Factorizations of Complete Multigraphs

B. J. Battersby*, D. E. Bryant ${ }^{\dagger}$
Centre for Combinatorics
Department of Mathematics, The University of Queensland Queensland 4072, Australia

C.A. Rodger ${ }^{\ddagger}$
Department of Discrete and Statistical Sciences
120 Math Annex
Auburn University
Auburn, Alabama 36849-5307, U.S.A

Dedicated to the memory of Derrick Breach, 1933-1996

Abstract

In this paper, several general results are obtained on the Oberwolfach problem that provide isomorphic 2 -factorizations of $2 K_{n}$. One consequence of these results is that the existence of a 2 -factorization in which each 2 -factor of $2 K_{n}$ consists of one cycle of length x and one of length $n-x$ is completely settled. The techniques used to obtain these results are novel, using for example the Lindner-Rodger generalizations of Marshall Hall's classic embedding theorem for incomplete latin squares.

1 Introduction

Let λK_{n} denote the multigraph on n vertices in which each pair of vertices is joined by exactly λ edges. An m-cycle $\left(v_{0}, v_{1}, \ldots, v_{m-1}\right)$ is a graph with vertex set $\left\{v_{0}, \ldots, v_{m-1}\right\}$ and edge set $\left\{v_{i} v_{i+1} \mid i \in \mathbb{Z}_{m}\right\}$, reducing the subscript modulo m. An m-cycle system or order n and index λ is an ordered pair (V, C), where C is a collection of m-cycles whose edges partition the edges of λK_{n} defined on the vertex set V (so $|V|=n$). There have been many results obtained concerning the existence

[^0]of m-cycle systems of λK_{n} (and of other graphs). Such results date back to 1847 when Kirkman [8] settled the existence problem for 3-cycle systems of K_{n} (Steiner triple systems), but most papers on this subject have been written over the past thirty years. A survey of these results can be found in [10].

It has also been of interest to study m-cycle systems that have additional properties. A parallel class of an m-cycle system (V, C) of λK_{n} is a set of cycles in C that form a 2 -factor of λK_{n}. An m-cycle system (V, C) of λK_{n} is said to be resolvable if C can be partitioned into parallel classes. The existence problem for resolvable 3 -cycle systems of K_{n} (Kirkman triple systems) was first posed and solved in the case $n=15$ by Kirkman in 1850 [9]; it was solved for all n by Ray-Chadhuri and Wilson in 1971 [12]. A different generalization of their result was then obtained: resolvable m-cycle systems of K_{n} were shown to exist iff m is odd and $n \equiv m(\bmod 2 m)$ in $[1,7]$ after various people had contributed preliminary results (see [10] for a survey).

However a much more general conjecture still remains unsolved (and is likely to do so for a long time): in 1967 Ringel asked whether for any integers m_{1}, \ldots, m_{t} with $n=\sum_{i=1}^{t} m_{i}$, there exists a 2 -factorization of K_{n} in which each two factor consists of t cycles, one of each length $m_{1}, m_{2}, \ldots, m_{t}$; so each 2 -factor is isomorphic to each other 2 -factor in this 2-factorization. Of course, if $m_{1}=m_{2}=\cdots=m_{t}$ then Ringel is asking for a resolvable m_{1}-cycle system of K_{n}. It is known that solutions to Ringel's question (also known as the Oberwolfach Problem) do not exist when $m_{1}=4, m_{2}=5$ and $n=9$, and when $m_{1}=3, m_{2}=3, m_{3}=5$ and $n=11$, but it is widely believed that these are the only exceptional cases.

Of course, a solution to the Oberwolfach problem requires n to be odd, because every vertex must have even degree. This restriction on n is avoided by considering 2 -factorizations of $2 K_{n}$. In this paper we obtain several general results concerning the existence of isomorphic 2 -factorizations of $2 K_{n}$. In particular, we completely settle the Oberwolfach problem in the case where $t=2$ (see Theorem 3.2). The techniques we use to prove these results are also of interest, being novel approaches to this problem. For example, the Lindner-Rodger generalizations (Theorem 2.2, see [11]) of Hall's classic theorem [5] on embedding incomplete latin rectangles is the main tool required to prove Theorem 2.3.

Define an $\left\{m_{1}, m_{2}, \ldots, m_{t}\right\}$-2-factor of a graph G to be a 2 -factor of G in which there are t cycles, one of each length $m_{1}, m_{2}, \ldots, m_{t}$; so G has $\sum_{i=1}^{t} m_{i}$ vertices. An $\left\{m_{1}, m_{2}, \ldots, m_{t}\right\}$-2-factorization of G is a 2 -factorization of G in which each 2 -factor is a $\left\{m_{1}, m_{2}, \ldots, m_{t}\right\}$-2-factor. Any graph theoretical terms not defined here can be found in [3].

