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Abstract 
Let G be a 3-connected tough graph of order n with circumference c(G), independence 

number a(G) and vertex connectivity K(G) , such that d(x)+d(y)+ d(z)+d(w):2:s for any 
independent set { x, y, z, w} of vertices. In [7] we have proved: when s:2:n+c(G)/2, every 
longest cycle ofG is a dominating cycle and c(G) :2:min{n, n+s/4-a(G) }. This paper 
improves the results by showing that under the same conditions c(G):2:min{n, n+s/4-a(G) 
+ I}. Furthermore when s:2:(3n-l )/2+ K( G), G is hamiltonian. 

1 Terminology 
All graphs are finite simple graphs. The reader is referred to [3] for undefined tenninology. 
Let G=(V, E) be a graph of order n. For Ac;;;,.V, we use G[A] to denote the subgraph induced 
by A , while G-A will be used to denote the graph G[V(G)-A]. For a subgraph H of G, G
H=G-V(H). K(G), a(G), B(G) and c(G) will denote the vertex connectivity, independence 
number, minimum degree and circumference of G respectively. The number of 
components of G will be denoted by meG) . We call G a Hough graph ifISI:2:t·m(G-S) for 
any Sc;;;,.V such that w(G-S» 1. The toughness ofG, denoted by "C(G) ,is the maximum value 
of t for which G is Hough ("C(Kn )=00 for all n:2: 1). If "C( G) :2: I we call G a tough graph. For 
UEV, we denote the neighborhood ofu by N(u), and d(u)= IN(u)l. A cycle C ofG is called 
a dominating cycle if every edge of G has at least one ofits vertices on C. G is called almost 
hamiltonian if every longest cycle of G is a dominating cycle. For a cycle C, we denote by 

C the cycle with a fixed cyclic orientation. lfu, VEV(C), then uCv denotes consecutive 

vertices on C from u to v in the orientation specified by C. The same vertices, in reverse 

orientation, are given by v Cu. We use u + to denote the successor of vertex u on C and u' 

the predecessor ofu on C, and u++=(u+r , u"=(ul . If Ac;;;,.V(C) , then A+={v~1 vEA), 
A'={v"1 vEA}, and A++=(A+f . For an integer r, l::;r::; a(G) ,define Gr(G)=min{ I uEs d(u)1 
Sc;;;,.V(G) is an independent set of vertices of size r} and IlCG)=max {d(v)1 VE V -V(C') , C' is 
a longest cycle of G} . 

