Modified Group Divisible Designs with Block Size 4 and $\lambda>1$

Ahmed M. Assaf
Department of Mathematics Central Michigan University Mt. Pleasant, MI 48859

Abstract: It is shown here that the necessary conditions for the existence of MGD[4, $\lambda \mathrm{m}, \mathrm{n}]$ for $\lambda \geq 2$ are sufficient with the exception of MGD[4, 3, 6,23].

1. Introduction

We assume that the reader is familiar with the basic concepts of design theory such as pairwise balanced designs (PBD), group divisible designs (GDD), transversal designs (TD), Latin squares, resolvable designs etc. For the definitions of these combinatorial designs see [3]. We shall adopt the following notation: $\operatorname{PBD}(\mathrm{V}, \mathrm{K}, 1)$ stands for a pairwise balanced design on v points, of index unity, and blocks size from K, if $K=\{K\}$ the PBD is called balanced incomplete block design, $\mathrm{B}[\mathrm{v}, \mathrm{k}, 1]$; a (k, λ)-GDD of type $1^{\text {a }}, 2^{b}, 3^{c} \ldots$ denotes a group divisible design with block size k, index λ, and a groups of size $1, b$ groups of size 2 , etc. A $(k, 1)$-GDD of type m^{k} is called a transversal design, $\operatorname{TD}[k, 1, m]$.

Definition Modified group divisible design, $\operatorname{MGD}[k, \lambda, m, n]$, is a pair (X, B) where $X=\left\{\left(x_{i}, y_{j}\right) / 0 \leq i \leq m-1,0 \leq j \leq n-1\right\}$ is a set of order $m n$ and B is a collection of k-subsets of X satisfying the following conditions:

1) every pair of points $\left(x_{i 1}, y_{j 1}\right)$ and ($x_{i 2}, y_{j 2}$) of X is contained in exactly λ blocks where $i_{1} \neq i_{2}$ and $j_{1} \neq j_{2}$.
2) the pair of points $\left(x_{i 1}, y_{j 1}\right)$ and $\left(x_{i 2}, y_{j 2}\right)$ with $i_{1}=i_{2}$ or $j_{1}=j_{2}$ is not contained in any block.
The subsets $\left\{\left(x_{i}, y_{j}\right) / 0 \leq i \leq m-1\right\}$ where $0 \leq j \leq n-1$ are called groups and the subsets $\left\{\left(x_{i}, y_{j}\right) / 0 \leq j \leq n-1\right\}$ where $0 \leq i \leq m-1$ are called rows.

Lemma 1.1 [1] The necessary conditions for the existence of $\operatorname{MGD}[k, \lambda, m, n]$ are that $m, n \geq k, \lambda(m n+1-m-n) \equiv 0(\bmod k-1)$ and $\lambda m n(m n+1-m-n) \equiv 0(\bmod k(k-1))$.

In [1] it is proved that the necessary conditions are sufficient when $k=3$. However, these conditions are not sufficient when k $=4$. A counter example is that MGD[4, 1, 6, 24] does not exist because there do not exist two MOLS of order 6 . In the case $k=4$ and $\lambda=1$ we have the following:

Lemma 1.2 [2] If $m, n \neq 6$ then $\operatorname{MGD}[4,1, m, n]$ exists if $(n-1)(m$ $-1) \equiv 0(\bmod 3)$ with the possible exceptions of $(m, n) \in E=$ $\{(8,10)(10,15)(1,18)(10,23)(19,11)(19,12)(19,14)(19,15)$ $(19,18)(19,23)\}$. Furthermore, there exists a $\operatorname{MGD}[4,1,6, n]$ for $\mathrm{n}=7,10,19$.

The following simple but useful lemma comes from the definiton of MGD.

Lemma 1.3 A MGD[k, $\lambda, m, n]$ exists iff a MGD[k, $\lambda, n, m]$ exists.
In this paper we are interested in MGD[4, $\lambda, \mathrm{m}, \mathrm{n}], \lambda \geq 2$ and $\mathrm{m}, \mathrm{n} \geq$ 4. We shall prove the following.

Theorem 1.1 Let $\lambda \geq 2, m, n \geq 4$ be positive integers. Then the necessary conditions for the existence of MGD[4, $\lambda, m, n]$ are sufficient with the possible exception of $(m, n, \lambda)=(6,23,3)$.

