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Abstract

In this paper we construct critical sets for the multiplication tables of
the groups of order 4h, h ≥ 2, with generating relations a2h = 1, b2 = ah

and ba = a−1b.

1 Introduction

A latin square L of order n is an n × n array with entries chosen from a set, N , of
size n such that each element of N occurs precisely once in each row and column of
the array. (See [3].) For example, the following array, H1, is a latin square of order
8. Here N = {0, . . . , 7}.

0 1 2 3 4 5 6 7
1 2 3 4 5 6 7 0
2 3 4 5 6 7 0 1
3 4 5 6 7 0 1 2
4 5 6 7 0 1 2 3
5 6 7 0 1 2 3 4
6 7 0 1 2 3 4 5
7 0 1 2 3 4 5 6
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This latin square is the addition table for the integers modulo 8.
For convenience, we will sometimes talk of the latin square L as a set of ordered

triples {(i, j; k) | cell (i, j) contains k}. In the above example the latin square can
be represented by the set {(i, j; i+ j(mod 8)) | i, j ∈ {0, . . . , 7}}.

A latin square L′ is said to be isotopic to L if L′ can be obtained from L by
permuting the rows and/or the columns and/or the entries of L. That is, L′ is said
to be isotopic to L is there exists permutations α, β, γ such that L′ = {(iα, jβ; kγ) |
(i, j; k) ∈ L}. Then (α, β, γ) is said to be an isotopism from L to L′.

There are six conjugate latin squares associated with each latin square L. The
reader will find the definition of these in [3]. In this paper we require one of these
conjugates and so define it as follows:

L−1 = {(i, k; j) | (i, j; k) ∈ L},

is a conjugate of the latin square L. The first array H2, given below, is a conjugate of
the multiplication table of the integers modulo 8 and H′2 can be obtained by applying
the permutation (0 7 6 . . . 1) to the columns of H2. Hence H2 and H′2 are isotopic.

0 1 2 3 4 5 6 7
7 0 1 2 3 4 5 6
6 7 0 1 2 3 4 5
5 6 7 0 1 2 3 4
4 5 6 7 0 1 2 3
3 4 5 6 7 0 1 2
2 3 4 5 6 7 0 1
1 2 3 4 5 6 7 0

1 2 3 4 5 6 7 0
0 1 2 3 4 5 6 7
7 0 1 2 3 4 5 6
6 7 0 1 2 3 4 5
5 6 7 0 1 2 3 4
4 5 6 7 0 1 2 3
3 4 5 6 7 0 1 2
2 3 4 5 6 7 0 1

H2 H′2

If a latin square L contains an s× s subarray S and if S is a latin square of order s,
then S is said to be a latin subsquare of L.

A partial latin square P , of order n, is an n × n array with some cells containing
entries chosen from the set N , in such a way that each element of N occurs at most
once in each row and at most once in each column of the array. A partial latin square
C = {(i, j; k) | cell (i, j) contains k}, of order n, is said to have a unique completion
to a latin square L, if L is the only latin square of order n which has element k in
cell (i, j), for each (i, j; k) ∈ C.

A critical set in a latin square L, of order n, is a set C ⊆ L such that,

1. C has a unique completion to L, and

2. no proper subset of C satisfies 1.

For example, it can be shown that the following partial latin squares are critical sets.
These two partial latin squares complete to H1 and H′2 respectively. (Here ∗ indicates
an empty cell.)
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0 1 2 3 4 5 6 *
1 2 3 4 5 6 * *
2 3 4 5 6 * * *
3 4 5 6 * * * *
4 5 6 * * * * *
5 6 * * * * * *
6 * * * * * * *
* * * * * * * *

* * * * * * * 0
* * * * * * * *
7 * * * * * * *
6 7 * * * * * *
5 6 7 * * * * *
4 5 6 7 * * * *
3 4 5 6 7 * * *
2 3 4 5 6 7 * *

At various stages throughout this paper we will use the following results.

LEMMA 1.1 If L is a latin square of order n, S a subsquare in L and C a critical
set in L, then C ∩ S must have a unique completion in S.

In 1995 Donovan, Cooper, Seberry and Nott [4] proved the following two results.

LEMMA 1.2 Let L be a latin square with critical set C. Let (α, β, γ) be an isotopism
from the critical set C onto C ′. Then C ′ is a critical set in a latin square L′ isotopic
to L.

LEMMA 1.3 Let L be a latin square with critical set C and let C ′ be a conjugate
of C. Then C ′ is a critical set in the corresponding conjugate L′ of L.

Recently Donovan and Cooper [5] extended work of Curran and van Rees [2] and
Cooper, Donovan and Seberry [1] and constructed infinite families of critical sets in
the addition tables for the integers modulo n. Their result is as follows

THEOREM 1.1 Let L be the addition table for the integers modulo n, then the set

C = {(i, j; i+ j) | i = 0, . . . , r and j = 0, . . . , r − i} ∪
{(i, j; i+ j) | i = r + 2, . . . , n− 1 and j = r + 1− i, . . . , n− 1}

where n−3
2
≤ r ≤ n− 2, is a critical set in L.