2 General Results

Proposition 2.1. Let G be a $2 s$-regular spanning subgraph of $2 K_{\nu}$. There exists an edge-disjoint decomposition of G into νs-stars such that:
(1) each vertex is the center of exactly one s-star; and
(2) there exists an s-colouring of $E(G)$ such that for each $v \in V(G)$, each colour appears on exactly two edges incident with v, one in the star centered on v, and one not.

Proof. Let $V(G)=\mathbb{Z}_{\nu}$. Form a simple bipartite graph B with bipartition $V(G)$ and $E(G)$ by joining $i \in V(G)$ to $e \in E(G)$ if and only if i is incident with e in G. Then $d_{B}(i)=2 s$ and $d_{B}(e)=2$. Give B an equitable 2-edge-colouring with colours α and β. For each $i \in V(G)$, let $S(i)$ be the vertices in B joined to i by an edge coloured α. Since the edge-colouring of B is equitable, i is incident with s edges coloured α, so $|S(i)|=s$, and $e \in E(G)$ is incident with one edge coloured α, so $\{S(i) \mid i \in V(G)\}$ is a partition of $E(G)$. Since $S(i)$ induces an s-star in G centered at i, we have proved (1).

To prove (2), let B^{\prime} be a bipartite graph with bipartition $V=\left\{v_{i} \mid i \in \mathbb{Z}_{\nu}\right\}$ and $W=\left\{w_{j} \mid j \in \mathbb{Z}_{\nu}\right\}$ formed by joining v_{i} to w_{j} if and only if $\{i, j\}$ is an edge in $S(i)$. Then since each vertex is the center of one s-star and therefore is a pendant vertex in $s s$-stars, $d_{B^{\prime}}\left(v_{i}\right)=s=d_{B^{\prime}}\left(w_{j}\right)$. Give B^{\prime} a proper s-edge-colouring, then give G an s-edge-colouring by colouring $\{i, j\} \in S(i)$ with the same colour as the edge $\left\{v_{i}, w_{j}\right\}$ in B^{\prime}. Since v_{i} in B^{\prime} is incident with one edge of each colour, the edges in $S(i)$ are all coloured differently, and since w_{j} is incident with one edge of each colour, the edges incident with j in G that are not in $S(j)$ are all coloured differently. So (2) has been proved.

For any graph G and any $X \subseteq V(G)$, let $N_{G}(X)$ be the neighbourhood of X in G. Philip Hall proved the following result.

Theorem 2.1 ([6]). Let B be a bipartite graph with bipartition V and W of the vertex set. B contains a 1 -factor if and only if $|X| \leq\left|N_{B}(X)\right|$ for all $X \subset V$.
Proposition 2.2. Let G be a $2 s$-regular multigraph on ν vertices where $\nu \geq 8(s-1)$. Let $\left\{F_{1}, \ldots, F_{s}\right\}$ be any 2 -factorization of G. Then there exists an edge-disjoint decomposition of G into ν matchings, each of size s, such that each matching contains one edge in F_{i} for $1 \leq i \leq s$.
Proof. The proof is by induction on s. The result is clearly true when $s=1$, so assume that $s>1$. Let $G(s)$ be any $2 s$-regular graph on ν vertices with $\nu \geq 8(s-1)$ and let $\left\{F_{1}, \ldots, F_{s}\right\}$ be a 2-factorization of $G(s)$. Let $G(s-1)=G(s)-E\left(F_{s}\right)$. Then $\left\{F_{1}, \ldots, F_{s-1}\right\}$ is a 2 -factorization of $G(s-1)$, and obviously $\nu \geq 8(s-2)$, so by the induction hypothesis there exist matchings $M(j)=\left\{e_{1}(j), \ldots, e_{s-1}(j)\right\}$ for $1 \leq j \leq \nu$ such that $\{M(1), \ldots, M(\nu)\}$ is a partition of $E(G(s-1))$.

Form a simple bipartite graph B with bipartition $M=\left\{M_{1}, \ldots, M_{\nu}\right\}$ and $E=$ $E\left(F_{s}\right)$ by joining $M_{j} \in M$ to $e \in E$ if and only if $M(j) \cup\{e\}$ is an independent set (of size s) in $G(s)$. Note that since each edge in F_{s} is incident with at most 4 edges in F_{i} for $1 \leq i \leq s-1, d_{B}(e) \geq \nu-4(s-1)$ for each $e \in E$. Similarly, each of the $s-1$ edges in $M(j)$ for $1 \leq j \leq \nu$ is incident with at most 4 edges in F_{s}, so $d_{B}\left(M_{j}\right) \geq \nu-4(s-1)$. So the minimum degree $\delta(B)$ of B satisfies $\delta(B) \geq \nu-4(s-1)$.