2 Main Results 
In [7] , we have obtained the following results. 
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Theorem 1. Let G be a 3-connected tough graph of order n such that (J4(G) ~n+c(G)/2 . 
Then G is almost hamiltonian . 
Theorem 2. Let G be a graph of order n such that 8(G}2:3 and criG)2:n+c(G)/2 . Let G 
contain a longest cycle C which is a dominating cycle. IfvoEV-V(C), A=N(vo), then both 
(V-V(C))uA+ and (V-V(C))uk are independent sets of vertices . 
Theorem 3. Let G be a 3-connected tough graph of order n such that (JiG)~s~n+c(G)/2. 
Then c(G)2:min{n, n+s/4-a(G)}; furthermore when c(G)<n, there exists a longest cycle C 
ofG and VoEV-V(C) such that ~(G)=d(vor:::crlG)/4 . 
This paper improves the above results by showing that: 
Theorem 4. Let G be a 3-connected tough graph of order n such that (JiG):2:s~n+c(G)/2. 
Then G is hamiltonian or there exists a longest cycle C such that a(G)~IV -V(C)I+s/4 + I . 
Coronary 5. Let G be a 3-connected tough graph of order n such that (J4(G)~s~n+c(G)/2. 
Then c( G )2:min {n , n+s/ 4-a( G)+ 1 } . 
Since a(G)::;n/(r(G)+ 1), criG)and c(G) are all integers, Theorem 4 also implies the 
following corollary. 
Corollary 6. Let G be a 3-connected T-tough graph of order n such that T(G) ~ 1 and 
criG)~s~n+ c(G)/2 . Then c(G)~min{n, m/(T+l)+s/4+1} ; furthermore when (J4 (G)~ 
n+(n-l)/2 ,ifT(G)~5/3 or 8(G)~a(G)-1 , then G is hamiltonian. 
Using the above results, we obtain another sufficient condition for hamiltonian cycles. 
Theorem 7. Let G be a 3-connected tough graph of order n with vertex connectivity K(G) 
such that cr4(G)~ (3n-l)/2+K(G) . Then G is hamiltonian. 
Our proof of Theorem 7 also requires a number of well-known results as follows: 
Lemma 8[1]. Let G be a graph of order nand S a vertex cut ofG. Suppose some component 
ofG-S is complete and has vertex set B . lfu and v are nonadjacent vertices in V-(SuB) 
such that d(u)+d(v)~n-IBI+ 1, then G is hamiltonian if and only if G+UV is hamiltonian. 
Lemma 9[6]. Let G be a graph of order n such that cr/G) =8(G) 2:nl2> 1. Then G is 
hamiltonian. 
Lemma 10[4]. Let G be a graph of order n with nonadjacent vertices u and v . If d(u) + dey) 
~n , then G is hamiltonian if and only if G+UV is hamiltonian. 
Lemma 11[5]. Let G be such a graph that a(G)::;K(G). Then G is hamiltonian. 
Lemma 12[9]. For any graph G, K(G)::;8(G). 

3 The proofs 
Preliminaries 
Let G be a non-hamiltonian 3-connected tough graph of order n such that cr4(G)~n+c(G)/2 , 

and C be a longest cycle ofG with a fixed cyclic orientation C. Let VoEV-V(C) such that 
d(vo) = fl(G). By theorems 1 and 3 , C is a dominating cycle and d(vo)~(JlG)/4. Set A = 

N (VO)={VI' V2 , ... , vk}(k2:K(G)~3) such thatvjEvj.1 C Vj+l . Setuj=vj+, wj=vj+I', Lj=uj CWj for 
l::;i::;k (indices mod k). For l::;r< s::;k, define 

R1(ur)={VEUr CVsl urv+ EE} 
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SI(Us)={VEurCvsl usvEE} 

R2(ur)={VEUs C vrl u,.vEE} 

SiUJ={VEUs C vrl UsV+ EE} 
B(u,., Us)=RI(u,.)USl(Us)uRiu,.)uSlus) 

The following propositions facilitate the proof of Theorem 4 . 
Proposition 1. AnA+=AnA = ~ . 
Proof. Since C is a longest cycle, Proposition 1 is obviously true. 

Proposition 2. IfvEuiCuj with i<j and ujvEE then uiv+~E. 

Proof. Suppose otherwise, then there exists a cycle Uj C vUj C VjVOVj C v+uj longer than 
C , which is a contradiction. Hence Proposition 2 is true. 

Proposition 3. For lS:r<ss:k , d(u,.)+d(us)S:IB(ur , uJIS:IV(C)1 . 
Proof. Since C is a longest cycle as well as a dominating cycle, by Proposition 2 we 

have N(ur)=R\+cur)uRlur), N(us)=S\(us)uS/(us), and R\(ur)nS\(us)=Riur)nS2(us) = <l> . 

Thus d(ur)+d(us)=IN(ur)I+IN(us)IS:IR\ +Cur)I+IRlur)I+lstCuJI+IS/(uJI=IB(ur , us)lS: IV(C)I 
for 1 S:r<ss:k . Hence Proposition 3 is true. ' 

Proposition 4. A+nA -F ~ and ifuEA+nA then d(u)s:d(vo) . 
Proof. Suppose A+nA = ~ . Then c(G)23d(vo);?:30'4(G)/423(n+c(G)/2)/4, i.e. 

c(G)26n/5>n. This contradiction shows that A+nA" -F ~ . IfuEA+nA" , then there exists a 

longest cycle C, vou+ Cu"vo, such that UEV-V(C). By the choice ofC and Vo, we have 
d(vo)2d(u). Thus Proposition 4 is true. 

