ON MINIMAL TRIANGLE-FREE GRAPHS WITH PRESCRIBED 1-DEFECTIVE CHROMATIC NUMBER

M. Simanihuruk
Mathematics Department
Bengkulu University
Bengkulu
Indonesia

Abstract: A graph is (\mathbf{m}, \mathbf{k})-colourable if its vertices can be coloured with m colours such that the maximum degree of the subgraph induced on vertices receiving the same colour is at most k. The k-defective chromatic number $\chi_{k}(\mathbf{G})$ of a graph G is the least positive integer m for which G is (m, k)-colourable. Let $f(m, k)$ be the smallest order of a triangle-free graph G such that $\chi_{k}(G)=m$. In this paper we study the problem of determining $f(m, 1)$. We show that $f(3,1)=9$ and characterize the corresponding minimal graphs. For $m \geq 4$, we present lower and upper bounds for $f(m, 1)$.

1. Introduction

All graphs considered in this paper are undirected, finite, loopless and have no multiple edges. For the most part we follow the notation of Chartrand and Lesniak [5]. For a graph G, we denote the vertex set and the edge set of G by $V(G)$ and $E(G)$ respectively. The complement of a graph G is denoted by \bar{G}. For a positive integer n, P_{n} is a path of order n and C_{n} is a cycle of order n. For a subset U of $V(G)$, the subgraph of G induced on U is denoted by $G[U]$ and the subgraph induced on $V(G)-U$ is

[^0]denoted by $G-U$. For a vertex u of G and a subset X of $V(G)$ let $N_{G}(u)$ denote the set of neighbours of u in G and $N_{X}(u)=N_{G}(u) \cap X$. The closed neighbourhood of u is denoted by $N[u]$. For notational convenience we write $N(u)$ to mean $N_{G}(u)$, understanding the graph G from the context.

Let F be a graph. A graph G is said to be F -free, if it does not contain F as an induced subgraph. A graph is said to be triangle-free if it is K_{3}-free. A subset U of $\mathrm{V}(\mathrm{G})$ is said to be k -independent if the maximum degree of $\mathrm{G}[\mathrm{U}]$ is at most k.

A graph is (m, k)-colourable if its vertices can be coloured with m colours such that the subgraph induced on vertices receiving the same colour is k independent. Note that any (m, k)-colouring of a graph G partitions the vertex set of G into m subsets $V_{1}, V_{2}, \ldots, V_{m}$ such that every V_{i} is k-independent. These sets V_{i} are sometimes referred to as the colour classes. The \mathbf{k}-defective chromatic number $\chi_{k}(\mathrm{G})$ of G is the smallest positive integer m for which G is (m, k)-colourable. Note that $\chi_{0}(G)$ is the usual chromatic number. Clearly $\chi_{k}(G) \leq\left\lceil\frac{p}{k+1}\right\rceil$, where p is the order of G.

These concepts have been studied by several authors. Hopkins and Staton [13] refer to a k -independent set as a k -small set. Maddox $[16,17]$ and Andrews and Jacobson [2] refer to the same as a k -dependent set. The k -defective chromatic number has been investigated by Achuthan et al. [1]; Frick [9]; Frick and Henning [10]; Maddox [16,17]; Hopkins and Staton [13] under the name k-partition number; Andrews and Jacobson [2] under the name k -chromatic number Cowen et al. [7] and

Archdeacon [3] obtained some interesting results concerning k-defective colourings of graphs in surfaces.

Let $f(m, k)$ be the smallest order of a triangle-free graph G such that $\chi_{k}(\mathrm{G})=\mathrm{m}$. The determination of $\mathrm{f}(\mathrm{m}, 0)$ is still an open problem (see Toft [19], Problem 29). However partial results concerning this problem have been obtained by several authors. In the following we will briefly review some of these results.

Mycielski [18] constructed an m-chromatic triangle-free graph of order $2^{m}-2^{m-2}$ - 1 for all $m \geq 2$. Thus $f(m, 0) \leq 2^{m}-2^{m-2}-1$ for all $m \geq 2$. Chvátal [6] proved that $f(4,0)=11$ and $f(m, 0) \geq\binom{ m+2}{2}-4, m \geq 4$. Furthermore he has shown that there is only one triangle-free graph G such that $\mathrm{f}(4,0)=11$. These results together imply that $17 \leq f(5,0) \leq 23$. Avis [4] improved the lower bound and showed that $f(5,0) \geq 19$. Using a slight extension of Avis' method Hanson and MacGillivray [12] have shown that $f(5,0) \geq 20$. Using a computer algorithm Grinstead, Katinsky and Van Stone [11] have shown that $21 \leq f(5,0) \leq 22$. Using computer searches Jensen and Royle [14] completely settled this problem and showed that $\mathrm{f}(5,0)=22$.

In Section 2, we will prove that $f(3,1)=9$ and $f(m, 1) \geq m^{2}$, for all $m \geq 4$. Furthermore, we will determine all the triangle-free graphs of order 9 whose 1-defective chromatic number is 3 . Using the structure of these graphs we will improve the bound for $f(4,1)$ and show that $f(4,1) \geq 17$. We also provide an upper bound for $f(m, 1)$.