We now show that B contains a 1 -factor, by applying Hall's Theorem. Let $X \subseteq$ M. Since $\delta(B) \geq \nu-4(s-1)$ and B is simple, $\left|N_{B}(X)\right| \geq \nu-4(s-1)$. Clearly if
$\left|N_{B}(X)\right|=\nu$ then $|X| \leq\left|N_{B}(X)\right|$, so we can assume that $e \in E-N_{B}(X)$. Then since $d_{B}(e) \geq \nu-4(s-1)$, we have that $\nu-|X|=|M-X| \geq\left|N_{B}(e)\right| \geq \nu-4(s-1)$, so $|X| \leq 4(s-1) \leq \nu-4(s-1) \leq\left|N_{B}(X)\right|$. Therefore B has a 1 -factor, F.

The result now follows by adding e to $M(j)$ if and only if e is joined to M_{j} by an edge in F.

Proposition 2.3. Let G be a $2 s$-regular multigraph on ν vertices and let $\left\{F_{1}, F_{2}, \ldots\right.$, $\left.F_{s}\right\}$ be any 2 -factorization of G. Let $\left\{G_{1}, G_{2}, \ldots, G_{\nu}\right\}$ be an edge disjoint decomposition of G into ν 1-regular subgraphs, each containing s edges, such that $\mid E\left(F_{i}\right) \cap$ $E\left(G_{j}\right) \mid=1$ for any i and j with $1 \leq i \leq s$ and $1 \leq j \leq \nu$. Then there exist injective functions $f_{j}: V\left(G_{1}\right) \rightarrow\{1,2, \ldots, \nu\}$ for $1 \leq j \leq \nu$ such that:
(1) If $\{v, w\} \in E\left(G_{1}\right) \cap E\left(F_{i}\right)$ then $\left\{f_{j}(v), f_{j}(w)\right\} \in E\left(G_{j}\right) \cap E\left(F_{i}\right)$; and
(2) for all $v \in V\left(G_{1}\right),\left\{f_{1}(v), f_{2}(v), \ldots, f_{\nu}(v)\right\}=\{1,2, \ldots, \nu\}$.

Proof. For $i=1,2, \ldots, s$, form a simple bipartite graph B_{i} with bipartition $V\left(F_{i}\right)$ and $E\left(F_{i}\right)$ by joining $v \in V\left(F_{i}\right)$ to $e \in E\left(F_{i}\right)$ if and only if v is incident with e in F_{i}. For $i=1,2, \ldots, s, B_{i}$ is 2 -regular and so we can give B_{i} a 2 -edge-colouring with colours α and β such that each vertex of B_{i} is incident with one edge coloured α and one edge coloured β.

For each $v \in V\left(G_{1}\right)$, let $\{v, w\}$ be the unique edge in G_{1} incident with v; then if F_{i} is the 2 -factor containing $\{v, w\}$ then define $f_{j}(v)=v^{\prime}$ and $f_{j}(w)=w^{\prime}$ where $\left\{v^{\prime}, w^{\prime}\right\} \in E\left(G_{j}\right) \cap E\left(F_{i}\right)$ and the edge joining v to $\{v, w\}$ is the same colour as the edge joining v^{\prime} to $\left\{v^{\prime}, w^{\prime}\right\}$ in B_{i}. For $1 \leq j \leq \nu, f_{j}$ is a function since G_{1} is 1-regular, and f_{j} is injective since G_{j} is 1-regular.

The following is a generalization of Marshall Hall's theorem proved in [5]. The Lindner-Rodger generalization was proved in [11] (Theorem 3.1), where it is described in terms of patterned holes. Here we change the notation to fit the proof of Theorem 2.3. A row or column ℓ of an array L is said to be latin if each symbol occurs in at most one cell of ℓ in L.

Theorem 2.2. Let L^{\prime} be an $s \times \nu$ array on the symbols $1, \ldots, \nu$ in which each cell contains exactly one symbol, each column is latin, and each symbol occurs in exactly s cells of L^{\prime}. Then L^{\prime} can be embedded in a $\nu \times \nu$ array in which each column is latin and each of rows $s+1, \ldots, \nu$ is latin.

If G and H are two graphs with $V(G) \cap V(H)=\emptyset$, then let $G \vee_{t} H$ be the graph with $V\left(G \vee_{t} H\right)=V(G) \cup V(H)$ and where $E\left(G \vee_{t} H\right)$ consists of the edges in $E(G) \cup E(H)$ together with t edges joining each vertex in $V(G)$ to each vertex in $V(H)$.