Finally, we close this section with the following remarks about notations and constructions used in the paper:

1) $H_{n}=\left\{h_{1}, h_{2}, \ldots, h_{n}\right\}$ and $C_{n}=\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}$ are n-sets of points; these points understood to be distinct from any other point in the design being constructed.
2) When the design is not additive, we identify $Z_{m} \times Z_{n}$ with $Z_{m n}$, to avoid a long table of blocks. Furthermore, to find out the permutation one needs to list the blocks and in each step we list the point of H_{n} which is missing, this list is our permutation.
3) If α is a permutation on H_{n} then by $\left\{h_{\alpha(i)}\right\}$ we mean the elements of H_{n} under powers of α, e.g. if $\alpha=\left(h_{2} h_{4} h_{1} h_{3}\right)$ then $h_{\alpha(i)} \in$ $\left(h_{2} h_{4} h_{1} h_{3}\right)$.

2. Recursive Constructions

We begin this section with a well known recursive construction, see for example [2].

Lemma 2.1 If there exists a $\operatorname{PBD}(\mathrm{n}, \mathrm{K}, \lambda)$ and for every $\mathrm{k} \in \mathrm{K}$ there exists a MGD[r, $\mu, \mathrm{m}, \mathrm{k}]$ then there exists a $\operatorname{MGD}[r, \lambda \mu, m, n]$.

Proof On n groups of order m construct a $\operatorname{PMD}(\mathrm{n}, \mathrm{K}, \lambda)$ then on each block of order k, where the points of the block are the groups of order m, we construct a $\operatorname{MGD[r,~} \mu, \mathrm{m}, \mathrm{k}]$.

The application of the above lemma requires the existence of PBD. As in [2] let $K=\{v: v \in \operatorname{PBD}(\{4,5,6,7,9\}, 1)\}$, that is, K is the set of all v's such that there exists a $\operatorname{PBD}[\mathrm{v},\{4,5,6,7,9\}, 1]$. Then we have the following result.

Lemma 2.2 [2] Let $\mathrm{v} \geq 4$ be an integer and $\mathrm{v} \notin A=\{8,10,11,12$, $14,15,18,19,23\}$. Then $v \in K$.

Lemma 2.3 [5] Let $\lambda>0$ and $v \geq 4$ be positive integers. Then if $\lambda(v-1) \equiv 0(\bmod 3)$ and $\lambda v(v-1) \equiv 0(\bmod 12)$ then there exists a $\mathrm{B}[\mathrm{v}, 4, \lambda]$.

The following lemma is also very useful
Lemma 2.4 Let $\mathrm{v} \geq 4, \mathrm{v} \notin\{6,10,11\}$ be an integer. Then $\mathrm{v} \in$ $\operatorname{PBD}(\{4,7\}, 3)$.

Proof By Lemma 2.2 if $v \notin A$ then $v \in \operatorname{PBD}(\{4,5,6,7,9\}, 1)$. Further, by Lemma 2.3 if $v \equiv 0$ or $1(\bmod 4)$ then then $v \in \operatorname{PBD}(\{4,7\}, 3)$.
This leaves $v=14,15,18,19,23$.
For $v=15$ there exists a $\mathrm{B}[15,7,3$] [5].
For $v=14$ let $X=Z_{14}$ and let α be the permutation $\alpha=\left(\begin{array}{lll}0 & 1 \ldots 6\end{array}\right)(78$
...13) then take the distinct images of the following blocks under powers of α
$<0123456>$ (orbit lengh one) $<0.11113\rangle\langle 0789><07811>$ $<0137><021012><03912>$.
For $v=18$ let $X=Z_{18}$ and let $\alpha=(01 \ldots 8)(910 \ldots 17)$. Then take the distinct images of the following blocks under powers of α $<013791316><01311><01510><01112$ 14> $<0121617><0131416>$.
For $v=19$ let $X=Z_{18} \cup\{a\}$ and let $\alpha=\left(\begin{array}{lll}0 & 1 . .8\end{array}\right)(910 \ldots 17)$. Then take the distinct images of the following base blocks under powers of α
$<01491116 a><02410><01413><0139><0101114>$ <01113 14> <0 1213 16>.
For $v=23$ let $X=Z_{23}$ then take the following blocks mod 23 <012471216><01417><02915>.