For notational convenience the path $\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}$ and the cycle $\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}, \mathrm{u}_{1}$ will be denoted by $u_{1} u_{2} \ldots u_{n}$ and $u_{1} u_{2} \ldots u_{n} u_{1}$ respectively. In all the figures a dotted line between vertices u and v implies that the edge (u, v) belongs to the complement.

2. Main Results :

The following theorem has been obtained independently by Lovász [15] and Hopkins and Staton [13].

Theorem 1: Let G be a graph with maximum degree Δ. Then

$$
\chi_{\mathrm{k}}(\mathrm{G}) \leq\left\lceil\frac{\Delta+1}{\mathrm{k}+1}\right\rceil
$$

We first prove two lemmas concerning triangle-free graphs.

Lemma 1 : Let G be a triangle-free graph of order 8 . Then $\chi_{1}(G) \leq 2$.

Proof: Let u be a vertex of maximum degree in G. Let A be the set of neighbours of u in G and $B=V(G)-\{u\}-A$. Since G is triangle-free it follows that A is 0 independent.

If $|A| \geq 5$ then $|B| \leq 2$. Clearly $\chi_{1}(G) \leq 2$. If $|A| \leq 3$ then, by Theorem 1 , $\chi_{1}(G) \leq 2$. Thus we will assume that $|A|=4$. Let $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}=A$ and $\{\mathrm{x}, \mathrm{y}, \mathrm{z}\}=\mathrm{B}$.

Figure 1

If $G[B]$ does not contain P_{3} as a subgraph then $B \cup\{u\}$ is a 1-independent set. Thus the vertices in $B \cup\{u\}$ can be coloured with colour 1 and the vertices in A can be
coloured with colour 2 . Hence $\chi_{1}(G) \leq 2$. Thus we assume that $G[B]$ contains a path of order 3 as a subgraph. Let xyz be the P_{3} in $G[B]$ as shown in Figure 1.a.

Since $\Delta(G)=4$, we have $\left|N_{A}(y)\right| \leq 2$. Now if $\left|N_{A}(y)\right| \leq 1$, clearly the sets $\{u, x, z\}$ and $A \cup\{y\}$ are both 1 -independent. Thus it follows that $\chi_{1}(G) \leq 2$ in this case. Hence we assume that $\left|N_{A}(y)\right|=2$. Let v_{3} and v_{4} be the neighbours of y in A (see Figure 1.b). Since G is triangle-free, x and z are adjacent to neither v_{3} nor v_{4}. Now G is (2,1)-colourable with colour classes $V_{1}=\left\{v_{1}, v_{2}, v_{3}, y\right\}$ and $V_{2}=\left\{u, v_{4}, x, z\right\}$. Hence $\chi_{1}(G) \leq 2$. This proves the lemma.

Lemma 2: Let $G_{1}, 1 \leq i \leq 4$, be the graphs of order 9 shown in Figure 2. Then $\chi_{1}\left(G_{i}\right)=3$, for $1 \leq i \leq 4$.

Proof: By Lemma 1, for any subgraph H of order 8 of G_{i}, we have $\chi_{1}(\mathrm{H}) \leq 2$. This implies that $\chi_{1}\left(G_{i}\right) \leq 3$. Next we will show that $\chi_{1}\left(G_{i}\right)=3$ for all $i, 1 \leq i \leq 4$. We first prove that $\chi_{1}\left(G_{1}\right)=3$.

Suppose $\chi_{1}\left(G_{1}\right) \leq 2$. Consider a $(2,1)$-colouring of G_{1} and let V_{1}, V_{2} be the colour classes of G_{1} such that $\left|V_{1}\right| \geq\left|V_{2}\right|$. Clearly $\left|V_{1}\right| \geq 5$. We will show that z $\in V_{2}$. Suppose $z \in V_{1}$. Clearly $\left|V_{1} \cap A\right| \leq 1$. Since V_{1} is 1 -independent and $G_{1}[B]$

Figure 2
contains a P_{3}, it follows that $\left|\mathrm{V}_{1} \cap \mathrm{~B}\right| \leq 3$. Thus $5 \leq\left|\mathrm{V}_{1}\right|=1+\left|\mathrm{V}_{1} \cap \mathrm{~A}\right|+\left|\mathrm{V}_{1} \cap \mathrm{~B}\right| \leq 5$, which implies that $\left|V_{1} \cap A\right|=1$ and $\left|V_{1} \cap B\right|=3$. Now note that every vertex of A is adjacent to two vertices of B in G. Thus V_{1} is not 1 -independent, a contradiction to our assumption. Hence $z \in V_{2}$. Now using this it is easy to show that $\left|V_{2} \cap A\right|=1$. Let $V_{2} \cap A=\left\{u_{1}\right\}$. Clearly w_{1} and $w_{3} \in V_{1}$. Now since u_{2} also belongs to V_{1} it follows that V_{1} is not 1 -independent, a contradiction. Similarly if $V_{2} \cap A=\left\{u_{i}\right\}$ for some $\mathrm{i}, 2 \leq \mathrm{i} \leq 4$, we arrive at a contradiction. This proves that $\chi_{1}\left(\mathrm{G}_{1}\right)=3$.