Theorem 2.3. Let s, t be positive integers such that t divides $2 s$. Let G be a $2 s$ regular spanning subgraph of $t K_{\nu}$. Let H be a subgraph of G with maximum degree $\Delta \leq t$ that contains exactly s edges, and in which for $1 \leq i \leq \Delta, H$ contains $t_{i} \geq 0$ vertices of degree i. Suppose there exist injective functions $f_{j}: V(H) \rightarrow\{1,2, \ldots, \nu\}$ for $1 \leq j \leq \nu$ such that:
(1) $f_{1}(H), \ldots, f_{\nu}(H)$ form an edge-disjoint decomposition of G; and
(2) for all $v \in V(H)$, if $d_{H}(v)<t$ then $\left\{f_{1}(v), \ldots, f_{\nu}(v)\right\}=\{1,2, \ldots, \nu\}$.

Finally, let F be any t-factor of $K_{\nu-(2 s / t)}^{c} \vee_{t} H^{*}$ which contains all the edges in H^{*}, where H^{*} is the spanning subgraph of G in which $E\left(H^{*}\right)=E(H)$. Then there exists a t-factorization of $K_{\nu-(2 s / t)}^{c} \vee_{t} G$ in which each t-factor is isomorphic to F.
Remark. As the proof of this Theorem shows, one consequence of these conditions is that if $t=\Delta$ then t must divide $2 s-\sum_{i=1}^{\Delta-1}\left(i t_{i}\right)$.
Proof. Let $V(G)=\{1,2, \ldots, \nu\}, V(H)=\{1,2, \ldots, h\}$, and let $K_{\nu-(2 s / t)}^{c}$ have vertex set W (so $W \cap\{1, \ldots, \nu\}=\phi$). Clearly we can assume that $f_{1}(v)=v$ for all $v \in V(H)$, and that $d_{H}(v)<t$ or $d_{H}(v)=t$ for $1 \leq v \leq h^{\prime}$ or $h^{\prime}<v \leq h$ respectively (so h^{\prime} is the number vertices of degree less than t in H).

Form an $h \times \nu$ array L^{\prime} as follows: for $1 \leq i \leq h$ and $1 \leq j \leq \nu$ let cell (i, j) of L^{\prime} contain $f_{j}(i)$. Clearly L^{\prime} is column latin since f_{j} is injective, and by property (2) if $d_{H}(v)<t$ then each of the symbols, $1, \ldots, \nu$ appears exactly once in row v of L^{\prime}. If $\Delta=t$ then note that the remaining rows $h^{\prime}+1, \ldots, h$ of L^{\prime} need not be latin, but we do have the following property. By (1) $E(G)$ is partitioned by the edges in $f_{1}(H), \ldots, f_{\nu}(H)$, and for $1 \leq v \leq \nu$ symbol v occurs exactly once in row i for $1 \leq i \leq h^{\prime}$, thus accounting for $T=\sum_{i=1}^{\Delta-1}\left(i t_{i}\right)$ edges incident with v in G; so v must occur in exactly $(2 s-T) / t$ cells in rows $h^{\prime}+1, \ldots, h$ of L^{\prime}.

Therefore by Theorem $2.2, L^{\prime}$ can be embedded in a $\nu \times \nu$ column latin array that is also row latin in row i for $1 \leq i \leq h^{\prime}$ and $h<i \leq \nu$. Clearly we can assume cell $(i, 1)$ of L contains symbol i for $1 \leq i \leq \nu$. Let $L(i, j)$ be the symbol in cell (i, j) of L. Finally, for $1 \leq j \leq \nu$, let $\ell_{j}: V(G) \cup W \rightarrow V(G) \cup W$ be the automorphism $F_{j}=\ell_{j}(F)$ of F defined by $\ell_{j}(i)=L(i, j)$ for $1 \leq i \leq \nu$, and $\ell_{j}(w)=w$ for all $w \in W$. Then F_{1}, \ldots, F_{ν} is a t-factorization of $K_{\nu-(2 s / t)}^{c} \vee_{t} G$, as the following argument shows.

First note that each t-factor of $K_{\nu-(2 s / t)}^{c} \vee_{t} G$ contains $t(\nu-(2 s / t)+\nu) / 2=$ $t(\nu-s / t)$ edges, so F_{1}, \ldots, F_{ν} contain $\nu^{2} t-\nu s$ edges altogether; and $\mid E\left(K_{\nu-(2 s / t)}^{c} \vee_{t}\right.$ $G) \mid=(\nu-(2 s / t)) \nu t+2 s \nu / 2=\nu^{2} t-\nu s$, so it remains to show that each edge of $K_{\nu-(2 s / t)}^{c} \vee_{t} G$ occurs in at least one of F_{1}, \ldots, F_{ν}.

Each edge $e \in E(G)$ is one of F_{1}, \ldots, F_{ν} because by (1) e occurs in one of H_{1}, \ldots, H_{ν}, say H_{j}, and F_{j} contains $E\left(H_{j}\right)$.