3. MGD with Index Even

In the case $\lambda=2,4$ the necessary conditions for the existence of $\operatorname{MGD}[4, \lambda, m, n]$ are $(m-1)(n-1) \equiv 0(\bmod 3), m, n \geq 4$. In the case $\lambda=6$ the necessary condition is $m, n \geq 4$.

Lemma 3.1 Let $m, n \geq 4,(m-1)(n-1) \equiv 0(\bmod 3)$ be positive integers then there exists a MGD[4, $\lambda, \mathrm{m}, \mathrm{n}]$ for $\lambda=2,4$.

Proof We prove the lemma for $\lambda=2$ then $\lambda=4$ is obtained by taking two copies of a MGD[4, 2, m, n].
We first construct a MGD[4, 2, 6, n] for every $n, n \equiv 1(\bmod 3)$.
But if $n \equiv 1$ or $4(\bmod 12)$ then $n \in \operatorname{PBD}(\{4\}, 1)$ and if $n \equiv 7$ or 10 $(\bmod 12) \mathrm{n} \neq 10,19$ then $\mathrm{n} \in \operatorname{PBD}(\{4,7\}, 1)$ [4]. Applying Lemma 2.1, we only need to construct a MGD[4, 2, 6, $n]$ for $n=4,7,10$, 19. For $n=7,10,19$ the result is given in Lemma 1.2. For $n=4$ let $X=z_{24}$. Groups are the integers which are equal modulo 4 in z_{24} and rows are $\{i, i+3, i+6, i+9\}, i=0,1,2$ together with $\{j, j+3$, $j+6, j+9\}, j=12,13,14$. Let α be the permutation $\alpha=\left(\begin{array}{lll}0 & 1\end{array} \ldots\right.$ 11) (12 ... 23). Then the required blocks are the distinct images of the following base blocks under powers of α. $<02713><0131415><021921><011522><011823>$. For all other values of $m, n \geq 4, m, n \neq 6$, apply Lemma 2.1 with K $=\{4\}, \lambda=2, r=4, \mu=1$ and $k=4$. Notice that a MGD[4, 1, m, 4] exists for all $m \geq 4, m \neq 6$, Lemma 1.2.

Lemma 3.2 Let $m, n \geq 4$ be positive integers, then there exists a $\operatorname{MGD}[4,6, m, n]$.

Proof Again we treat the case $n=6$ separately. In this case if m $\geq 4, m \neq 6$ then the result follows from Lemma 2.1 with $n=6, K=$ $\{4\}, \lambda=6, k=r=4$, and $\mu=1$. So we only need to construct a $\operatorname{MGD}[4,6,6,6]$ instead we take two copies of a $\operatorname{MGD}[4,3,6,6]$ which can be constructed as follows: $X=Z_{30} \cup H_{6}$. Let α be the permutation $\alpha=\left(\begin{array}{lll}0 & 1 & \ldots\end{array}\right)(15 \ldots 29)\left(h_{3} h_{2} h_{1}\right)\left(h_{6} h_{5} h_{4}\right)$. Groups are $\{i, i+5, i+10, \ldots, i+25\}, i=0, \ldots ., 4$, together with H_{6}. Rows are $\left\{i, i+3, \ldots, i+12, h_{\alpha(i+1)}\right\}, i=0,1,2$ together with $\{j+15, j+$ $\left.18, \ldots, j+27, h_{\alpha(j+4)}\right\}, j=0,1,2$. Then the blocks are the distinct images of the following base blocks under powers of α. $<012 h_{6}><0417 h_{6}><0721 h_{6}><21826 h_{6}><22024 h_{6}>$ $<151617 h_{3}><22529 h_{3}><01926 h_{3}><0821 h_{3}><01118 h_{3}>$ <0 117 18><0 216 24> <0 226 28> <0 $71921><0423$ 27> For all other values of $m, n \geq 4, m, n \neq 6$ notice that $m \in \operatorname{PBD}(\{4\}$, 6) and a MGD[4, 1, 4, n] exists for all $n \geq 4, m, n \neq 6$ so apply Lemma 2.1 to get the results.