Proposition 5. IfuEA+nA , uVEE and VEV(C)~ then {v+}u(V-V(C»uA+ is an 
independent set of vertices. 

Proof. By Proposition 2, {v+}uA+ is an independent set of vertices. Suppose there 
exists V'EV-V(C) such that vV'"EE .Clearly Vo -FV' ,otherwise there exists the cycle v'u" 

Cvu Cv+ v' longer than cycle C. And V'Ui ~Efor any iE (1,2, ... , k}, otherwise when UjEU+ 

Cv, there is a cycle v'v+ Cu'vav; Cuv CUj v' longer than cycle C ; when UiEV+ Cu, there 

is a cycle v'v+ C viVou+ C VU C uj v' longer than cycle C. Similarly v' Ui + ~ E for any i E {I, 
2, ... , k}. This is to say ,no edge of G joins v'to the vertex in A +uA ++ .Since C is a 
dominating cycle, N(V'};;;;;V(C), and by Proposition 1 , A'"nA++= ~ . Thus d(v')s:IV(C)I-
2d( yo) . Furthermore ,since k23 , there exists Um E A + such that {vo , v' , U , um} is an 
independent set of vertices, and d( um)=min { d( uj)1 j E {I, 2, .,. , k}, Uj-Fu}. By Proposition 3, 
d(um)S:IV(C)I/2 . By Proposition 4 , d(u)S:d(vo) . Hence we have 
n+c(G)/2S:0'4(G)S: d(vo)+d(v')+d(u)+d(um) s:IV(C)I+c(G)/2S:n-2+c(G)/2, a contradiction, 
which shows that v'v+ ~E for any V'E V-V(C) , i.e.{v+}u( V -V(C) ) is an independent set of 
vertices. Then by Theorem 2, {v+}u(V-V(C»uA+ is an independent set of vertices. Thus 
Proposition 5 is true. 

197 



Proposition 6. IfYEuj+ CWj- , ZEVj+1 ('vj and Uj , uj+:;t:wj such that YZEE, Uj CWj-~N(w;) 

and u/Cwj ~N(u;) for some iE {I, 2, ... , k}, then {z+}u(V-V(C»uA+ is an independent 
set of vertices. 

Proof. When zEA, Proposition 6 is true by Theorem 2. When zrtA, suppose ujz+ EE for 

some j E {1 ,2, ... ,k}. If UjEZ+ Cwj' then there exists a cycle ujz+ C VjVOVj+1 C zy C wy- CUj 

longer than C . IfujEvj+1 Cz, then the cycle ujz+ CVjVOVj Cy+uj CyzCuj is longer than C. In 
either case we reach a contradiction. Hence ujz+ rtE for all j E {I, 2, ... , k}, i.e. {z+}uA+ is an 
independent set of vertices. As in the proof of Proposition 5, we have {z+}u(V-V(C» is an 
independent set of vertices. And by Theorem 2, {z+}u(V-V(C» uA+ is an independent set 
of vertices. Thus Proposition 6 is true. 

Proposition 7. If VEUj C Wj and ujvEE-E(C) for some iE {I, 2, ... ,k} , then {v-}u (V
V(C»u(A+-{u;}) is an independent set of vertices . 

Proof. By Proposition 2, {v-}u(A+-{uJ) is an independent set of vertices . As in the 
proof of Proposition 5, we have {v-}u(V -V(C» is an independent set of vertices. By 
Theorem 2, (V -V(C»u(A--{uJ) is an independent set of vertices. Hence {v-}u(V -V(C» 
u(A+-{u;}) is an independent set of vertices . Thus Proposition 7 is true. 