Recently Sittampalam (with Keedwell) [9] constructed an infinite class of critical
sets for the multiplication tables of the dihedral groups. In addition a critical set
for the quaternion group of order 8 has been found by Burgess, see [8]. This work
has been taken up by Howse [7], and she has constructed two more infinite classes of
critical sets for the multiplication tables of the dihedral groups.

The purpose of this paper is to construct an infinite family of critical sets for
the multiplication tables of the groups of order 4h, h ≥ 2, with generating relations
a2h = 1, b2 = ah and ba = a−1b. (When h is a power of two, these groups are called
generalized quaternion groups, see [6].) If we let s(i) correspond to the element
ai and t(i) correspond to (a−i)b, for i an element of the integers modulo 2h, then
multiplication is given by

s(i) ∗ s(j) = s(i+ j) s(i) ∗ t(j) = t(j − i)
t(i) ∗ s(j) = t(i+ j) t(i) ∗ t(j) = s(j − i+ h).
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The latin square corresponding to the multiplication table for this group is

H = {(s(i), s(j); s(i+ j))} ∪ {(s(i), t(j); t(j − i))} ∪
{(t(i), s(j); t(i+ j))} ∪ {(t(i), t(j); s(j − i+ h))}.

The main result of this paper is:

THEOREM 1.2 The partial latin square CH

{(s(i), s(j); s(i+ j)) | i = 0, . . . , 2h− 2, j = 0, . . . , 2h− 2− i} ∪
{(s(0), t(0); t(0))} ∪
{(s(k), t(0); t(2h− k)) | k = h+ 1, . . . , 2h− 1} ∪
{(s(i), t(j); t(j − i)) | i = 2, . . . , 2h− 1, j = 1, . . . , i− 1} ∪
{(t(i), s(j); t(i+ j)) | i = 1, . . . , 2h− 1, j = 2h− i, . . . , 2h− 1} ∪
{(t(i), t(j); s(j − i+ h)) | i = 0, . . . , 2h− 2, j = i+ 1, . . . , 2h− 1},

is a critical set which has unique completion to the latin square H.

By way of example we may take h = 4, and represent s(i) by i and t(i) by 8 + i.
Then the following array forms a latin square of the given type.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 0 15 8 9 10 11 12 13 14
2 3 4 5 6 7 0 1 14 15 8 9 10 11 12 13
3 4 5 6 7 0 1 2 13 14 15 8 9 10 11 12
4 5 6 7 0 1 2 3 12 13 14 15 8 9 10 11
5 6 7 0 1 2 3 4 11 12 13 14 15 8 9 10
6 7 0 1 2 3 4 5 10 11 12 13 14 15 8 9
7 0 1 2 3 4 5 6 9 10 11 12 13 14 15 8
8 9 10 11 12 13 14 15 4 5 6 7 0 1 2 3
9 10 11 12 13 14 15 8 3 4 5 6 7 0 1 2
10 11 12 13 14 15 8 9 2 3 4 5 6 7 0 1
11 12 13 14 15 8 9 10 1 2 3 4 5 6 7 0
12 13 14 15 8 9 10 11 0 1 2 3 4 5 6 7
13 14 15 8 9 10 11 12 7 0 1 2 3 4 5 6
14 15 8 9 10 11 12 13 6 7 0 1 2 3 4 5
15 8 9 10 11 12 13 14 5 6 7 0 1 2 3 4

The array given below is an example of the partial latin square CH when h = 4.
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0 1 2 3 4 5 6 * 8 * * * * * * *
1 2 3 4 5 6 * * * * * * * * * *
2 3 4 5 6 * * * * 15 * * * * * *
3 4 5 6 * * * * * 14 15 * * * * *
4 5 6 * * * * * * 13 14 15 * * * *
5 6 * * * * * * 11 12 13 14 15 * * *
6 * * * * * * * 10 11 12 13 14 15 * *
* * * * * * * * 9 10 11 12 13 14 15 *
* * * * * * * * * 5 6 7 0 1 2 3
* * * * * * * 8 * * 5 6 7 0 1 2
* * * * * * 8 9 * * * 5 6 7 0 1
* * * * * 8 9 10 * * * * 5 6 7 0
* * * * 8 9 10 11 * * * * * 5 6 7
* * * 8 9 10 11 12 * * * * * * 5 6
* * 8 9 10 11 12 13 * * * * * * * 5
* 8 9 10 11 12 13 14 * * * * * * * *

PROOF of Theorem 1.2.
We shall begin by verifying that if any element of the set CH is removed then it is

not possible to obtain a unique completion.
From the structure of the latin square H we see that it can be partitioned into

four latin subsquares

H1 = {(s(i), s(j); s(i+ j)) | 0 ≤ i, j ≤ 2h− 1}
H2 = {(s(i), t(j); t(j − i)) | 0 ≤ i, j ≤ 2h− 1}
H3 = {(t(i), s(j); t(i+ j)) | 0 ≤ i, j ≤ 2h− 1}
H4 = {(t(i), t(j); s(j − i+ h)) | 0 ≤ i, j ≤ 2h− 1}.