Corollary 3.1 Let $\lambda>0$ be an even integer, then the necessary conditions for the existence of a MGD[4, $\lambda, \mathrm{m}, \mathrm{n}]$ are sufficient.

Proof Let $\lambda=6 s+t$ where $t=0,2,4$ then a MGD[$4, \lambda, m, n]$ is constructed by taking s copies of a MGD[$4, \lambda, m, n]$ with one copy of a MGD[4, t, m, n].

4 MGD with Index Odd

In this section first we treat the cases $\lambda=3,5$. By Lemma 1.1 the necessary condition for the case $\lambda=3$ is $m, n \geq 4$. Again we treat the case $m=6$ separately.

Lemma 4.1 There exists a MGD[4,3,6,n] for all integers $n \geq 4$ with the possible exception of $(m, n)=(6,23)$.

Proof For $n \geq 4, n \notin\{8,10,11,12,14,15,18,19,23\}$ then by Lemma 2.2 there exist a PBD ($n,\{4,5,6,7,9\}, 1$). Apply Lemma 2.1 we only
need to construct a $\operatorname{MGD}[4,3,6, n]$ for $n \in\{4,5,6,7,8,9,10,11,12$, $14,15,18,19,23\}$

For $n=4$ let $X=Z_{20} \cup H_{4}$. Let α be the permutation $\alpha=\left(\begin{array}{ll}0 & 1 \ldots 4\end{array}\right)$ (5 $6 \ldots 9$) (10 $11 \ldots$ 14)(15 $16 \ldots 19$). Groups are integers which are equal modulo 5 in Z_{20} togother with H_{4}. Rows are $\left\{0,1, \ldots, 4, h_{1}\right\} U$ $\left\{5,6, \ldots, 9, h_{2}\right\} \cup\left\{10,11, \ldots .14, h_{3}\right\} \cup\left\{15,16, \ldots, 19, h_{4}\right\}$. Then the blocks are:

1) $O n Z_{20}$ construct a $\operatorname{MGD}[4,1,4,5]$.
2) Furthermore, take the following blocks under powers of α
$<061218><071416><0811 h_{3}><0913 h_{3}><0612 h_{3}>$ <0819 $h_{2}><0917 h_{2}><0719 h_{2}><01316 h_{1}><01418 h_{1}>$ $<01117 h_{1}><51219 h_{0}><51316 h_{0}><51418 h_{0}>$.
For $n=5$ let $X=z_{30}$, rows consists of points which are equal modulo 5 and columns consists of points which are equal modulo 6. For blocks take the following base blocks under the action of the group Z_{30} :
<012 3> <0 29 16> <0 $3716><0311$ 22> <0 $4817>$.
For $n=6$ the results is given in Lemma 3.2.
For $n=7,10,19$ the result follows from Lemma 1.2.
For $n=8$ let $X=Z_{42} \cup H_{6}$, and α be the permutation $\alpha=(0 \ldots 41)$ $\left(\mathrm{h}_{1} \mathrm{~h}_{2} \ldots \mathrm{~h}_{6}\right)$, rows $\left\{i, i+6, \ldots, i+36, \mathrm{~h}_{\alpha(i+1)}\right\}, i=0, \ldots, 5$, groups $\{j, j+7, \ldots, j+35\} \cup H_{6}, j=0, \ldots, 6$ and the blocks are the distinct images, of the following base blocks under powers of α $<0225 h_{6}><034 h_{6}><242634 h_{6}><152031 h_{6}><12134 h_{6}>$ <0 $125><031625><041526><051332><081727$ > .

For $n=9$ let $X=Z_{45} \quad \cup H_{9}$. Let α be the permutation $\alpha=(0 \ldots 44)$ $\left(h_{1} \mathrm{~h}_{3} \mathrm{~h}_{5} \mathrm{~h}_{7} \mathrm{~h}_{9} \mathrm{~h}_{2} \mathrm{~h}_{4} \mathrm{~h}_{6} \mathrm{~h}_{8}\right)$. Rows are $\left\{i, i+9, \ldots, \mathrm{i}+36, \mathrm{~h}_{\alpha(i+1)}\right\}, \mathrm{i}=0$, $\ldots, 8$. Groups are $\{i, i+5, \ldots, i+40\}, i=0, \ldots, 4$, together with H_{9}. Then the blocks are the distinct images of the following base blocks under powers of α.

