1/ and, when v is even, that the both 
elements of the pair containing v / 2 are not in 8/1>,v' If p, is even then we let 82,1/ = {I} 
and for p, ;:::: 4, we can choose 8/1>,1/ = 8/1>-1,1/ U {I}. 

Finally, if v is even and p, =' v-I then we choose 8/1>,1/ = ZI/ \ {O, v/2}. Note 
that in this case, we pair up the differences as {dl , d2 }, ..• , {dl/- 3 , dl/-2 } where d1 = 
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1, d2 = 2, ... , dv/2- 1 = V /2 - 1, dV / 2 = V /2 + 1, dv/2+I = V /2 + 2, ... , dv- 2 = v-I to 
see that Hv(Stt,v) has a hamilton decomposition by [2]. 

Let Zv be the vertex set of2Kv and let D = {d l ,d2, ... ,dv- tt } = (Zv \ {O}) \SV,J-l 
where dl < d2 < '" < dv - w Then defin.e the path P(D) = VO, VI,' .. , V V - tt where 
Vo = 0 and for i = 1,2, ... , v - J.1, Vi = 2::;=1 (-1)H1dj . 

If /1 is even, we apply Theorem 3 with s = v - /1, t = 2, G = Hv(D), H = 
P(D), fj(v) = v + j - 1 (for j = 1,2, ... , V and v E V(H)). Hence, we require a 
2-factor F, consisting of a J.1-cycle and a v-cycle, of K~ V2 H* where H* consists of a 
path of length v - J.1 and J.1- 1 isolated vertices. We form the J.1-cycle of F by using 
J.1/2 vertices from K~ and J.1/2 isolated vertices from H*. It is then straight-forward 
to form a v-cycle using the remaining J.1/2 vertices from K~,the remaining J.1/2 - 1 
isolated vertices in H* and the path of length v - J.1. Hence by Theorem 3 there is a 
{J.1, v}-2-factorization of K~ V2 G. 

The {t.l, v}-2-factorization of 2KJ.l+v can now be completed since 2K/-L+v \ (K~ V 2 

G) ~ 2KJ.l + Hv(S/-L,v) has a {/1, v}-2-factorization: we can pair the /1-cycles in a J.1-
cycle system of2Ktt with the /1-1 v-cycles in a hamilton decomposition of H(SJ.l,v)' 

If /1 is odd, we again apply Theorem 3 with s = v - /1, t = 2, G = Hv(D), Ji(v) = 
V +j -1 (for j = 1,2, ... ,v and v E V(H)) but this time when /1 < v -1 we 
let H be the graph formed by removing the edge in Hv( {2}) from P(D U {2}), so 
that H contains an isolated edge (namely the edge of H that is also in H v ( {I} )). 
When /1 = v-I, D = {v/2} and we let H = P(D) so that H consists of a single 
edge. Hence, we require a {J.1, v}-2-factor F of K~ V2 H* where H* consists of a path 
containing v - /1 - 1 edges, an isolated edge and /1 2 isolated vertices (in the case 
J.1 = v-I H* consists of an isolated edge and /1 - 1 isolated vertices). We form 
the /1-cycle of F by using (J.1 - 1) /2 vertices from K~, the isolated edge of H*, and 
(/1 - 3) /2 isolated vertices of H*. It is then straight-forward to form a v-cycle using 
the remaining (J.1 + 1) /2 vertices from KZ and the remaining isolated vertices and 
paths in H*. Hence by Theorem 3 there is a {J.1, v}-2-factorization of K~ V2 G. 

As in the case /1 even, we complete the 2-factorization of 2KJ.l+v by pairing the 
J.1 - 1 /1-cycles in a /1-cycle system of 2K J.l with the J.1 1 v-cycles in a hamilton 
decomposition of H(SJ.l,v), 0 
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