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Abstract: A graph is (m,k)-colourable if its vertices can be coloured with m colours 

such that the maximum degree of the subgraph induced on vertices receiving the same 

colour is at most k. The k-defective chromatic number Xk(G) of a graph G is the 

least positive integer m for which G is (m,k)-colourable. Let f(m,k) be the smallest 

order of a triangle-free graph G such that Xk (G) = m. In this paper we study the 

problem of determining f( m, 1). We show that f(3, 1) = 9 and characterize the 

corresponding minimal graphs. For m ~ 4, we present lower and upper bounds for 

f(m,l). 

1. Introduction 

All graphs considered in this paper are undirected, finite, loopless and have no 

multiple edges. For the most part we follow the notation of Chartrand and Lesniak [5]. 

For a graph G, we denote the vertex set and the edge set of G by V(G) and E(G) 

respectively. The complement of a graph G is denoted by G. For a positive integer n, 

Pn is a path of order nand Cn is a cycle of order n. For a subset U ofV(G), the subgraph 

of G induced on U is denoted by G[U] and the subgraph induced on V(G) - U is 
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denoted by G - U. For a vertex u of G and a subset X ofV(G) let NG(u) denote the 

set of neighbours ofu in G and Nx(u) = NG(u) n X. The closed neighbourhood ofu is 

denoted by N[u]. For notational convenience we write N(u) to mean NG(u), 

understanding the graph G from the context. 

Let F be a graph. A graph G is said to be F-free, if it does not contain F as 

an induced subgraph. A graph is said to be triangle-free if it is K3-free. A subset U of 

V(G) is said to be k-independent if the maximum degree of G[U] is at most k. 

A graph is (m,k)-colourable if its vertices can be coloured with m colours 

such that the subgraph induced on vertices receiving the same colour is k

independent. Note that any (m,k)-colouring of a graph G partitions the vertex set of G 

into m subsets VI ,V2, ... , Vm such that every Vi is k-independent. These sets Vi 

are sometimes referred to as the colour classes. The k-defective chromatic number 

Xk(G) of G is the smallest positive integer m for which G is (m,k)-colourable. 

N ate that Xo ( G) is the usual chromatic number. Clearly Xk (G) ::;; I k ~ Il, where 

p is the order of G. 

These concepts have been studied by several authors. Hopkins and Staton [13] 

refer to a k-independent set as a k-small set. Maddox [16,17] and Andrews and 

Jacobson [2] refer to the same as a k-dependent set. The k-defective chromatic number 

has been investigated by Achuthan et al. [1]; Frick [9]; Frick and Henning [10]; 

Maddox [16,17]; Hopkins and Staton [13] under the name k-partition number; 

Andrews and Jacobson [2] under the name k-chromatic number Cowen et al. [7] and 

204 



Archdeacon [3] obtained some interesting results concerning k-defective colourings of 

graphs in surfaces. 

Let f(m,k) be the smallest order of a triangle-free graph G such that 

x'k (G) = m. The determination of f(m,O) is still an open problem (see Toft [19], 

Problem 29). However partial results concerning this problem have been obtained by 

several authors. In the following we will briefly review some of these results. 

Mycielski [18] constructed an m-chromatic triangle-free graph of order 2m 
_ 2m

-
2 

- 1 for all m ~ 2. Thus f(m,O) ~ 2m 
- 2m

-
2 

- 1 for all m ~ 2. Chvatal [6] proved that 

(
m+2) f(4,0) = 11 and f(m,O) ~ 2 - 4, m~ 4. Furthermore he has shown that there is 

only one triangle-free graph G such that f(4,0) = 11. These results together imply that 

17 ~ f(5,0) ~ 23. Avis [4] improved the lower bound and showed that f(5,0) ~ 19. 

Using a slight extension of Avis' method Hanson and MacGillivray [12] have shown that 

f(5,0) ~ 20. Using a computer algorithm Grinstead, Katinsky and Van Stone [11] have 

shown that 21 ~ f(5,0) ~ 22. Using computer searches Jensen and Royle [14] completely 

settled this problem and showed that f(5,0) = 22. 