We observe that G_{1} is a subgraph of G_{1}, for $2 \leq i \leq 3$. This together with the fact that $\chi_{1}\left(\mathrm{G}_{\mathrm{i}}\right) \leq 3$, for all i , gives $\chi_{1}\left(\mathrm{G}_{\mathrm{i}}\right)=3$ for $2 \leq \mathrm{i} \leq 3$. Now using similar arguments as in the case of G_{1}, it is easy to prove that $\chi_{1}\left(G_{4}\right)=3$. This completes the proof of the lemma.

Combining Lemmas 1 and 2 we have the following :

Theorem 2: The smallest order of a triangle-free graph G such that $\chi_{1}(\mathrm{G})=3$ is 9 , that is, $f(3,1)=9$.

Theorem 3 : For any integer $m \geq 4, f(m, 1) \geq m^{2}$.

Proof: Let $m \geq 3$ and G a triangle-free graph of order $f(m, 1)$ such that $\chi_{1}(G)=m$. Let u be a vertex of maximum degree. Since G is triangle-free, it follows that $N(u)$ is 0 independent. Let $\mathrm{H} \cong \mathrm{G}-\mathrm{N}[\mathrm{u}]$.

Claim : $|\mathrm{V}(\mathrm{H})| \geq \mathrm{f}(\mathrm{m}-1,1)$
Suppose $|V(H)|<f(m-1,1)$. From the definition of $f(m-1,1)$ it follows that H is $(\mathrm{m}-2,1)$-colourable. Also $\chi_{1}(\mathrm{H})=\chi_{1}(\mathrm{H} \cup\{\mathrm{u}\})$. Consider an $(\mathrm{m}-2,1)$-colouring of $\mathrm{H} \cup$ $\{u\}$. Now by assigning a new colour to the elements of $N(u)$ we produce an $(m-1,1)$ colouring of G . Thus $\chi_{1}(\mathrm{G}) \leq \mathrm{m}-1$, a contradiction to our assumption. This proves the claim.

Now $|\mathrm{V}(\mathrm{G})|=\mathrm{f}(\mathrm{m}, 1)=\Delta(\mathrm{G})+1+|\mathrm{V}(\mathrm{H})|$. Using Theorem 1 and the claim established above it can be shown that

$$
\mathrm{f}(\mathrm{~m}, 1) \geq 2 \mathrm{~m}-1+\mathrm{f}(\mathrm{~m}-1,1)
$$

From the above recurrence relation it follows that

$$
\mathrm{f}(\mathrm{~m}, 1) \geq(2 \mathrm{~m}-1)+(2 \mathrm{~m}-3)+\ldots+7+\mathrm{f}(3,1) .
$$

Now incorporating the fact that $f(3,1)=9$, we have

$$
\mathrm{f}(\mathrm{~m}, 1) \geq(2 \mathrm{~m}-1)+(2 \mathrm{~m}-3)+\ldots+7+9=\mathrm{m}^{2} .
$$

From Theorem 3 and Lemma 1 we have the following:

Remark 1: Let $m \geq 3$ be an integer. If G is a triangle-free graph of order at most $m^{2}-1$ then $\chi_{1}(G) \leq m-1$.

We will now characterize triangle-free graphs of order 9 whose 1-defective chromatic number is 3 .

Theorem 4: Let G be a triangle-free graph of order 9 . Then $\chi_{1}(\mathrm{G})=3$ if and only if G is isomorphic to one of the graphs of Lemma 2.

Proof: The if part follows from Lemma 2.
Let G be a triangle-free graph of order 9 with $\chi_{1}(G)=3$ and u a vertex with maximum degree in G. Let A be the set of all neighbours of u . From Theorem 1 and the assumption that $\chi_{1}(G)=3$ it follows that $|A| \geq 4$. Now let $H \cong G-u-A$. It can easily be shown that $\chi_{1}(H)=2$. This implies that $|\mathrm{V}(\mathrm{H})| \geq 3$ and hence $|\mathrm{A}| \leq 5$.

We will divide the rest of the proof into two cases depending on the value of $|\mathrm{A}|$.

Case 1 : $|\mathrm{A}|=4$
In this case $|V(H)|=4$. Let $A=\{a, b, c, d\}$ and $V(H)=\{x, y, z, w\}$. Since $\chi_{1}(H)=$ 2 , it follows that H has a P_{3}. Let xyz be a P_{3} in H (see Figure 3.a).

(a)

(b)

Figure 3

Now we will show that w is not adjacent to y in H. Suppose w is adjacent to y (see Figure 3.b). Since G is triangle-free, w is not adjacent to x or z. Also y is adjacent to at most one vertex of A. Therefore $\mathrm{A} \cup\{\mathrm{y}\}$ and $\{\mathrm{u}, \mathrm{x}, \mathrm{z}, \mathrm{w}\}$ are 1 -independent. Thus $\chi_{1}(\mathrm{G})$ ≤ 2, a contradiction. Hence w is not adjacent to y in H . Now H is isomorphic to $\mathrm{P}_{3} \cup$ K_{1} or P_{4} or C_{4} according as w is adjacent to neither or exactly one or both of the vertices x and z .