Each of these subsquares is isotopic to the multiplication table for the integers modulo
2h or to a conjugate of that latin square.

Theorem 1.1 can be used to show that the set of elements

{(s(i), s(j); s(i+ j)) | i = 0, . . . , 2h− 2, j = 0, . . . , 2h− 2− i}

forms a critical set in H1. Therefore if any of these elements are removed this set will
not have a unique completion to H1 and hence by Lemma 1.1 each of these elements
is necessary to complete CH uniquely to H.

Likewise it can be shown that each of the elements of the set

{(t(i), s(j); t(i+ j)) | i = 1, . . . , 2h− 1, j = 2h− i, . . . , 2h− 1}

is necessary to complete CH uniquely to H.
The subsquare H4 is isotopic to a conjugate of the multiplication table of the

integers modulo 2h and so using Lemmas 1.1, 1.2 and 1.3 and Theorem 1.1 it can be
shown that each of the elements of the set

{(t(i), t(j); s(j − i+ h)) | i = 0, . . . , 2h− 2, j = i+ 1, . . . , 2h− 1}

25



is necessary to complete CH uniquely to H.
Finally we must consider the elements of the set CH ∩ H2. The subsquare H2 is

a conjugate of the multiplication table of the integers modulo 2h and using Theorem
1.1 and Lemmas 1.2 and 1.3 we can show that the set

{(s(0), t(0); t(0))} ∪ {(s(i), t(j); t(j − i)) | i = 2, . . . , 2h− 1, j = 1, . . . , i− 1}

is a critical set in H2. If one refers back to Donovan and Cooper’s paper [5], Theorem
3, it can be seen that each of these entries is necessary for a unique completion to H2

irrespective of whether of not the cells (s(k), t(0)), k = h+ 1, . . . , 2h− 1, are empty.
Therefore each of the elements of the set

{(s(0), t(0); t(0))} ∪ {(s(i), t(j); t(j − i)) | i = 2, . . . , 2h− 1, j = 1, . . . , i− 1}

is necessary for CH ∩H2 to complete uniquely to H2 and hence each of these elements
are necessary to complete CH uniquely to H.

That leaves us to prove that the elements of the set {(s(k), t(0); t(2h − k)) | k =
h+1, . . . , 2h−1} are necessary for the unique completion. To see this take an element
of the form (s(k), t(0); t(2h− k)) where k ∈ {h+ 1, . . . , 2h− 1}. The elements

{(s(k − h), s(h− k); s(0)) (s(k − h), t(0); t(h− k))
(s(k), s(2h− k); s(0)), (s(k), s(h− k); s(h)), (s(k), t(0); t(2h− k))

(t(0), s(2h− k); t(2h− k)), (t(0), s(h− k); t(h− k)), (t(0), t(0); s(h))
(t(h), s(2h− k); t(h− k)), (t(h), t(0); s(0))}

intersects CH in the single element (s(k), t(0); t(2h−k)). If this entry is removed from
CH then what is left will complete to H but also to the latin square which differs
from H in the following entries.

{(s(k − h), s(h− k); t(h− k)) (s(k − h), t(0); s(0))
(s(k), s(2h− k); t(2h− k)), (s(k), s(h− k); s(0)), (s(k), t(0); s(h)))
(t(0), s(2h− k); t(h− k)), (t(0), s(h− k); s(h)), (t(0), t(0); t(2h− k))

(t(h), s(2h− k); s(0)), (t(h), t(0); t(h− k))}

Thus each of the entries (s(k), t(0); t(2h−k)) where k ∈ {h+1, . . . , 2h−1} is necessary
to complete CH uniquely to H.

At this point we have shown that each of the elements of CH is necessary for a
unique completion to H. It remains to be shown that the given set is sufficient to
force the unique completion of CH to H.

The notation x R y C z denotes that symbol x must occur in row y, and column
z is the only place for it, and x C y R z means symbol x must occur in column
y, and row z is the only place for it. Then the following steps justify the unique
completion of CH .
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t(0) R t(0) C s(0).

For i = 1 to 2h− 1, t(0) C t(i) R s(i).

For i = 0 to 2h− 1, s(2h− i− 2) R s(2h− 1) C s(2h− i− 1).

For i = 1 to 2h− 1, t(i) C s(0) R t(i).

For i = 1 to 2h− 1,
for j = i to 2h− 1, t(i) C t(j) R s(j − i).

For i = 1 to 2h− 1,
for j = 2h− 1 downto i, s(h− i+ 1) C t(j − i+ 1) R t(j).

For i = 2h− 2 downto h+ 1,
for j = 2h− 1 downto 2h− i− 1, s(i+ j) R s(i) C s(j).

For i = 0 to 2h− 1, s(h− i) R t(i) C t(0)

Now H1, H2 and H3 have unique completions by Theorem 1.1 .
Hence CH is a critical set in the latin square H.
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