In Section 2, we will prove that f(3, 1) = 9 and f( m, 1) ~ m 2 , for all m ~ 4. 

Furthermore, we will determine all the triangle-free graphs of order 9 whose I-defective 

chromatic number is 3. Using the structure of these graphs we will improve the 

bound for f(4,1) and show that f(4,1) ~ 17. We also provide an upper bound for f(m,l). 

For notational convenience the path Ul ,U2, ... ,Un and the cycle Ul,U2, ... ,Un,Ul will be 

denoted by u 1 U2 ... Un and u 1 U2 ... unu 1 respectively. In all the figures a dotted line 

between vertices u and v implies that the edge (u,v) belongs to the complement. 
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2. Main Results : 

The following theorem has been obtained independently by Lovasz [15] and 

Hopkins and Staton [13]. 

Theorem 1: Let G be a graph with maximum degree~. Then 

r ~+ll xJG):S: I k+l . 

We first prove two lemmas concerning triangle-free graphs. 

Lemma 1 : Let G be a triangle-free graph of order 8. Then Xl (G) :S: 2. 

o 

Proof: Let u be a vertex of maximum degree in G. Let A be the set of neighbours of 

u in G and B = VCG) - {u} - A. Since G is triangle-free it follows that A is 0-

independent. 

If IAI ~ 5 then IBI :S: 2. Clearly Xl (G) :S: 2 . If IAI :S: 3 then, by Theorem 1, 

Xl (G) :S: 2. Thus we will assume that IAI = 4. Let {vI, v2, v3, v4} = A and 

{x, y, z} =B. 

(a) (b) 

Figure 1 

IfG[B] does not contain P3 as a subgraph then B u { u } is a I-independent set. Thus 

the vertices in B u { u } can be coloured with colour 1 and the vertices in A can be 



coloured with colour 2. Hence Xl (G) s 2. Thus we assume that G[B] contains a path of 

order 3 as a subgraph. Let xyz be the P3 in G[B] as shown in Figure I.a. 

Since ~(G) = 4, we have I NA(Y) I s 2. Now if I NA(Y) lsI, clearly the sets 

{u, x, z} and Au { y } are both I-independent. Thus it follows that XI(G) s 2 in this 

case. Hence we assume that I NA(Y) I = 2. Let v3 and v4 be the neighbours ofy 

in A (see Figure I.b). Since G is triangle-free, x and z are adjacent to neither 

v3 nor v 4 . Now G is (2,1 )-colourable with colour classes VI { v b v2 , v3 , y} and 

V2 = {u, v4, x, z}. Hence XI(G) s 2. This proves the lemma. 0 

Lemma 2: Let Gi, lsi s 4, be the graphs of order 9 shown in Figure 2. Then 

Xl (GJ = 3, for 1 sis 4. 

Proof: By Lemma 1, for any subgraph H of order 8 of Gi, we have Xl (H) s 2. This 

implies that Xl(GJ s 3. Next we will show that X1(G i ) = 3 for all i, 1 sis 4. We 

first prove that XI(GI) = 3. 

Suppose XI(GI) s 2. Consider a (2, I)-colouring ofGI and let VI ,V2 be the 

colour classes of GI such that IV 11 ~ IV 21. Clearly IV 11 ~ 5. We will show that z 

E V2. Suppose z E VI . Clearly IVI n AI s 1. Since VI is I-independent and G1[B] 
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which implies that IV 1 (\ AI = 1 and IV 1 (\ BI = 3 . Now note that every vertex of A is 

adjacent to two vertices of B in G. Thus VIis not I-independent, a contradiction to 

our assumption. Hence Z E Vz. Now using this it is easy to show that IV2 n AI = 1. 

Let V2 (\ A {ud. Clearly Wl and W3 E VI. Now since U2 also belongs to VI it 

follows that VI is not l-independent, a contradiction. Similarly ifV2 (\ A = {Ui} for 

some i, 2::::; i ::::; 4, we arrive at a contradiction. This proves that XJG1) = 3. 