$$
\begin{array}{lcc}
\left.<142031 \mathrm{~h}_{1}><158 \mathrm{~h}_{1}\right\rangle & \left.<51233 \mathrm{~h}_{1}\right\rangle & <11534 \mathrm{~h}_{1}> \\
\left.<11329 \mathrm{~h}_{1}><4612 \mathrm{~h}_{1}\right\rangle & <22526 \mathrm{~h}_{1}><31635 \mathrm{~h}_{1}> \\
<01314><01426> & <02816> & <041133>
\end{array}
$$

For $n=11$ let $X=z_{66}, \alpha=(0, \ldots, 32)(33, \ldots, 65)$. Groups are the
integers which are equal modulo 11 and rows are $\{i, i+3, \ldots$, $i+30\}, i=0,1,2$ together with $\{j, j+3 \ldots, j+30\}, j=33,34,35$. The blocks are the distinct images of the following base blocks under powers of α.
<0 15 65> <0 3843 57> <0 $21061><03435$ 39> <0 414 45> $<0365052><0131462><0374763><021658><0405360>$ <0 $53442><074654><0135658><0163536><0849$ 59> <0 248 65> <0 757 61> <013537><044353><054659> $<074752><083864><0106061><0133842><0164048>$.

For $n=12$ let $X=Z_{66} \cup H_{6}$. Rows are $\left\{i, i+6, \ldots, i+60 \quad h_{\alpha(i+1)}\right\}$ $i=0, \ldots, 5$ and groups $\{i, i+11, \ldots, i+55\} \cup \mathrm{H}_{6}, i=0, \ldots, 10$. Let α be the permutation $\alpha=(0 \ldots 65)\left(h_{6} h_{5} \ldots h_{1}\right)$. Then the blocks are the distinct images of the following base blocks under powers of α.
$<01746 \mathrm{~h}_{6}><01550 \mathrm{~h}_{6}><03462 \mathrm{~h}_{6}><3528 \mathrm{~h}_{6}><51562 \mathrm{~h}_{6}>$ $<0138><042039><082153><092349><01025$ 39> <0125><03849><071435><092843><0102639>.

For $n=14$ let $X=Z_{65} \cup H_{5} \cup C_{13} \cup\{\infty\}$ and α be the permutation α $=(0 . .64)\left(c_{1} c_{9} c_{4} c_{12} c_{7} c_{2} c_{10} c_{5} c_{13} c_{8} c_{11} c_{6} c_{3}\right)\left(h_{1} h_{3} h_{5} h_{2} h_{4}\right)$.
Groups are $\left\{i, i+13, \ldots, i+52, c_{\alpha(i+1)}\right\}, i=0, \ldots, 12$ together with H_{5} $\cup\{\infty\}$. Rows are $\left\{i, i+5, \ldots, i+60, h_{\alpha(i+1)}\right\}, i=0, \ldots, 4$ together with $\mathrm{C}_{13} \cup\{\infty\}$. Then the blocks are

1) $\{\langle 0331 \infty\rangle\langle 33134 \infty\rangle\langle 1342 \infty\rangle\langle 34235 \infty><2353 \infty\rangle\}+$ 5i, $i \in Z_{13}$.
II) Take the distinct images of the following base blocks under powers of α :
$\left.\left.\left.\left.<8911 c_{1}\right\rangle<81219 c_{1}\right\rangle<192547 c_{1}\right\rangle<111942 c_{1}\right\rangle$ $\left.<182754 c_{1}>\ldots<102241 c_{1}\right\rangle<21640 c_{1}><92546 c_{1}>$ $<203756 c_{1}><52346 c_{1}><416 c_{1} h_{1}><462 c_{1} h_{1}>$ $<118 \mathrm{C}_{1} \mathrm{~h}_{1}><34652 \mathrm{~h}_{1}><32447 \mathrm{~h}_{1}><0139><021846>$ $<03711\rangle<092347><0122943>$.

For $n=15,19$ the result follows from Lemmas 2.1,2.4 and Lemma 1.2.