Proof of Theorem 4 
When n~lI , it is easy to verify Theorem 4. Hence we may assume that n2':12 . 
If G is hamiltonian, there is nothing to prove. Otherwise, choose C, VO and A as above. 

By theorems 1,2 and 3, a(G)2':[V-V(C)I+IA+I=IV-V(C)I+d(vo) and d(v{)2':<JlG)/4. If d(vo)2': 
cr4(G)/4+1 then a(G)2:jV-V(C)/+crlG)/4+1 so that Theorem 4 holds .Thus we may assume 
that criG)/4~d(vo)~(<JiG)+3)/4 . Suppose a(G)~[V-V(C)I+ [A+I. 

Claim 1. IfuEA+nA then N(u)~N(vo) . 
Otherwise, suppose there exists VEV(C) such that UVEE and vrt N(vo) . Then by 

Proposition 5, {v+}u(V-V(C»uA+ is an independent set of vertices ,so that I V-(C)[+IA+[ 
< a(G) , a contradiction. 

Claim 2. There exist vertices ujEA+ and wjEA with i:;t:j such that UiWjEE . 
Since G is a tough graph, G-A has at most k components, one of which has vertex set 

{vo}. Hence there exist integers i, j E {I, 2, ... , k} with i:;t:j such that some vertex in Li is 
joined to some vertex in Lj by either an edge e or a path of length 2 with its internal vertex 
in V-V(C)-{vo}. Since the arguments for these two cases are completely analogous, we 
will assume that the first case applies. If e joins a vertex in A + to a vertex in A-, the claim is 
established. Otherwise, let e=yz, where YELj and y:;t:uj, Wj' Suppose ujwjEE. Then by 
Proposition 7, {Wj-}u(V-V(C»u(A+-{u) is an independent set of vertices. Thus ujwt EE . 
By repeating the above argument we conclude that each vertex in Lr{uj,wj}is adjacent to uj. 
Similarly, each vertex in Lr{uj, Wj} is adjacent to Wj' Now by Proposition 6, {z+}u(V
V(C) )uA+ is an independent set of vertices so that a(G» IV-V(c)I+IA+1 .This 
contradiction shows that lljwj$E. By Theorem 2, {w)u(V-V(C» is an independent set of 
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vertices. Since a(G):S;IV-V(C)I+ IA+I , Wj must be adjacent to some vertex in A+-{uj} . Thus 
claim 2 holds. 

Claim 3. There exist vertices XI' X2 , x3EA'nA such that N(XI)=N(X2)=N(vo) . 
Since n-l:2:IV(C)I:2:3(d(vo)-IA+nAI)+2IA+nA-1 , I A+nA-I:2:3d(vo)-IV(C)1 . Note that 

n:2:12.When d(vo)=aiG)/4, we have I A+nAI:2:3(n+c(G)/2)/4-c(G):2:(n+5)/8 ,so that 
IA+nA-I:2:3 . Let {XI' x2 ,x3}<;;;;; A+nA- .Then {vo , XI' x2 , x3} is an independent set ,and 
max{d(xl),d(X2),d(X3)}:S;d(vo) by Claim l. Supposed(x)<d(vo)forsomeiE{1,2,3}. Then 
we have alG)::S:d(vo)+d(XI)+d(X2)+d(X3)<4d(vo)=a4(G), a contradiction. Hence d(xj) =d(X2) 
=d(X3)=d(vo)' By Claim 1, N(xl)=N(xJ=N(vo). When d(vo)=( a4(G)+ 1 )/4 ,we have I A + nA-1 
:2:3 too. Let {XI' Xl' X3}<;;;;; A+nA such that d(x3)::s:d(x2)::s:d(x l)::s:d(vo) . Suppose d(x2):S;d(vo)-
1. Then we have cr4(G)::s:d(vo)+d(xl)+d(x2)+d(x3)::S:2( crlG)+ 1 )/4+ 2« aiG)+ 1 )/4-1 )=aiG)-
1 , a contradiction, which shows that d(xJ=d(x2)=d(vo) .Then by Claim 1 , N(x l) =N(x2) 
=N(vo). Similarly when d(vo)=(a4(G)+2)/4 or d(vo)=(aiG)+3)/4, there exist Xl' X2, X3E 
A+nA such that N(xl)=N(X2)=N(vo) . Thus Claim 3 holds. 