We observe that GI is a subgraph of Gi , for 2 ~ i ~ 3. This together with the 

fact that Xl (G j ) ~ 3, for all i, gives Xl (G j ) = 3 for 2 ~ i ~ 3 . Now using similar 

arguments as in the case of G1, it is easy to prove that Xl (G4) = 3. This completes the 

proof of the lemma. o 

Combining Lemmas I and 2 we have the following : 

Theorem 2 : The smallest order of a triangle-free graph G such that Xl(G) = 3 is 9, 

that is, f(3, 1) = 9. o 

Theorem 3 : For any integer m ~ 4, f(m, I) ~ m2
. 

Proof: Let m ~ 3 and G a triangle-free graph of order f(m, I) such that XI(G) = m. Let 

u be a vertex of maximum degree. Since G is triangle-free, it follows that N(u) is 0-

independent. Let H == G - N[ u]. 

Claim: IV(H)I ~ f(m-I,I) 

Suppose IV(H)I < f(m-I,l). From the definition of f(m-I,l) it follows that H is 

(m-2, I )-colourable. Also Xl (H) = Xl (H u {u}). Consider an (m-2, I )-colouring of H u 

{u}. Now by assigning a new colour to the elements ofN(u) we produce an (m-I,I)

colouring of G. Thus Xl (G) ~ m - 1, a contradiction to our assumption. This proves the 

claim. 

Now 1 V(G) 1 = f(m, I) = .!l(G) + 1 + 1 V(H) I. Using Theorem 1 and the claim 

established above it can be shown that 
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f(m,I):::: 2m - 1 + f(m-l,I). 

From the above recurrence relation it fonows that 

f(m,I):::: (2m - 1) + (2m - 3) + ... + 7 + f(3,1). 

Now incorporating the fact that ft3,1) = 9, we have 

f(m,1)::::(2m-l)+ (2m-3)+ ... + 7+9=m2 . o 

From Theorem 3 and Lemma 1 we have the following: 

Remark 1: Let m:::: 3 be an integer. If G is a triangle-free graph of order at most 

m2 - 1 then 'Xl(G):S; m - 1. o 

We will now characterize triangle-free graphs of order 9 whose I-defective chromatic 

number is 3. 

Theorem 4: Let G be a triangle-free graph of order 9. Then 'XI (G) 3 if and only ifG is 

isomorphic to one of the graphs of Lemma 2. 

Proof: The if part follows from Lemma 2. 

Let G be a triangle-free graph of order 9 with 'Xl (G) 3 and u a vertex with 

maximum degree in G. Let A be the set of all neighbours of u. From Theorem 1 and 

the assumption that 'XI (G) = 3 it follows that IAI :::: 4. Now let R == G - u - A. It can 

easily be shown that 'Xl (R) = 2. This implies that IV(R)I :::: 3 and hence IAI :s; 5. 
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We will divide the rest of the proof into two cases depending on the value of IAI. 

Case 1 : IAI = 4 

In this case I V(H) I = 4. Let A = {a,b,c,d} and V(H) = {x,y,z,w}. Since X,(H) = 

2, it follows that H has a P3. Let xyz be a P3 in H (see Figure 3.a). 

w 

(a) (b) 

Figure 3 

Now we will show that w is not adjacent to y in H. Suppose w is adjacent to y (see 

Figure 3.b). Since G is triangle-free, w is not adjacent to x or z. Also y is adjacent to at 

most one vertex of A. Therefore A u{y} and {u,x,z,w} are I-independent. Thus Xl (G) 

~ 2, a contradiction. Hence w is not adjacent to y in H. Now H is isomorphic to P3 u 

K 1 or P 4 or C4 according as w is adjacent to neither or exactly one or both of the 

vertices x and z. 