For $n=18$ let $X=z_{85} \cup H_{5} \cup C_{17} \cup\{\infty\}$ and let the permutation be
$\alpha=\left(\begin{array}{lll}0 & 1 & \text { 84 }\end{array}\right)\left(h_{1} h_{4} h_{2} h_{5} h_{3}\right)$
$\left(\mathrm{c}_{1} \mathrm{c}_{8} \mathrm{c}_{15} \mathrm{c}_{5} \mathrm{c}_{12} \mathrm{c}_{2} \mathrm{c}_{9} \mathrm{c}_{16} \mathrm{c}_{6} \mathrm{c}_{13} \mathrm{c}_{3} \mathrm{c}_{10} \mathrm{c}_{17} \mathrm{c}_{7} \mathrm{c}_{14} \mathrm{c}_{4} \mathrm{c}_{11}\right)$. Rows are $\{\mathrm{i}, \mathrm{i}+5, \ldots$, $\left.i+80, h_{\alpha(i+1)}\right\}, i=0, \ldots, 4$, together with $C_{17} \cup\{\infty\}$. Groups are $\left\{i, i+17, \ldots, i+68, c_{\alpha(i+1)}\right\}, i=0, \ldots, 16$, together with $H_{5} \cup\{\infty\}$.
Blocks are the following:

1) $\{<03264 \infty><326411 \infty><641143 \infty><114375 \infty>$ $<437522 \infty>\}+5 i, i \in Z_{17}$.
II) Take the distinct images of the following base blocks under powers of α
$<246 \mathrm{c}_{1} \mathrm{~h}_{1}><244 \mathrm{c}_{1} \mathrm{~h}_{1}><913 \mathrm{c}_{1} \mathrm{~h}_{1}><24133 \mathrm{~h}_{1}>$
$\left.<32659 \mathrm{~h}_{1}\right\rangle\left\langle 52362 \mathrm{c}_{1}\right\rangle\left\langle 1238 \mathrm{c}_{1}\right\rangle\left\langle 1364 \mathrm{c}_{1}\right\rangle$
$\left.\left.\left.\left.<4756 c_{1}\right\rangle<101216 c_{1}\right\rangle<81524 c_{1}\right\rangle<61443 c_{1}\right\rangle$
$<142552 c_{1}><122438 c_{1}><31647 c_{1}><113254 c_{1}>$
$<103357 \mathrm{c}_{1}><264539 \mathrm{c}_{1}><154231 \mathrm{c}_{1}><011928>$
$<0137><031129><073143><092266>$
<01226 64> <0 $143753>$.
Theorem 4.1 Let $m, n \geq 4$ be integers, then there exists a MGD[4, $3, m, n]$ with the possible exception of $(m, n)=(6,23)$.

Proof By Lemma 2.4 if $m \neq 6,10,11$ then $m \in \operatorname{PBD}(\{4,7\}, 3)$. Apply Lemma 2.1, we only need to construct a MGD[4, 3, $m, n]$ for $m \in$ $\{4,6,7,10,11\}, n \geq 4$. The case $m=4$ follows from Lemma 1.2 with the exception of MGD[4, 3, 4, 6] which follows from Lemma 4.1. The case $m=7,10$ follows from Lemma 1.2 with the possible exceptions of $(m, n)=(10,8)(10,15)(10,18)(10,23)$. But if $n=$ $8,15,18,23$ then $n \in \operatorname{PBD}(\{4,7\}, 3)$, Lemma 2.4. Now apply Lemma 2.1 to get the result. The case $\mathrm{m}=6$ was treated in Lemma 4.1. The case $m=11$, again by Lemma 2.4 and Lemma 2.1 we only need to construct a MGD[4, 3, 11, $n]$ for $n=4,6,7,10,11$. For $n=6$ see Lemma 4.1 and for $n=4,7,10$ see Lemma 1.2.

For $n=11$ let $X=Z_{110} \cup H_{11}$ and let let α be the permutation $\alpha=$ (0 ... 54) (55 ... 109) ($\left.h_{11} h_{9} h_{7} h_{5} h_{3} h_{1} h_{10} h_{8} h_{6} h_{4} h_{2}\right)$. Rows are $\left\{i, i+11, \ldots, i+99, h_{\alpha(i+1)}\right\}, i=0,1, \ldots, 11$. Groups are $\{i, i+5, \ldots, i+50\} \cup\{j, j+5, \ldots, j+50\} \cup H_{11}, i=0, \ldots, 4 ; j=55, \ldots$, 59.