For each $w \in W$ and each $v \in V$ we find t edges joining w to v as follows. Since F is a t-factor of $K_{\nu-(s / t)}^{c} \vee_{t} G, F$ contains t edges incident with w; suppose that for $1 \leq i \leq x w$ is joined to $v_{i} \in V$ by y_{i} edges. Then clearly $d_{H}\left(v_{i}\right)<t$, so each of $1, \ldots, \nu$ occurs in a cell in row v_{i} of L. In particular, suppose that v occurs in cell $\left(v_{i}, j\right)$; then v is joined to w with y_{i} edges in F_{j}. Therefore v is joined to w by at least $\sum_{i=1}^{x} y_{i}=t$ edges in F_{1}, \ldots, F_{ν}, so the result is proved.
Corollary 2.1. Let G be a $2 s$-regular spanning subgraph of $2 K_{\nu}$. Let F be any t factor of $K_{\nu-(s / t)}^{c} \vee_{t} G$ such that the edges in the subgraph of F induced by the vertices in G induce an s-star. Then there exists a t-factorization of $K_{\nu-(2 s / t)}^{c} \vee_{t} G$ in which each t-factor is isomorphic to F.

Proof. Let $V(G)=\{1,2, \ldots, \nu\}$ and let H be an s-star with $V(H)=\{1, \ldots, s+1\}$, where $d_{H}(s+1)=s$. By Proposition 2.1 (1), there exists a decomposition of G into s-stars $H(1), \ldots, H(\nu)$ such that the center of $H(i)$ is the vertex i. Furthermore, by Proposition 2.1 (2), for $1 \leq j \leq \nu$ and for $1 \leq v \leq s$ there exists an s-edge-colouring of G such that j is incident with exactly one edge e coloured v that is in a star $H(i)$ for some $i \neq j$; so we can define $f_{j}(v)=i$. Then also by Proposition 2.1 (2) $\left\{f_{1}(v), \ldots, f_{\nu}(v)\right\}=\{1, \ldots, \nu\}$ for $1 \leq v \leq s$ (since each vertex i in $V(G)$ is incident with exactly one edge coloured v that is in the s-star with center i).

The proof now follows from Theorem 2.3.

3 2-factorizations of $2 K_{\nu}$

In this section we first prove, using the results of the previous section, some general results concerning 2 -factorizations of graphs. We then prove that for any two integers μ and ν (each at least 2) there is a uniform 2-factorization of $2 K_{\mu+\nu}$ in which each 2 -factor consists of a cycle of length μ and a cycle of length ν (see Theorem 3.2).

Corollary 3.1. Let G be a 4-regular spanning subgraph of $2 K_{\nu}$. Let $n \geq 1$, and let m_{1}, \ldots, m_{n} satisfy $m_{i} \geq 1$ for $1 \leq j \leq n-1, m_{n} \geq 2$, and $\sum_{j=1}^{n} m_{j}=\nu-1$. Then there exists a $\left\{2 m_{1}, \ldots, 2 m_{n}\right\}$-2-factorization of $K_{\nu-2}^{c} \vee_{2} G$.

Proof. Let $V\left(K_{\nu-2}^{c}\right)=\{1, \ldots, \nu-2\} \times\{0\}$ and $V(G)=\{1, \ldots, \nu\} \times\{1\}$. We may assume that G contains the edges $\{\nu-2, \nu-1\}$ and $\{\nu-1, \nu\}$. Let $M_{i}=\sum_{j=1}^{i-1} m_{j}$ (with $M_{1}=0$), and let F consist of the cycles c_{1}, \ldots, c_{n} defined as follows. For $1 \leq i \leq n-1$

$$
c_{i}=\left(\left(M_{i}+1,0\right),\left(M_{i}+1,1\right),\left(M_{i}+2,0\right),\left(M_{i}+2,1\right), \ldots,\left(M_{i+1}, 0\right),\left(M_{i+1}, 1\right)\right)
$$

and

$$
\begin{aligned}
c_{n}=\left(\left(M_{n}+1,0\right),\left(M_{n}+1,1\right),\left(M_{n}+2,0\right),\right. & \left(M_{n}+2,1\right), \ldots, \\
& (\nu-2,0),(\nu-2,1),(\nu-1,1),(\nu, 1)) .
\end{aligned}
$$

Then c_{i} has length $2 m_{i}$ for $1 \leq i \leq n, F$ is 2 -factor of $K_{\nu-2}^{c} \vee_{2} G$. Since the edges in the subgraph of F induced by the vertices in G induce a 2 -star, the result follows from Corollary 2.1.