By Claim 3 , without loss of generality, let UI , UrE A + nA with r:;t:l such that N(uJ = 
N(ur) =N(vo). Letj be the maximum index such that ujwjEE for some i with i:;t:j . By 
Theorem 2,j:;t:l, r. Since ulvj+ j ,urvj+IEE, by Proposition 2 we have 1 <r<i<j _ Now we 
consider uj . 

Claim 4. The vertex uj is not adjacent to any vertex in V(C)-(LjuA) . 
Suppose ujYEE, where YELt and t>j. By theorems 1 and 2, {Wt}u(V-V(C) is an 

independent set of vertices ,and y, Wt ~A+ .Thus w t must be adjacent to some vertex in A+. 
By the choice of the indexj we conclude that utwtEE and y:;t:~, wt . But then by Proposition 
7 , {wt-}u(A+-{~})u(V-V(C)) is an independent set of vertices : Thus utwt-EE. By 
repeating the above argument we have N(~);;2LdUt} . Similarly N(wt);;2Ldwt}. But then 
by Proposition 6, {u/}u(V-V(C)uA+ is an independent set of vertices ,a contradiction. 

Hence we suppose ujYEE, where YELt andj>t. Since N(ul)=A, UIVt+1 EE. By Proposition 2, 
y:;t:wt • Furthermore {y+}u(V-V(C)) is an independent set of vertices . To see this, suppose 
y+vo'EE , where Vo'EV-V(C) . Since LtlA=~·, vo':;t:vo . Ifvo'upEE, where either p>j or p:S;t, 

then there exists a cycle vo'y+C VjVOVp C ujy C upvo' longer than cycle C . Ifvo'upEE where 

t<p<j , then there exists another cycle vo'y + C V pU j C YUj C V I Vo Vj CUp Yo' longer than cycle C 
too. Thus Yo' is not adjacent to any vertex in A+ -{ uj } . Similarly, vo' is not adjacent to any 
vertex in A++-{u/} . By Proposition 1 ,A+nA++=~ . By theorems 1,2 and 3, VO'uj , VO'Wj ~E, 
and vo' is also not adjacent to any veliex in V-V(C), so that d(vo'):S;IV(c)1-2(d(vo)-1)-2 
IV(C)I-2d(vo). Let d(um)=min{d(u)12::S:i::S:k}. Then {vo, vo' 'U I ,um} is an independent set of 
vertices .Thus n+c(G)/2::S:crlG)::S: d(vo)+d(vo')+d(uj)+d(uIlJ ::S:IV(C)I+IV(C)I/2<n-l +c(G)/2 ,a 
contradiction. Hence y+vof~E for all Vo'EV-V(C), i.e.{y+}u(V-V(C») is an independent set 
of vertices .But since a(G):s;IV-V(C)I+IA+1 ,y+ must be adjacent to some vertex usEAT . 
Since ujYEE , by Proposition 2, it must be the case that t<s:S;j. Now we apply the above 
argument to y+ , y++, etc. It follows that there exists an integer b such that t<b:S;j and 
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UbWtEE. But since UlVt+IEE, we reach a contradiction with Proposition 3 . Thus Claim 4 
holds. 