Subcase 1.1 : H is isomorphic to $\mathrm{P}_{3} \cup \mathrm{~K}_{1}$
Recall that xyz is a P_{3} in H. Notice that w is the isolated vertex in H (see Figure
4.a). Clearly $\{u, x, z, w\}$ is 1 -independent. Since $\Delta(G)=4$ it follows that $\left|N_{A}(y)\right| \leq 2$. If
$\left|\mathrm{N}_{\mathrm{A}}(\mathrm{y})\right| \leq 1$ then $\mathrm{A} \cup\{\mathrm{y}\}$ is 1 -independent in G . Thus $\chi_{1}(\mathrm{G}) \leq 2$, a contradiction. Thus $\left|N_{A}(y)\right|=2$.

Without any loss of generality let $\mathrm{N}_{\mathrm{A}}(\mathrm{y})=\{\mathrm{c}, \mathrm{d}\}$ (see Figure 4.a).

Figure 4

Consider the vertex x of H. Since G is triangle-free, (x, c) and $(x, d) \notin E(G)$. If x is adjacent to at most one of the vertices a and b then $A \cup\{x\}$ is 1-independent. Also since $\{u, y, z, w\}$ is 1 -independent we have $\chi_{1}(G) \leq 2$, a contradiction. Therefore x is adjacent to both a and b . Similarly z is not adjacent to c or d and is adjacent to both a and b (see Figure 4.b). Note that $\{\mathrm{a}, \mathrm{b}, \mathrm{d}, \mathrm{y}\}$ is 1 -independent. Suppose w is not adjacent to c in G . Then $\{\mathrm{u}, \mathrm{c}, \mathrm{x}, \mathrm{z}, \mathrm{w}\}$ is a 1 -independent set. This implies that $\chi_{1}(\mathrm{G}) \leq 2$, a contradiction. Thus w is adjacent to c. Similarly it can be shown that w is adjacent to d (see Figure 4.c). Now it is easy to see that G is isomorphic to G_{1}, or G_{2}, or G_{3} according as the number of neighbours of w in $\{a, b\}$ is 0 or 1 or 2 .

Subcase 1.2: H is isomorphic to P_{4}
Recall that xyz is a P_{3} in H. We assume that w is adjacent to z in H (see Figure
5.a).

(a)

(b)

Figure 5

Since $\Delta(G)=4$, we have $\left|N_{A}(y)\right| \leq 2$. Suppose $\left|N_{A}(y)\right| \leq 1$. Then the sets $A \cup\{y\}$ and $\{u, x, z, w\}$ form a partition of $V(G)$ into 1 -independent sets implying $\chi_{1}(G) \leq 2$, a contradiction to our assumption. Thus $\left|\mathrm{N}_{\mathrm{A}}(\mathrm{y})\right|=2$. Similarly it can be shown that $\left|N_{A}(z)\right|=2$. Since G is triangle-free, we have $N_{A}(y) \cap N_{A}(z)=\varnothing$. Without any loss of generality let us assume that $\mathrm{N}_{\mathrm{A}}(\mathrm{y})=\{\mathrm{c}, \mathrm{d}\}$ and $\mathrm{N}_{\mathrm{A}}(\mathrm{z})=\{\mathrm{a}, \mathrm{b}\}$. Again since G is triangle-free, x is not adjacent to c and d and w is not adjacent to a and b (see Figure 5.b).

It is easy to see that y is a vertex of degree 4 and the subgraph induced on $V(G)-N[y]$ is isomorphic to $P_{3} \cup K_{1}$ and hence we are in Subcase 1.1.

Subcase 1.3: H is isomorphic to C_{4}
Recall that $x y z$ is a P_{3} in H. Thus in this case w is adjacent to x and z (see Figure 6.a).

(a)

(b)

Figure 6

Firstly we suppose that every vertex of H has at most one neighbour in A. If x and z do not have a common neighbour in A, then $A \cup\{x, z\}$ and $\{u, y, w\}$ form a partition of $\mathrm{V}(\mathrm{G})$ into 1 -independent sets. Hence $\chi_{1}(\mathrm{G}) \leq 2$, a contradiction to our assumption. Thus x and z have a common neighbour in A. Similarly it can be shown that y and w have a common neighbour in A. Without any loss of generality let a be the common neighbour of x and z and b . the common neighbour of y and w (see Figure 6.b). Now it is easy to see that $\{\mathrm{u}, \mathrm{b}, \mathrm{x}, \mathrm{z}\}$ and $\{\mathrm{a}, \mathrm{c}, \mathrm{d}, \mathrm{y}, \mathrm{w}\}$ are both 1 -independent and hence $\chi_{1}(G) \leq 2$, a contradiction. This contradiction implies that some vertex of H has at least two neighbours in A. Without any loss of generality let $\left|N_{A}(x)\right| \geq 2$. Since $\Delta(G)=4$, it follows that $\left|N_{A}(x)\right|=2$. Now let $N_{A}(x)=\{a, b\}$ (see Figure 7.a).

(a)

(b)

Figure 7

Now note that x is a vertex of degree 4. If the vertex z is not adjacent to both c and d then $V(G)-N[x]$ is isomorphic to $P_{3} \cup K_{1}$ or P_{4} and hence we are in Subcase 1.1 or 1.2. Thus we assume that z is adjacent to both c and d (see Figure 7.b). Now clearly the vertices y and w do not have any neighbour in A. Thus $A \cup\{y, w\}$ and $\{u, x, z\}$ are both 1 -independent and hence $\chi_{1}(\mathrm{G}) \leq 2$, a contradiction. This completes the proof in Subcase 1.3.