Theorem 3.1. Let μ and ν be integers with $2 \leq \mu<\nu \leq 8(\mu+1) / 7$. Suppose there is an $\left\{m_{1}, m_{2}, \ldots, m_{\alpha}\right\}$-2-factorization of $2 K_{\mu}$, an $\left\{m_{\alpha+1}, m_{\alpha+2}, \ldots, m_{\beta}\right\}$-2factorization of $2 K_{\nu}$ and suppose there exist non-negative integers $x_{1}, x_{2}, \ldots, x_{\beta}$ and $y_{1}, y_{2}, \ldots, y_{\beta}$ such that $x_{i} \geq y_{i}$ and $2 x_{i}+y_{i}=m_{i}$ for $1 \leq i \leq \beta$ and $\sum_{i=1}^{\beta} y_{i}=\nu-\mu$. Then there exists an $\left\{m_{1}, m_{2}, \ldots, m_{\beta}\right\}$-2-factorization of $2 K_{\mu+\nu}$.

Proof. Let $2 K_{\mu+\nu}=A \vee_{2} B$ where $A \cong 2 K_{\mu}, B \cong 2 K_{\nu}$ and let $s=\nu-\mu$. Pair off each of the $\mu-12$-factors in an $\left\{m_{1}, m_{2}, \ldots, m_{\alpha}\right\}$-2-factorization of A with an $\left\{m_{\alpha+1}, m_{\alpha+2}, \ldots, m_{\beta}\right\}$-2-factor of B to obtain $\left\{\mu-1 m_{1}, m_{2}, \ldots, m_{\beta}\right\}$-2-factors
$F_{1}^{\prime}, F_{2}^{\prime}, \ldots, F_{\mu-1}^{\prime}$ of $A \vee_{2} B$. Then, $A \vee_{2} B \backslash\left\{F_{1}^{\prime} \cup F_{2}^{\prime} \cup \cdots \cup F_{\mu-1}^{\prime}\right\} \cong K_{\mu}^{c} \vee_{2} G$ where G is $2 s$-regular on ν vertices. We now apply Proposition 2.2 . Note that since $\nu \leq 8(\mu+1) / 7$ we have $\nu \geq 8(s-1)$ and the remaining $s 2$-factors F_{1}, \ldots, F_{s} in the $\left\{m_{\alpha+1}, m_{\alpha+2}, \ldots, m_{\beta}\right\}$-2-factorization of B form a 2-factorization of G.

By Proposition 2.2, there is an edge-disjoint decomposition of G into ν matchings $M_{1}, M_{2}, \ldots, M_{\nu}$, each of size s, such that for $1 \leq j \leq \nu$ and $1 \leq i \leq s, \mid E\left(M_{j}\right) \cap$ $E\left(F_{i}\right) \mid=1$. Hence, by Proposition 2.3, there exist injective functions $f_{j}: V\left(M_{1}\right) \rightarrow$ $\{1,2, \ldots, \nu\}$ for $1 \leq j \leq \nu$ such that:
(1) $f_{1}\left(M_{1}\right), \ldots, f_{\nu}\left(M_{1}\right)$ form an edge-disjoint decomposition of G (since by Proposition $\left.2.3(1), f_{j}\left(M_{1}\right)=M_{j}\right)$; and
(2) for all $v \in V\left(M_{1}\right),\left\{f_{1}(v), \ldots, f_{\nu}(v)\right\}=\{1,2, \ldots, \nu\}$.

Hence the result follows by Theorem 2.3 (with $t=2$ and $H=M_{1}$) if we can find an $\left\{m_{1}, m_{2}, \ldots, m_{\beta}\right\}$-2-factor F of $K_{\mu}^{c} \vee_{2} M^{*}$, containing all the edges of M^{*}, where M^{*} is a matching of size s and $V\left(M^{*}\right)=\{1,2, \ldots, \nu\}$.

Write M^{*} as the union of vertex-disjoint graphs G_{1}, \ldots, G_{β} where G_{i} is a matching of size y_{i} on $\left(m_{i}+y_{i}\right) / 2$ vertices (note that $\sum_{i=1}^{\beta} y_{i}=s$ and $\sum_{i=1}^{\beta}\left(m_{i}+y_{i}\right) / 2=$ $(\mu+\nu+\nu-\mu) / 2=\nu)$. Also, partition the vertex set of K_{μ}^{c} into sets X_{1}, \ldots, X_{β} of sizes x_{1}, \ldots, x_{β} (note that $\sum_{i=1}^{\beta} x_{i}=\sum_{i=1}^{\beta}\left(m_{i}-y_{i}\right) / 2=\mu$). Finally, for $1 \leq i \leq \beta$ let C_{i} be an m_{i}-cycle with vertex set $X_{i} \cup V\left(G_{i}\right)$ and with $E\left(G_{i}\right) \subseteq E\left(C_{i}\right)$ (we can do this since $x_{i} \geq y_{i}$ for $1 \leq i \leq \beta$) and let $F=C_{1} \cup \cdots \cup C_{\beta}$.