Claim 5. There exists a vertex uaEA+nA- with a;ti,j ,such that UjVa+IEE. 
Suppose otherwise. Consider any vertex Vm+l EA with m:t:j . If~n~A+nA- , by Claim 4 , 

ujvm+l- , ujvm-~E . Similarly, ifu,nE A+nA- , then ujvm+l , Ujvm+l-~E. Furthermore since 
ujwjEE , by Proposition 2 we have UjVj+1 ~E . Thus d(uj):S:IV(C)I-2d(vo) . Let d(unJ= min 
{d(u)lujEA+nk, i:t:l,j}. By propositions 2 and 3, d(um) :S:IV(C)I/2. Now {vo, u l ,uj ' Um} 
is an independent set of vertices , we have n+ c(G)/2:S:cr4(G):S:d(vo)+d(ul)+d(uj)+d(um):S:n-l + 
c(G)/2 ,a contradiction. Thus there exists a vertex UaE A+nA- with a:t:j , such that 
ujVa+1 EE. Since ujwjEE, by Theorem 2, Ui~ A+nk and hence i:t:a. Thus Claim 5 holds. 

Claim 6. uavi~E . 
Suppose otherwise. Then when i<a<j , we have UaVi , ujwjEE ,contradicting 

Proposition 2 .When a<i or a>j then the cycle ujVa+1 C ViUa C Vj+I VOVj CUjWj CU) is longer than 
cycle C ,which is a contradiction. Thus Claim 6 holds. 

Claim 7. If i<a<j then Ua vj+ I ~ E . If i>a or a>j then ua Vi ~ E . 
Suppose otherwise. Then when i<a<j ,we have UaVj+I' ujwjEE, a contradiction with 

Proposition 2 . When i>a or a>j , uavjEE , then the cycle ujVa+1 CVjVOVj+1 C UaVj C UjWj C uj is 
longer than cycle C , a contradiction. Thus Claim 7 holds. 

Note that {vo, UI , Ur , ua} is an independent set of vertices . By claims 1 and 7, we have 
d(ua)<d(u ,)=d(ur)=d(vo):S:(criG)+3)/4 ,so that cr4(G):S:d(vo)+d(u,)+d(ur) +d(ua) s d(ua) + 
3 (criG) +3)/4. Hence d(u.)~(cr4(G)+3)/4-3~d(vo)-3 , so that IN(vo)-N(ua)I:S:3 . By claims 6 
and 7 , we have 2:s:IN(vo)-N(uJI:S:3 . In the following arguments let C(s) denote the cycle 

ujVa+1 CVsua CVj+IVOVj C UsVj CUjWj C uj with length longer than cycle C , where s=1 or r . 
We distinguish different cases below. 

Case 1. 1 <a<i or a>j . 
In this case, N(vo)-N(u.)={vj ,Vj}u{x} , where XE {$ , VI' vr} . Ifj<ask, then when 

x:t:vr , G contains cycle C(r) ; when x:t:v I , G contains cycle C( 1) . Similarly, if i>a> 1 , G 
also contains cycle either C(r) or C(l) . 

Case 2. i<a<j . 
In this case N(vo)-N(ua)={Vj , Vj+1 }u{x} , where XE {$, VI , vr} . But then when x:t:vr , G 

contains cycle UaVrCUIVjCUrVI CVj+IVoVa+1 CWPi CUa with length longer than cycle C, and 

when x;tv i ,G contains cycle U"V I CVjclVOVrCUIVj CUrVa C UiWj C Ua longer than cycle C too. 
This final contradiction shows that the hypothesis a(G):s:IV-V(C)I+IA+1 is not true. Thus 

we have a(G)~IV -V(C)I+IA +1+ 1 ~IV -V(C)I+crlG)/4+ 1 , i.e. Theorem 4 holds. 