Case 2: $|\mathrm{A}|=5$
In this case $|\mathrm{V}(\mathrm{H})|=3$. Since $\chi_{1}(\mathrm{H})=2$ and H is triangle-free, it follows that $\mathrm{H} \cong \mathrm{P}_{3}$. Let xyz be the P_{3} in H and $\mathrm{A}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}\}$ (see Figure 8.a).

Figure 8

Note that each vertex α of H has at least two neighbours in A , for otherwise $\mathrm{A} \cup$ $\{\alpha\}$ and $\{u\} \cup V(H)-\{\alpha\}$ provide a $(2,1)$-colouring of G.

Claim : $\left|\mathrm{N}_{\mathrm{A}}(\mathrm{y})\right|=3$
Firstly since $\Delta(\mathrm{G})=5,\left|\mathrm{~N}_{\mathrm{A}}(\mathrm{y})\right| \leq 3$. If $\left|\mathrm{N}_{\mathrm{A}}(\mathrm{y})\right| \leq 2$ then from the above remark we have $\left|N_{A}(y)\right|=2$. Without loss of generality let a and b be the neighbours of y. Clearly x and z are not adjacent to either of a and b . Thus $\{\mathrm{a}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{y}\}$ and $\{\mathrm{b}, \mathrm{x}, \mathrm{z}, \mathrm{u}\}$ are both 1 independent which implies $\chi_{1}(\mathrm{G}) \leq 2$, a contradiction. This proves the claim.

Without loss of generality let c, d and e be the neighbours of y . Again x and z are not adjacent to any element of $\{\mathrm{c}, \mathrm{d}, \mathrm{e}\}$ in G . Thus x and z have at most two neighbours in A. Combining this with the fact that any vertex of H has at least two neighbours in A we have $\left|N_{A}(x)\right|=\left|N_{A}(z)\right|=2$. Thus $N_{A}(x)=N_{A}(z)=\{a, b\}$ (see Figure 8.b). Now it is easy to see that G is isomorphic to the graph G_{4} of Lemma 2. This completes the proof of Theorem 4.

Theorem 5 : The smallest order of a triangle-free graph G with $\quad \chi_{1}(\mathrm{G})=4$ is at least 17, that is, $\mathrm{f}(4,1) \geq 17$.

Proof : To prove the theorem, it is sufficient to show that if G is a triangle-free graph of order 16 , then $\chi_{1}(\mathrm{G}) \leq 3$.

Let G be a triangle-free graph of order 16 . We shall prove that $\chi_{1}(\mathrm{G}) \leq 3$.
Let u be a vertex of maximum degree in G and $A=N(u), \quad$ so $|A|=\Delta(G)$. Define $\mathrm{H} \cong \mathrm{G}-\mathrm{u}-\mathrm{A}$. It is easy to see that if $\chi_{1}(\mathrm{H}) \leq 2$ then $\chi_{1}(\mathrm{G}) \leq 3$. Thus we will assume that $\chi_{1}(H) \geq 3$. Combining this with Lemma 1 we have $|\mathrm{V}(\mathrm{H})| \geq 9$. Thus $\Delta(\mathrm{G})=|\mathrm{A}| \leq 6$. Now if $\Delta(\mathrm{G}) \leq 5$, then by Theorem $1, \mathrm{G}$ is $(3,1)$-colourable. Thus let us assume that $\Delta(\mathrm{G})=6$. This implies that $|\mathrm{V}(\mathrm{H})|=9$. Applying Remark 1 with $\mathrm{m}=4$ to the graph H , we have $\chi_{1}(\mathrm{H}) \leq 3$. Combining this with the assumption that $\chi_{1}(\mathrm{H}) \geq 3$, it follows that $\chi_{1}(\mathrm{H})=3$. Thus we have established that H is a graph of order 9 with $\chi_{1}(H)=3$. From Theorem 4 it follows that H is isomorphic to one of the graphs of Lemma 2 shown in Figure 2. Let $V(H)=\{a, b, c, d, x, y, z, v, w\}$.

Firstly let us assume that H is isomorphic to G_{1} of Figure 2. Consider the (3,1)-colouring of H shown in Figure 9.a.

The numbers next to the vertices a to w denote the colours assigned to the vertices. We will now extend this $(3,1)$-colouring of H to a $(3,1)$-colouring of G .

Figure 9
Observe that w is adjacent to at most two vertices of A since $\Delta(\mathrm{G})=6$. If w is adjacent to at most one vertex of A then assign colour 3 to the vertices of A and assign colour 1 to u. This produces a (3,1)-colouring of G. Thus let us assume that w is joined to exactly two vertices, say, s and t of $A(s e e ~ F i g u r e ~ 9 . b) . ~$.