Subcase 1.1 : H is isomorphic to P3 uK I 

Recall that xyz is a P3 in H. Notice that w is the isolated vertex in H (see Figure 

4.a). Clearly {u,x,z,w} is I-independent. Since A(G) = 4 it follows that INA(Y)I ~ 2. If 
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INA(Y)I :::; 1 then A u {y} is I-independent in G. Thus Xl (G) :::; 2, a contradiction. Thus 

Without any loss of generality let N A(Y) = {c,d }(see Figure 4.a). 

A H A x H A x H a x • 
y y 

z z 

·w d 
ew w 

(a) (b) (c) 

Figure 4, 

Consider the vertex x of H. Since G is triangle-free, (x,c) and (x,d) t!:. E(G). Ifx 

is adjacent to at most one of the vertices a and b then A u {x} is I-independent. Also 

since {u,y,z, w} is I-independent we have Xl (G) :::; 2, a contradiction. Therefore x is 

adjacent to both a and b. Similarly z is not adjacent to c or d and is adjacent to 

both a and b (see Figure 4.b). Note that {a, b, d, y} is I-independent. Suppose w is 

not adjacent to c in G. Then {u,c,x,z,w} is a I-independent set. This implies that 

Xl (G) :::; 2, a contradiction. Thus w is adjacent to c. Similarly it can be shown that w is 

adjacent to d (see Figure 4.c). Now it is easy to see that G is isomorphic to GI, or G2, 

or G3 according as the number of neighbours of w in {a, b} is 0 or 1 or 2. 
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Subcase 1.2 : H is isomorphic to P 4 

Recall that xyz is a P3 in H. We assume that w is adjacent to z in H (see Figure 

5.a). 

~r w 

A x H 

(a) (b) 

Figure 5 

Since d(G) = 4, we have INA(y)1 :s; 2. Suppose INA(y)1 :s; l. Then the sets Au {y} 

and {u,x,z,w} form a partition of V(G) into I-independent sets implying 'Xl (G):S; 2, a 

contradiction to our assumption. Thus INA(y )1 = 2 . Similarly it can be shown that 

INA(Z)1 = 2. Since G is triangle-free, we have NA(Y) n NA(z) = 0. Without any loss of 

generality let us assume that NA(Y) = {c,d} and NA(z) {a,b}. Again since G is 

triangle-free, x is not adjacent to c and d and w is not adjacent to a and b (see Figure 

5.b). 

It is easy to see that y is a vertex of degree 4 and the subgraph 

induced on V(G) - N[y] is isomorphic to P3 u Kl and hence we are in Subcase l.l. 



Subcase 1.3: H is isomorphic to C4 

Recall that xyz is a P3 in H. Thus in this case w is adjacent to x and z (see Figure 

6.a). 

A H A H 

~ 
x x 

D b 

c 

d .. 
w w 

(a) (b) 

Figure 6 

Firstly we suppose that every vertex of H has at most one neighbour in A. If x 

and z do not have a common neighbour in A, then A u {x, z} and {u, y, w} form a 

partition of V(G) into I-independent sets. Hence Xl (G) :::; 2, a contradiction to our 

assumption. Thus x and z have a common neighbour in A. Similarly it can be shown that 

y and w have a common neighbour in A. Without any loss of generality let a be the 

common neighbour of x and z and b the common neighbour of y and w (see Figure 

6.b). Now it is easy to see that {u, b, x, z} and {a, c, d, y, w} are both I-independent 

and hence Xl (G) :::; 2, a contradiction. This contradiction implies that some vertex of H 

has at least two neighbours in A. Without any loss of generality let I NA(x) I ~ 2. 

Since ~(G) = 4, it follows that I NA(x) I = 2. Now let NA(x) = {a, b} (see Figure 7.a). 
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A H A H 

x x 

b ~ d 
w w 

(a) (b) 

Figure 7 

Now note that x is a vertex of degree 4. If the vertex z is not adjacent to both c and d 

then V(G) - N[x] is isomorphic to P3 u KI or P4 and hence we are in Subcase 1.1 or 

1.2. Thus we assume that z is adjacent to both c and d (see Figure 7.b). Now clearly the 

vertices y and w do not have any neighbour in A. Thus A u {y, w} and {u, x, z} are 

both I-independent and hence Xl (G) :::::; 2, a contradiction. This completes the proof in 

Sub case 1.3. 