Proof of Theorem 7 
Suppose there exists a non-hamiltonian 3-connected tough graph H of order n such that 
cr4(H)~(3n-l )/2+K(H). Let G be such a graph with a maximum number of edges .Note that 
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criG);::: n+n/2-1/2+ K(G);:::n+ n/2-1/2+ 3=n+(n+5)/2;::: n+c(G)/2 . By Corollary 5, G is almost 
hamiltonian and c(G);::: min{n,n+Q"4(G)/4+1-a(G)}. 
If a(G):S;cr4(G)/4+ 1 , then criG)/4+ l-a(G) ;:::0, so that n+crlG)/4+ 1-a(G) ;:::n. Hence, 
c(G):2:n, so that G is hamiltonian, which is a contradiction. We assume ,therefore, that 
a(G»cr4(G)/4+ 1. But cr4(G)/4+ 1;:::«3n-l )/2+K(G»/4+ 1 =(3n+2K(G)+ 7)/8. By Lemma 11 , 
a(G);:::K(G)+ 1 . 
Case 1. a(G)=K(G)+ 1 . Since K(G)+ 1 >(3n+ 2K(G)+ 7)/8 , we have K(G) >n/2-1I6.But nl2-
1/6>(n-l )/2 and by Lemma 12, 0(G)=crJG)2K(G»(n-l )/2.Hence K(G) ;:::nl2.This implies 
that o(G) ;:::n/2.By Lemma 9 , G is hamiltonian, which is a contradiction. 
Case 2. a(G)=K(G)+2. Since K(G)+2>(3n+2K(G)+7)/8, we have 8K(G)+ 16>3n+2K(G)+7, 
i.e. 6K(G»3n-9, i.e. K(G»(n-3)/2.Since G is non-hamiltonian, Lemma 9 implies that nl2> 
0(G)=cr j(G);:::K(G»(n-3)/2 . But then n+criG)/4 + 1- a(G);:::n+(3n+2K(G)+7)/8-K(G)-2 
=n+(3n-6K(G)+7)/8 -2. We have two cases to consider. 
Case 2.1. n=1 (mod 2). Then n/2>0(G)= crj(G);::: K(G) >(n-3)/2,which implies that o(G) = 
K(G)=(n-l)/2.But then n+(3n-6K(G)+7)/8 -2=n-3/4,so that c(G);::: mint n,n+cr4(G)/4+ 1-
aCG)} ;:::n-3/4. It follows that c(G) ;:::n, implying that G is hamiltonian, which is a 
contradiction. 
Case 2.2. n=O (mod 2). Then n/2>0(G)= crl(G);::: K(G) > (n-3)/2, i.e. n/2-1;::: o(G)= 0" I (G);::: 
K(G) ;:::n/2-1,ie. o(G) K(G)=n/2-1. But then n+(3n-6K(G)+7)/8-2=n-3/8, so that c(G);::: 
min{n,n+cr4(G)/4+1-a(G)} ;:::n-3/8.It follows that c(G);:::n, implying that G is 
hamiltonian, which is a contradiction. 
Case 3. a(G) =K(G)+ 3 .Since K(G)+ 3>(3n+ 2K(G)+ 7)/8 , we have K(G) > n/2-17/6 . Hence 
a(G) > (3n +7)/8+(n/2-17/6)/4 n/2+ 1/6> n/2. Let A be any independent set ofG of size at 
least n/2+ land let A'=V(G)-A. Then m(G- A') =IAI>nl2>IAI ' which contradicts the fact 
that G is tough. 
Case 4. a(G);:::K(G)+4 . Let T be an independent set of vertices such that ITI=a(G), S be a 
vertex cut such that ISI=K(G) and let G I ,G2 , .:. ,Gt be the components ofG-S . Choose WI' 
W2ET such that d(x)::::max{d(wJ, d(w2)} for all xET-{wl , w2}. Consider any pair VI' V2 of 
distinct vertices in T-{wl , w2}. Since {VI 'V2' WI ,wl } is an independent set of vertices in G, 
we have 2(d(vl)+d(v2»;:::d(vJ+d(v2)+d(wl)+d(w2);:::criG);:::(3n-1)/2+K(G). Hence 
d(v)+d(v2);:::(3n-l)/4+K(G)/2. Since, by the inclusion-exclusion principle, 