Since G is triangle-free, s and t are not adjacent to any element of $\{x, y, z, v\}$. Firstly we assign colour 3 to the elements of A-s. Now we colour s and u as follows : If s is adjacent to b , then s is not adjacent to a or c . Hence we can assign colour 2 to s and colour 1 to u. Thus we have a (3,1)-colouring of G in this case. On the other hand if s is not adjacent to b note that $\{\mathrm{s}, \mathrm{b}, \mathrm{d}, \mathrm{x}, \mathrm{y}\}$ is 1 -independent and hence we assign colour 1 to s and colour 2 to u. This forms a (3,1)-colouring of G in this case. Thus when $H \cong G_{1}$ of Figure 2, we have extended the (3,1)-colouring of H shown in Figure 9. a to a $(3,1)$-colouring of G.

Now assume that H is isomorphic to G_{i} for some $i, 2 \leq i \leq 4$, of Figure 2. We have reproduced those graphs in Figure 10 along with a (3,1)-colouring. In the following we will briefly explain how to extend the $(3,1)$-colouring of G_{i} to the graph G.

Firstly let $\mathrm{i}=2$ or 3 . As in the case $\mathrm{H} \cong \mathrm{G}_{1}$ it is easy to produce a $(3,1)$-colouring of G if w has at most one neighbour in A. So we will assume that w is adjacent to exactly two vertices, say s and t of A. Colour the vertices of $A \cup\{u\}$ as follows: The vertices in $\mathrm{A}-\{\mathrm{s}\}$ are assigned colour 3 . The vertex s is assigned colour 2 or 1 according as s is or is not adjacent to the vertex b. Now the vertex u will be assigned colour 1 or 2 according as s is assigned colour 2 or 1 . It is easy to check that this is a (3,1)-colouring of G.

G_{2}

G_{3}

G_{4}

Figure 10

Finally let $H \cong G_{4}$. Since $\Delta(G)=6, w$ is adjacent to at most one vertex of A. Hence we can assign colour 3 to all the elements of A and colour 1 to u. This provides a (3,1)-colouring of G and completes the proof of Theorem 5 .

Using the proof of Theorem 3 and Theorem 5 we have the following :

Corollary: For any integer $m \geq 5, f(m, 1) \geq m^{2}+1$.

In the following we shall prove that there exist triangle-free graphs of arbitrarily large 1 -defective chromatic number. The construction is similar to the construction (of triangle-free graphs of arbitrarily large chromatic number) due to Mycielski [18].

Theorem 6: For every positive integer n, there exists a triangle-free graph G with $\chi_{1}(G)=n$.

Proof: We prove Theorem 6 by induction on n. For $n=1$ and 2 the graphs K_{1} and P_{3}, respectively, have the required properties. Assume that H is a triangle-free graph of order p with $\chi_{1}(H)=k$, where $k \geq 3$. We will now construct a triangle-free graph G with $\chi_{1}(\mathrm{G})=\mathrm{k}+1$.

Let $\mathrm{V}(\mathrm{H})=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{p}}\right\}$. Then define

$$
\begin{aligned}
& \mathrm{V}(\mathrm{G})=\mathrm{V}(\mathrm{H}) \cup\left\{\mathrm{u}_{\mathrm{i}}, \mathrm{w}_{\mathrm{i}}: 1 \leq \mathrm{i} \leq \mathrm{p}\right\} \cup\{\mathrm{x}\} \\
& \mathrm{E}(\mathrm{G})=\mathrm{E}(\mathrm{H}) \cup \mathrm{E}_{1} \cup \mathrm{E}_{2}
\end{aligned}
$$

where

$$
E_{1}=\left\{\left(u_{i}, y\right),\left(w_{i}, y\right): y \text { is a neighbour of } v_{i} \text { in } H\right\}
$$

and

$$
\mathrm{E}_{2}=\left\{\left(\mathrm{x}, \mathrm{u}_{\mathrm{i}}\right),\left(\mathrm{x}, \mathrm{w}_{\mathrm{i}}\right): 1 \leq \mathrm{i} \leq \mathrm{p}\right\}
$$

It is easy to show that G is triangle-free. We will prove that $\chi_{1}(G)=$ $k+1$. Consider a $(k, 1)$-colouring of H which uses colours $1,2, \ldots, k$. Now assign a new colour $k+1$ to all the vertices u_{i} and w_{i}, for $1 \leq i \leq p$, and colour 1 to the vertex x. This provides a $(k+1,1)$-colouring of G. Thus $\chi_{1}(G) \leq k+1$.

To prove equality, if possible, consider a $(k, 1)$-colouring of G, which uses colours $1,2, \ldots, \mathrm{k}$. Without loss of generality assume that the vertex x is assigned colour 1. From this $(k, 1)$-colouring of G we will provide a $(k-1,1)$-colouring of H.