Case 2: I A I = 5 

In this case JV(H)J = 3 . Since Xl (H) = 2 and H is triangle-free, it follows 

that H == P3. Let xyz be the P3 in H and A = {a,b,c,d,e}(see Figure 8.a). 
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A A 
a H a H 

b. 
x b x 

I: u 

~ 
y 

z 
e 

(a) (b) 

Figure 8 

Note that each vertex a ofR has at least two neighbours in A, for otherwise Au 

{ex} and {u} u VCR) -{a} provide a (2,l)-colouring ofG. 

Firstly since ll(G) = 5, INA(Y)I :'S: 3. IfINA(Y) I :'S: 2 then from the above remark we have 

IN A(Y) I = 2. Without loss of generality let a and b be the neighbours ofy. Clearly x and z 

are not adjacent to either of a and b. Thus {a,c,d,e,y} and {b,x,z,u} are both 1-

independent which implies Xl (G) :'S: 2, a contradiction. This proves the claim. 

Without loss of generality let c,d and e be the neighbours of y. Again x and Z are 

not adjacent to any element of {c,d,e} in G. Thus x and z have at most two neighbours in 

A. Combining this with the fact that any vertex of R has at least two neighbours in 

A we have INA(X)I = INA(Z)I = 2. Thus NA(x) = NA(z) {a,b} (see Figure S.b). 

Now it is easy to see that G is isomorphic to the graph G4 of Lemma 2. 

This completes the proof of Theorem 4. o 



Theorem 5 : The smallest order of a triangle-free graph G with Xl (G) = 4 is at least 

17, that is, f(4,I) ? 17. 

Proof: To prove the theorem, it is sufficient to show that if G is a triangle-free graph of 

order 16, then Xl (G) ::;; 3. 

Let G be a triangle-free graph of order 16. We shall prove that Xl (G) ::;; 3. 

Let u be a vertex of maximum degree in G and A = N(u), so I A I =A(G). 

Define R == G-u-A. It is easy to see that if Xl (R) ::;; 2 then Xl (G) ::;; 3. Thus we will 

assume that Xl (H) 2:: 3. Combining this with Lemma 1 we have I VCR) I 2:: 9. Thus 

A(G) = I A I ::;; 6. Now if A(G) ::;; 5, then by Theorem 1, Gis (3, l)-colourable. Thus let us 

assume that A(G) = 6. This implies that I V(R) I = 9. Applying Remark 1 with m = 4 

to the graph R, we have Xl (H) ::;; 3. Combining this with the assumption that 

Xl (R) 2:: 3, it follows that Xl (H) = 3. Thus we have established that H is a graph of 

order 9 with Xl (H) = 3. From Theorem 4 it follows that H is isomorphic to one 

of the graphs of Lemma 2 shown in Figure 2. Let V(H) = {a,b,c,d,x,y,z,v,w}. 

Firstly let us assume that H is isomorphic to GI of Figure 2. Consider the 

(3, I)-colouring ofR shown in Figure 9.a. 

The numbers next to the vertices a to w denote the colours assigned to the vertices. We 

will now extend this (3,1 )-colouring of R to a (3,1 )-colouring of G. 
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A 
a b 

2 

uID u 

w w 

(a) (b) 

Figure 9 

Observe that w is adjacent to at most two vertices of A since ~(G) = 6. If w is 

adjacent to at most one vertex of A then assign colour 3 to the vertices of A and assign 

colour 1 to u. This produces a (3,1 )-colouring of G. Thus let us assume that w is joined 

to exactly two vertices, say, sand t of A(see Figure 9.b). 

Since G is triangle-free, sand t are not adjacent to any element of {x,y,z,v}. 