Take the distinct images of the following base blocks under powers of α :
$\left.<0431 \mathrm{~h}_{11}\right\rangle<0826 \mathrm{~h}_{11}><0724 \mathrm{~h}_{11}><11042 \mathrm{~h}_{11}>$
$<556478 \mathrm{~h}_{11}><546382 \mathrm{~h}_{11}><576998 \mathrm{~h}_{11}><596293 \mathrm{~h}_{11}>$ $<31999 \mathrm{~h}_{11}><56586 \mathrm{~h}_{11}><32493 \mathrm{~h}_{11}><55875 \mathrm{~h}_{11}>$ $<12068 \mathrm{~h}_{11}><106381 \mathrm{~h}_{11}><51878 \mathrm{~h}_{11}><857106 \mathrm{~h}_{11}>$ $<102469 \mathrm{~h}_{11}><75663 \mathrm{~h}_{11}><3495 \mathrm{~h}_{11}><15976 \mathrm{~h}_{11}>$ <0 23 26> < 555674 82> <0 118 58> <0 6163 84> $<061956><0575995><01239$ 57> <0 5659 63> <0 267 109> < 0389 105> <0 476 82> <0 668 85> <0787 103><0 8100 101><0 993 106> <0 1261 62> $<0179108><0278$ 84><0 $474102><0660102><0771$ 89> <0 883 95> <0 $98189><01275$ 106> <0 1385 94> <0 1497 101> <0 $167486><0176985><01886$ 109> <0 1965 67> <0 2190 94> <0 2397 106> <0 2661 64> <02791 98> <0 365 79>.

Corollary 4.1 Let $\lambda \equiv 3(\bmod 6)$ be a positive integer. Then there exists a $\operatorname{MGD}[4, \lambda, m, n]$ for all $m, n \geq 4$ with the possible exception of $(m, n, \lambda)=(6,23,3)$.

Proof For a MGD[4, 9, 6, 23], we have shown that $23 \in \operatorname{PBD}(\{4,7\}$, 3). Now apply Lemma 2.1 with $r=4$ and $\mu=\lambda=3$ to get the result. For all other values of m, n and $\lambda \equiv 3(\bmod 6)$ write $\lambda=6 r+3$ then the blocks of a $\operatorname{MGD}[4, \lambda, m, n]$ are obtained by taking r copies of a MGD[4, 6, m, n] with one copy of a MGD[4, 3, m, n].

The necessary conditions for $\lambda=5$ are the same as $\lambda=1$.
Theorem 4.2 Let $m, n \geq 4$ then a $\operatorname{MGD[4,5,m,n]~exists~for~all~}$ $(m-1)(n-1) \equiv 0(\bmod 3)$.

Proof In this case a $\operatorname{MGD}[4,5, \mathrm{~m}, \mathrm{n}]$ is obtained by taking a $\operatorname{MGD}[4,2, m, n]$ and $\operatorname{MGD}[4,3, m, n]$.

Corollary 4.2 Let $m, n \geq 4$ and $\lambda \equiv 1$ or $5(\bmod 6), \lambda \geq 2$ be positive integers. Then there exists a MGD[4, $\lambda, m, n]$ for all $(m-1)(n-1)$ $\equiv 0(\bmod 3)$.

5. Result

Combining Corollary 3.1, Corollary 4.1 and Corollary 4.2 gives the proof of Theorem 1.1.

References

[1] A.M. Assaf, Modified group divisible designs, Ars Combinatoria, 29 (1990), 13-20.
[2] A.M. Assaf and R. Wei, Modified group divisible designs with block size 4 and $\lambda=1$, Discrete Math., submitted.
[3] T. Beth, D. Jungnickel and H. Lenz, Design Theory, Cambridge University Press, 1986.
[4] A. E Brouwer, Optimal Packings of $\mathrm{K}_{4 \mathrm{~s}}$ into K_{n}, J. of Combin. Theory, Ser. A 26 (1979), 278-297.
[5] H. Hanai, Balanced incomplete block designs and related designs, Discrete Math. 11 (1975), 255-369.