Let C_{α} be the set of all vertices of G that are assigned colour $\alpha, 1 \leq \alpha \leq$ k. Further, let $\mathrm{V}_{1}=\mathrm{C}_{1} \cap \mathrm{~V}(\mathrm{H})=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\ell}\right\}$. Without loss of generality we suppose that for $1 \leq i \leq m$, the degree of v_{i}, in the graph $H\left[V_{1}\right]$ is 0 and for $m+1 \leq i \leq$ ℓ, the degree of v_{i}, in the graph $\mathrm{H}\left[\mathrm{V}_{1}\right]$ is 1 . The following are easily established (see Figure 11) :

Figure 11
(i)

$$
\left|\bigcup_{i=1}^{p}\left\{u_{i}, w_{i}\right\} \cap C_{1}\right| \leq 1 .
$$

(ii) For $1 \leq i \leq \ell$, if $u_{i} \in \mathrm{C}_{\alpha}$ for some $\alpha \neq 1$, then

$$
\left|\mathrm{C}_{\alpha} \cap \mathrm{N}_{\mathrm{H}}\left(\mathrm{v}_{\mathrm{i}}\right)\right| \leq 1
$$

and

$$
\left(\mathrm{C}_{\alpha} \cup\left\{\mathrm{v}_{\mathrm{i}}\right\}\right) \cap \mathrm{V}(\mathrm{H}) \text { is 1-independent. }
$$

(iii) The statement (ii) is also true for $\mathrm{w}_{\mathrm{i}}, 1 \leq \mathrm{i} \leq \ell$.
(iv) For $i, 1 \leq i \leq \ell$, if $u_{i}, w_{i} \in C_{\alpha}$, for some $\alpha \neq 1$, then $\left|C_{\alpha} \cap N_{H}\left(v_{i}\right)\right|=0$.

In the following we describe the method of changing the colour of every vertex of V_{1} to some other suitable colour.

1. For $1 \leq i \leq m$, the vertex v_{i} is reassigned colour α, where α is such that $\left\{u_{i}, w_{i}\right\}$ $\mathrm{C}_{\alpha} \neq \varnothing$.
2. Suppose $\mathrm{m}+1 \leq \mathrm{i} \leq \ell$. Note that $\ell-\mathrm{m}$ is even and $\mathrm{H}\left[\left\{\mathrm{v}_{\mathrm{m}+1}, \ldots, \mathrm{v}_{\ell}\right\}\right]$ is a matching. Consider v_{i} and $\mathrm{v}_{\mathrm{j}}, \mathrm{m}+\mathrm{l} \leq \mathrm{i}, \mathrm{j} \leq \ell$. such that $\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right) \in \mathrm{E}(\mathrm{H})$. Clearly none of the vertices in $\quad\left\{u_{i}, w_{i}, u_{j}, w_{j}\right\}$ is assigned colour 1 , for otherwise, we have a P_{3} in C_{1}.

2a. If \exists an $\alpha \neq 1$ such that $\left\{u_{i}, w_{i}, u_{j}, w_{j}\right\} \subseteq C_{\alpha}$, then both the vertices v_{i} and v_{j} are reassigned the colour α.

2b. Suppose α and β are two distinct colours such that

$$
\left\{u_{i}, w_{i}\right\} \cap \mathrm{C}_{\alpha} \neq \varnothing \text { and }\left\{\mathrm{u}_{\mathrm{j}}, \mathrm{w}_{\mathrm{j}}\right\} \cap \mathrm{C}_{\beta} \neq \varnothing \text {. Now we }
$$

reassign the colour α to v_{i} and the colour β to v_{j}.

We repeat the steps $2 a$ and $2 b$ for every pair of adjacent vertices in $\mathrm{H}\left[\left\{\mathrm{v}_{\mathrm{m}+1}, \ldots, \mathrm{v}_{\mathrm{e}}\right\}\right]$.

We will now prove that this procedure results in a $(\mathrm{k}-1,1)$-colouring of H . Let V_{α} be the set of vertices of H that have been assigned colour α, for $2 \leq \alpha \leq k$. Note that $\mathrm{C}_{\alpha} \cap \mathrm{V}(\mathrm{H}) \subseteq \mathrm{V}_{\alpha}$, for $2 \leq \alpha \leq \mathrm{k}$. In the following, we will prove that $\mathrm{H}\left[\mathrm{V}_{2}\right]$ is $1-$ independent. The same arguments hold for $3 \leq \alpha \leq k$.

Suppose $\mathrm{H}\left[\mathrm{V}_{2}\right]$ is not 1 -independent. Let $\mathrm{V}_{\mathrm{r}} \mathrm{V}_{3} \mathrm{~V}_{\mathrm{t}}$ be a P_{3} in $\mathrm{H}\left[\mathrm{V}_{2}\right]$ (see Figure 12).

Figure 12

It is easy to see that at least one and at most two of the vertices in $\left\{\mathrm{v}_{\mathrm{r}}, \mathrm{v}_{\mathrm{s}}, \mathrm{v}_{\mathrm{t}}\right\}$ belong to C_{2}.

Claim : $\quad v_{s} \notin C_{2}$, that is, v_{s} was originally assigned colour 1.

Suppose $v_{s} \in C_{2}$. At least one of v_{r} and v_{t} must be in C_{1}, say $v_{r} \in C_{1}$. Since the vertex v_{r} has been reassigned colour 2 , from our procedure it follows that either u_{r} or w_{r} belongs to C_{2}, say $u_{r} \in C_{2}$. Since $u_{r} v_{s} v_{t}$ is a P_{3} in G it follows that $v_{t} \notin C_{2}$ and hence $v_{t} \in$ C_{1}. This in turn implies that either u_{t} or w_{t} belongs to C_{2}, say $u_{t} \in C_{2}$. But this gives a P_{3} namely, $u_{r} v_{s} u_{t}$ in the colour class C_{2} of G, a contradiction. This proves the claim.