Firstly we assign colour 3 to the elements of A - s. Now we colour sand u as follows: 

If s is adjacent to b, then s is not adjacent to a or c. Hence we can assign colour 2 to s 

and colour I to u. Thus we have a (3,l)-colouring of G in this case. On the other 

hand if s is not adjacent to b note that {s,b,d,x,y} is I-independent and hence we 

assign colour 1 to s and colour 2 to u. This forms a (3,1 )-colouring of G in this case. 

Thus when H == GI of Figure 2, we have extended the (3, I )-colouring of H shown in 

Figure 9. a to a (3, I )-colouring of G. 

Now assume that H is isomorphic to Gi for some i, 2 S; i S; 4, of Figure 2. We 

have reproduced those graphs in Figure 10 along with a (3, I )-colouring. In the following 

we will briefly explain how to extend the (3, I)-colouring of Gi to the graph G. 
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Firstly let i = 2 or 3. As in the case H == G1 it is easy to produce a (3,1 )-colouring 

of G if w has at most one neighbour in A. So we will assume that w is adjacent to 

exactly two vertices, say sand t of A. Colour the vertices of A u {u} as follows: The 

vertices in A - {s} are assigned colour 3. The vertex s is assigned colour 2 or 1 

according as s is or is not adjacent to the vertex b. Now the vertex u will be assigned 

colour 1 or 2 according as s is assigned colour 2 or 1. It is easy to check that this is a 

(3, I)-colouring ofG. 

3 
3 2 2 

2 2 2 

Figure 10 

Finally let H == G4. Since .1(G) = 6, w is adjacent to at most one vertex of A. 

Hence we can assign colour 3 to all the elements of A and colour I to u. This provides a 

(3,1 )-colouring of G and completes the proof of Theorem 5. o 

Using the proof of Theorem 3 and Theorem 5 we have the following: 
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Corollary: For any integer m:?: 5, f(m,l):?: m2 + 1. o 

In the following we shall prove that there exist triangle-free graphs of 

arbitrarily large I-defective chromatic number. The construction is similar to the 

construction (of triangle-free graphs of arbitrarily large chromatic number) due to 

Mycielski [18]. 

Theorem 6: For every positive integer n, there exists a triangle-free graph G with 

Xl (G) = n. 

Proof: We prove Theorem 6 by induction on n. For n I and 2 the graphs Kl and P3, 

respectively, have the required properties. Assume that R is a triangle-free graph of 

order p with Xl (R) = k, where k :?: 3. We will now construct a triangle-free graph G 

with Xl (G) k+l. 

where 

and 

Let VCR) = {Vl,V2, ... ,Vp}. Then define 

V(G) = VCR) U {Ui,Wi: 1 sis p} U {x} 

E(G) = E(H) u El U E2 

El {(Ui,y),(Wi,y): y is a neighbour of Vi in R} 
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It is easy to show that G is triangle-free. We will prove that Xl (G) = 

k+ 1. Consider a (k, I)-colouring of H which uses colours I,2, ... ,k. Now assign a new 

colour k + 1 to all the vertices Uj and Wi, for I:S: i :s: p, and colour 1 to the vertex x. 

This provides a (k+I,I)-colouring ofG. Thus Xl (G):S: k+1. 

To prove equality, if possible, consider a (k, I)-colouring of G, which uses 

colours I,2, ... ,k. Without loss of generality assume that the vertex x is assigned colour 

1. From this (k, 1 )-colouring of G we will provide a (k-I, 1 )-colouring ofH. 

Let Cu be the set of all vertices of G that are assigned colour a, 1 :s: a :s: 

k. Further, let Vl = C1 (l V(H) = {Vl,V2, ... ,Ve}. Without loss of generality we 

suppose that for 1 sis m, the degree of Vi, in the graph H[V d is 0 and for m + 1 :s: i :s: 

t, the degree of Vi, in the graph H[Vd is 1. The following are easily established (see 

Figure 11) : 

Ui 

x 

Figure 11 
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p 

(i) I U {Ui,Wi} n cll ~ 1. 
i=l 

(ii) For 1 ~ i ~ t, ifui E Co. for some a * 1, then 

and 

(Co. U {Vi}) n VCR) is I-independent. 