Theorem 3.2. For all integers μ and $\nu, 2 \leq \mu, \nu$, there exists a $\{\mu, \nu\}-2$-factorization of $2 K_{\mu+\nu}$, except that there is no $\{3,3\}-2$-factorization of $2 K_{6}$.

Proof. It is shown in [4] that if $\mu=\nu$ then there exists a $\{\mu, \nu\}$-2-factorization of $2 K_{\mu+\nu}$, except that there is no $\{3,3\}$ - 2 -factorization of $2 K_{6}$. Hence we may assume that $2 \leq \mu<\nu$. For any given μ and ν we show that there is a set $S_{\mu, \nu} \subseteq \mathbb{Z}_{\nu} \backslash\{0\}$ which satisfies
(1) $\left|S_{\mu, \nu}\right|=\mu-1$;
(2) $H_{\nu}\left(S_{\mu, \nu}\right)$ has a hamilton decomposition; and
(3) if μ is odd then either $1 \notin S_{\mu, \nu}$ and $2 \in S_{\mu, \nu}$ or $\mu=\nu-1$ and $S_{\mu, \nu}=\mathbb{Z}_{\nu} \backslash\{0, \nu / 2\}$.

First, consider the pairs of differences $\left\{d_{1}, d_{2}\right\}=\{2,3\},\{4,5\}, \ldots$ with $\left\{d_{1}, d_{2}\right\} \subseteq$ $\mathbb{Z}_{\nu} \mid\{10\}$. For each such pair $\left\{d_{1}, d_{2}\right\}$, except the pair containing $\nu / 2$ when ν is even, $H_{\nu}\left(\left\{d_{1}, d_{2}\right\}\right)$ has a hamilton decomposition by [2].

If μ is odd and $\mu<\nu-1$ then we can choose $S_{\mu, \nu}$ to consist of the elements of $\mu-1 / 2$ of these pairs and ensure that $2 \in S_{\mu, \nu}$ and, when ν is even, that the both elements of the pair containing $\nu / 2$ are not in $S_{\mu, \nu}$. If μ is even then we let $S_{2, \nu}=\{1\}$ and for $\mu \geq 4$, we can choose $S_{\mu, \nu}=S_{\mu-1, \nu} \cup\{1\}$.

Finally, if ν is even and $\mu=\nu-1$ then we choose $S_{\mu, \nu}=\mathbb{Z}_{\nu} \backslash\{0, \nu / 2\}$. Note that in this case, we pair up the differences as $\left\{d_{1}, d_{2}\right\}, \ldots,\left\{d_{\nu-3}, d_{\nu-2}\right\}$ where $d_{1}=$
$1, d_{2}=2, \ldots, d_{\nu / 2-1}=\nu / 2-1, d_{\nu / 2}=\nu / 2+1, d_{\nu / 2+1}=\nu / 2+2, \ldots, d_{\nu-2}=\nu-1$ to see that $H_{\nu}\left(S_{\mu, \nu}\right)$ has a hamilton decomposition by [2].

Let \mathbb{Z}_{ν} be the vertex set of $2 K_{\nu}$ and let $D=\left\{d_{1}, d_{2}, \ldots, d_{\nu-\mu}\right\}=\left(\mathbb{Z}_{\nu} \backslash\{0\}\right) \backslash S_{\nu, \mu}$ where $d_{1}<d_{2}<\cdots<d_{\nu-\mu}$. Then define the path $P(D)=v_{0}, v_{1}, \ldots, v_{\nu-\mu}$ where $v_{0}=0$ and for $i=1,2, \ldots, \nu-\mu, v_{i}=\sum_{j=1}^{i}(-1)^{j+1} d_{j}$.

If μ is even, we apply Theorem 3 with $s=\nu-\mu, t=2, G=H_{\nu}(D), H=$ $P(D), f_{j}(v)=v+j-1$ (for $j=1,2, \ldots, v$ and $v \in V(H)$). Hence, we require a 2 -factor F, consisting of a μ-cycle and a ν-cycle, of $K_{\mu}^{c} \vee_{2} H^{*}$ where H^{*} consists of a path of length $\nu-\mu$ and $\mu-1$ isolated vertices. We form the μ-cycle of F by using $\mu / 2$ vertices from K_{μ}^{c} and $\mu / 2$ isolated vertices from H^{*}. It is then straight-forward to form a ν-cycle using the remaining $\mu / 2$ vertices from K_{μ}^{c}, the remaining $\mu / 2-1$ isolated vertices in H^{*} and the path of length $\nu-\mu$. Hence by Theorem 3 there is a $\{\mu, \nu\}$-2-factorization of $K_{\mu}^{c} \vee_{2} G$.