Since the colour of v_{s} has been changed from 1 to 2 (by our procedure), it follows that at least one of u_{s} and w_{s} must be in C_{2}, say $u_{s} \in C_{2}$.

Now without loss of generality let us assume that $v_{r} \in C_{2}$. Since $v_{r} u_{s} v_{t}$ is a P_{3} in G, it follows that $v_{t} \in C_{1}$. Since v_{s} and v_{t} are adjacent in $H\left[V_{1}\right]$, and they are both reassigned colour 2 , it follows from our procedure that all the vertices in $\left\{\mathrm{u}_{\mathrm{s}}, \mathrm{w}_{\mathrm{s}}, \mathrm{u}_{\mathrm{t}}, \mathrm{w}_{\mathrm{t}}\right\}$ must be in C_{2}. But this gives a P_{3}, namely $\mathrm{u}_{\mathrm{s}} \mathrm{V}_{\mathrm{r}} \mathrm{W}_{\mathrm{s}}$ in C_{2}, a contradiction.

Thus, we have provided a (k-1,1)-colouring of H , a contradiction to the fact that $\chi_{1}(H)=k$. This contradiction proves that $\chi_{1}(G)=k+1$. This completes the proof of the theorem.

Remark 2 : From Theorem 6 and the definition of $f(m, 1)$ it follows that, for $m \geq 4$, $f(m, 1) \leq 3$. $f(m-1,1)+1$. Now using the fact that $f(3,1)=9$, we have

$$
\mathrm{f}(\mathrm{~m}, 1) \leq 3^{\mathrm{m}-1}+\frac{3^{\mathrm{m}-3}-1}{2}
$$

Combining Theorem 5 and Remark 2 we have

$$
17 \leq \mathrm{f}(4,1) \leq 28
$$

Remark 3 : Theorem 6 also follows from the results of Folkman ([8], Theorem 2). However, the order of the graph constructed in Folkman's proof is larger than the order of the graph in Theorem 6.

REFERENCES

[1] Achuthan,N., Achuthan, N.R. and Simanihuruk,M. On defective colourings of complementary graphs, The Australasian Journal of Combinatorics, Vol 13 (1996), pp 175-196.
[2] Andrews, J.A. and Jacobson, M.S. On a generalization of chromatic number, Congressus Numerantium, Vol 47 (1985), pp 33-48.
[3] Archdeacon, D. A note on defective colourings of graphs in surfaces Journal of Graph Theory, 11 (1987), pp 517-519.
[4] Avis,D. On minimal 5-chromatic triangle free graphs. Journal of Graph Theory, 3 (1979), 397-400.
[5] Chartrand, G. and Lesniak,L. Graphs and Digraphs, 2nd Edition, Wadsworth and Brooks/Cole, Monterey California, (1986).
[6] Chvátal, V. The minimality of the Mycielski graph. Graphs and Combinatorics, Springer -Verlag, Berlin (Lecture Notes in Mathematics 406), (1973), pp 243-246.
[7] Cowen, L.J., Cowen, R.H. and Woodall, D.R. Defective colourings of graphs in surfaces : Partitions into subgraphs of bounded valency, Journal of Graph Theory, 10 (1986), pp 187-195.
[8] Folkman, J. Graphs with monochromatic complete subgraphs in every edge colouring. SIAM Journal of Applied Mathematics, Vol. 18, No. 1 (1970), pp 19-24.
[9] Frick, M. A survey of (m, k)-colourings. Annals of Discrete Mathematics, Vol 55, (1993), pp 45-58.
[10] Frick, M. and Henning, M.A. Extremal results on defective colourings of graphs. Discrete Mathematics, Vol 126, (1994), pp 151-158.
[11] Grinstead, C.M ., Katinsky, M. and Van Stone, D. On minimal triangle-free 5chromatic graphs. The Journal of Combinatorial Mathematics and Combinatorial Computing, 6 (1989), pp 189-193.
[12] Hanson, D. and MacGillivray, G. On small triangle-free graphs. $A R S$ Combinatoria, 35 (1993), pp 257-263.
[13] Hopkins, G. and Staton, W. Vertex partitions and k-small subsets of graphs. ARS Combinatoria, 22 (1986),pp 19-24.
[14] Jensen, T. and Royle,G.F. Small graphs with chromatic number 5: A computer search. Journal of Graph Theory, 19 (1995), pp 107-116.
[15] Lovász,L. On decompositions of graphs. Studia Scientiarum Mathematicarum Hungarica, 1 (1966), pp 237-238.
[16] Maddox,R.B. Vertex partitions and transition parameters. Ph.D Thesis, The University of Mississippi, Mississippi (1988).
[17] Maddox, R.B., On k-dependent subsets and partitions of k-degenerate graphs. Congressus Numerantium, Vol 66 (1988), pp 11-14.
[18] Mycielski, J. Sur le coloriage des graphes. Colloquium Mathematicum, 3 (1955), pp 161-162.
[19] Toft,B. 75 graph-colouring problems. Graph Colourings (Nelson, R and Wilson,R.J. eds.), Longman Scientific Technical, England (1990), pp 9-35.

[^0]: * Author for correspondence