(iii) The statement (ii) is also true for Wi, I ~ i ~ t . 

(iv) For i, 1 ~ i ~ t, ifui, Wi E Co., for some a * 1, then I Co. n NH(vi) I = o. 

In the following we describe the method of changing the colour of every vertex 

of VIto some other suitable colour. 

1. For 1 ~ i :::;; m, the vertex Vi is reassigned colour a, where a is such that {Ui,Wi} 

2. Suppose m + 1 ~ i ~ t. Note that t - m is even and H [{ Vm+l, ... ,V( }] is a 

matching. Consider Vi and Vj, m+ 1 ~ i, j ~ t, such that (Vi,Vj) E E(H). Clearly none 

of the vertices in {Ui,Wi,Uj,Wj} is assigned colour 1, for otherwise, we have a P3 in 

2a. If:3 an a * 1 such that {Ui,Wi,Uj,Wj} ~ Co., then both the 

vertices Vi and Vj are reassigned the colour a. 
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2b. Suppose a. and /3 are two distinct colours such that 

{Uj,Wi} n ea.:t: 0 and {Uj,Wj} nell:t: 0. Now we 

reassign the colour a to Vi and the colour /3 to Vj. 

We repeat the steps 2a and 2b for every pair of adjacent vertices In 

R[ {Vm+l, ... , vt }]. 

We will now prove that this procedure results in a (k-l,I)-colouring ofR. Let 

Va. be the set of vertices ofR that have been assigned colour u, for 2::; u ~ k. Note that 

ea. n V(H) ~ Va., for 2 ::; a. ::; k. In the following, we will prove that R[V 2] is 1-

independent. The same arguments hold for 3 ~ a. ~ k. 

Suppose H[V2] is not I-independent. Let VrVsVt be a P3 in H[V2] (see Figure 12). 

w. 

1.1,-

Figure 12 
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It is easy to see that at least one and at most two of the vertices in {Vr, Vs, vd belong to 

C2 . 

Claim : Vs ~ C2, that is, Vs was originally assigned colour 1. 

Suppose Vs E C2. At least one ofvr and Vt must be in Cl , say Vr E C1. Since the vertex 

Vr has been reassigned colour 2, from our procedure it follows that either Ur or Wr 

belongs to C2, say Ur E C2. Since UrVsVt is a P3 in G it follows that Vt ~ C2 and hence Vt E 

Cl. This in turn implies that either Ut or Wt belongs to C2, say Ut E C2 . But this gives a 

P3 namely, UrVsUt in the colour class C2 of G, a contradiction. This proves the claim. 

Since the colour of Vs has been changed from 1 to 2 (by our procedure), it 

follows that at least one of Us and Ws must be in C2, say Us E C2. 

Now without loss of generality let us assume that Vr E C2. Since VrUsVt is a P3 in 

G, it follows that Vt E C1. Since Vs and Vt are adjacent in H[V 1], and they are both 

reassigned colour 2, it follows from our procedure that all the vertices in {Us,Ws,ut,wd 

must be in C2. But this gives a P3, namely UsVrWs in C2, a contradiction. 

Thus, we have provided a (k -1,1 )-colouring of H, a contradiction to the fact 

that Xl (H) = k. This contradiction proves that Xl (G) = k+ 1. This completes the proof 

of the theorem. o 

Remark 2: From Theorem 6 and the definition of f(m, 1) it follows that, for m :2 4, 

f(m,I)::; 3. f(m-l,l) + 1. Now using the fact that f(3,1) = 9, we have 
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3m- 3 1 
f(m,l) s 3m- 1 + -

2 

Combining Theorem 5 and Remark 2 we have 

17 s £(4,1) s 28. 

Remark 3: Theorem 6 also follows from the results of Folkman ([8], Theorem 2). 

However, the order of the graph constructed in Folkman's proof is larger than the order 

of the graph in Theorem 6. 
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