The $\{\mu, \nu\}$-2-factorization of $2 K_{\mu+\nu}$ can now be completed since $2 K_{\mu+\nu} \backslash\left(K_{\mu}^{c} \vee_{2}\right.$ $G) \cong 2 K_{\mu}+H_{\nu}\left(S_{\mu, \nu}\right)$ has a $\{\mu, \nu\}$-2-factorization: we can pair the μ-cycles in a μ cycle system of $2 K_{\mu}$ with the $\mu-1 \nu$-cycles in a hamilton decomposition of $H\left(S_{\mu, \nu}\right)$.

If μ is odd, we again apply Theorem 3 with $s=\nu-\mu, t=2, G=H_{\nu}(D), f_{j}(v)=$ $v+j-1$ (for $j=1,2, \ldots, v$ and $v \in V(H)$) but this time when $\mu<\nu-1$ we let H be the graph formed by removing the edge in $H_{\nu}(\{2\})$ from $P(D \cup\{2\})$, so that H contains an isolated edge (namely the edge of H that is also in $H_{\nu}(\{1\})$). When $\mu=\nu-1, D=\{\nu / 2\}$ and we let $H=P(D)$ so that H consists of a single edge. Hence, we require a $\{\mu, \nu\}$-2-factor F of $K_{\mu}^{c} \vee_{2} H^{*}$ where H^{*} consists of a path containing $\nu-\mu-1$ edges, an isolated edge and $\mu-2$ isolated vertices (in the case $\mu=\nu-1 H^{*}$ consists of an isolated edge and $\mu-1$ isolated vertices). We form the μ-cycle of F by using $(\mu-1) / 2$ vertices from K_{μ}^{c}, the isolated edge of H^{*}, and $(\mu-3) / 2$ isolated vertices of H^{*}. It is then straight-forward to form a ν-cycle using the remaining $(\mu+1) / 2$ vertices from K_{μ}^{c} and the remaining isolated vertices and paths in H^{*}. Hence by Theorem 3 there is a $\{\mu, \nu\}$-2-factorization of $K_{\mu}^{c} \vee_{2} G$.

As in the case μ even, we complete the 2 -factorization of $2 K_{\mu+\nu}$ by pairing the $\mu-1 \mu$-cycles in a μ-cycle system of $2 K_{\mu}$ with the $\mu-1 \nu$-cycles in a hamilton decomposition of $H\left(S_{\mu, \nu}\right)$.

References

[1] B. Alspach, P. Schellenberg, D. R. Stinson, and D. Wagner. The Oberwolfach problem and factors of uniform odd length cycles. Journal of Combinatorial Theory (A), 52 (1989), 20-43.
[2] J-C. Bermond, O. Favaron and M. Makéo, Hamilton decompositions of Cayley graphs of degree 4, Journal of Combinatorial Theory (B), 46 (1989), 142-153.
[3] J. A. Bondy and U.S.R. Murty, Graph Theory with Applications, North Holland, 1976.
[4] P. Gvozdjak, On the Oberwolfach problem for complete multigraphs, preprint.
[5] M. Hall, An existence theorem for latin squares, Bull. Amer. Math. Soc., 51 (1945), 387-388.
[6] P. Hall, On representatives of subsets, J. London Math. Soc. 10 (1935), 26-30.
[7] D. G. Hoffman and P. J. Schellenberg, The existence of C_{k}-factorizations of $K_{2 n}-F$, Discrete Math., 97 (1991), 243-250.
[8] Rev. T. P. Kirkman, On a problem in combinations. Cambr. and Dublin Math. J., 2 (1847), 191-204.
[9] Rev. T. P. Kirkman, On the triads made with fifteen things. London, Edinburgh and Dublin Philos. Mag. and J. Sci., 37 (1850), 169-171.
[10] C. C. Lindner and C. A. Rodger, Decomposition into cycles II: Cycle systems, Contemporary design theory, J. H. Dinitz and D. R. Stinson (Editors), Wiley, New York, 1992, 325-369.
[11] C. C. Lindner and C. A. Rodger, Generalized embedding theorems for partial latin squares, Bull. of the ICA, 5 (1992), 81-99.
[12] D. K. Ray-Chaudhuri and R. M. Wilson, Solution of Kirkman's schoolgirl problem. Proc. Symp. Pure Math. Amer. Math. Soc., 19 (1971), 187-204.

[^0]: * Research supported by Australian Research Council grant A49532750.
 ${ }^{\dagger}$ Research supported by an Australian Postdoctoral Research Fellowship and ARC grant A49532750.
 \ddagger Research supported by ONR grant N000014-95-0769 and NSF grant DMS-9531722.