IN(v)nN(v2)I=d(vl)+d(v2)-IN(vl)u N(v2)1 and IN(v l)uN(v2)1:s; n-a(G) , it follows that 
[N(v l)nN(v2)[;:::(3n-l )/4+K(G)/2-n+a(G)=a(G)-n/4-1/4+K(G)/2>(3n+ 2K(G)+ 7)/8+K(G )/2-
(n+ 1)/4=(n+6K(G)+5)/8>K(G). (To see that (n+6K(G)+5)/8>K(G), .suppose, to the contrary 
that (n+6K(G)+5)/8:S;K(G). Then n+6K(G)+5:S;8K(G), so that (n+5)/2:S;K(G)::;a(G)-4. Hence 
a(G) ;:::(n+5)/2+4 which, as before, contradicts the fact that G is tough.) It follows that any 
pair of distinct vertices in T-{w) , w2} cannot be in different components ofG-S. Assume, 
without loss of generality ,that T-{wl' w2 } ~SUV(GI)' Set B=V-(SuV(G,». We now 
prove that G[B] is complete. Suppose otherwise. Let XI' x2EB such that XI:;CX2 and x,x~~E. 
Recall that a(G);:::K(G)+4, so that ITnV(G I)I;:::2 . Assume {YI , Y2}~TnV(GJ with YI:;CY2 . 
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Then {YI , Y2 , XI , x2} is an independent set of vertices and we have (3n-l)/2 +K(G) :::;;(JiG) 
:::;; d(YI)+d(Y2)+d(x l)+d(x2):::;;2(IV(G 1)I+K(G)-a(G)+2)+2(IBI+K(G)-2)=2(n-a(G)+K(G) ), 
since n=IV(GJI+jBI +K(G) . But then a(G):::;;(n+2K(G)+1)/4 < (3n+2K(G)+7)/8 < a (G), 
which is a contradiction .(If(n+2K(G)+I)/4 ~ (3n+2K(G)+7)/8, then one can show that 
a(G)~ (n+ 5)/4+4, which, as before, would contradict the toughness of the graph.) This 
contradiction shows that G[B] is complete. Since T is an independent set of vertices, it 
follows that ITn BI:::;;I and ITn V(GI)I~3. Without loss of generality assume that {YI , Y2 , 
Y3}~Trl V(GJ . Let i, j E {I, 2,3} such that i:;t:j. If d(Yi)+d(Yj) ~n, then by lemma 10, the 
graph G+Yi Yj is hamiltonian if and only if G is hamiltonian. By definition, G+Yi Yi is also a 
3-connected tough graph of order n with criG+ Yi Y)~ (JiG). Recalling that ro( G+Yi YrS) = 
ro( G-S»l, we have K(G+Yi Y)=K(G) = I S I so that criG+ Yi Yj)~(3n-l)/2+ K(G+Yi Yj)' By 
our choice of G, G+Yi Yj is hamiltonian. But then G is also hamiltonian, which is a 
contradiction. We conclude that d(Yi)+d(Yj)~-I for all i ,j E { 1, 2, 3} with i:;t:j . Assume, 
without loss of generality, that d(Y3)=min{ d(YI)' d(Y2)' d(Y3)}' Then d(Y3):::;;(n-1 )/2. Let 
vEB. Then {YI , Y2 , Y3 , v} is an independent set of vertices, so that d(YI)+d(Y2)~(J4(G)
d(Y3)-d(v)2:(3n-I )/2+K(G)-d(Y3)-(IBI+K(G)-I )=n-IBI+ 1 + (n-I )/2-d(Y3)~n-IBI+ 1. By Lemma 
8, G is hamiltonian if and only if G+y IY 2 is hamiltonian. But now by the choice of G, 
G+Y!Y2 is hamiltonian .But then G is also hamiltonian. This final contradiction completes 
the proof of Theorem 7 . 
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