On isomorphisms of Cayley digraphs on dicyclic groups

Hai-Cheng Ma

Department of Mathematics
QingHai Nationalities College
XiNing 810007
P.R.China

Abstract

In this paper we prove that for any $m \in\{1,2,3\}$, the dicyclic group $B_{4 n}$ ($n \neq 2$) is an m-DCI group if and only if n is odd.

1. Introduction

Definition 1.1. Let G be a finite group and let $S \subseteq G \backslash\{1\}$. We define the Cayley digraph $X=X(G, S)$ of G with respect to S by

$$
\begin{aligned}
& V(X)=G \\
& E(X)=\{(g, s g) \mid g \in G, s \in S\}
\end{aligned}
$$

It is well-known that any Cayley digraph X on G is vertex-transitive; X is connected if and only if $\langle S\rangle=G$, and X is undirected if and only if $S^{-1}=S$.

Definition 1.2. Let G be a finite group and let $S \subseteq G \backslash\{1\}$. We call S a $C I$-subset of G, if, for any graph isomorphism $X(G, S) \cong X(G, T)$, where $T \subseteq G \backslash\{1\}$, there exists $\alpha \in$ Aut G such that $S^{\alpha}=T$.

Definition 1.3. Let G be a finite group and m a positive integer. We call G an m-DCI-group if every subset S of $G \backslash\{1\}$ with $|S| \leq m$ is a CI-set. We call G an m-CI-group if every subset S of $G \backslash\{1\}$ with $S^{-1}=S$ and $|S| \leq m$ is a CI-subset.

Necessary and sufficient conditions have been found for abelian groups and dihedral groups to be m-DCI-groups, for $m=1,2,3$ (see $[\mathbf{1}-\mathbf{5}, \mathbf{8}, \mathbf{1 0}]$). The purpose of this paper is to discuss the same problem for dicyclic groups, $B_{4 n}$. The group $B_{4 n}$ is defined by

$$
B_{4 n}=\left\langle a, b \mid a^{2 n}=1, b^{2}=a^{n}, b^{-1} a b=a^{-1}\right\rangle,(n \geq 2)
$$

If $n=2, B_{4 n}$ is isomorphic to the quaternion group Q_{8} of order 8 , and Q_{8} is a 3 -DCI-group, [9]. Our main result is

Theorem 1.4. The finite dicyclic group $B_{4 n}(n \neq 2)$ is an m-DCI-group for $m=1,2,3$ if and only if n is odd.

The notation and terminology used in this paper are standard in general; the reader is referred to $[6,7]$ when necessary. Let X and Y be two isomorphic Cayley digraphs on G. We use $I(X, Y)$ to denote the set of all isomorphisms ϕ from X to Y with $1^{\phi}=1$. For any $u \in V(X)$ and each positive integer i, we write $X_{i}(u)=\{v \in V(X) \mid d(u, v)=i\}$, where $d(u, v)$ is the distance from u to v.

2. Preliminary results

In this section we shall prove several lemmas which will be used in the proof of Theorem 1.4.

Lemma 2.1. Let G be a finite group and S, T subsets of $G \backslash\{1\}$ with $X=$ $X(G, S) \cong X(G, T)=Y$.
(i) If there exist $s \in S, t \in T$ such that $s^{\phi}=t$ holds for all $\phi \in I(X, Y)$, then $I(X, Y) \subseteq I(X(G, S \backslash\{s\}), X(G, T \backslash\{t\}))$.
(ii) If there exists $x \in G$ such that $x^{\phi}=x$ holds for all $\phi \in I(X, Y)$, then $I(X, Y) \subseteq I\left(X\left(G, x S^{2} \backslash\{1\}\right), X\left(G, x T^{2} \backslash\{1\}\right)\right)$, where $x S^{2}=\left\{x s_{i} s_{j} \mid\right.$ $\left.s_{i}, s_{j} \in S\right\}$ and $x T^{2}=\left\{x t_{i} t_{j} \mid t_{i}, t_{j} \in T\right\}$.

Proof. We use $R(g)$ to denote the map from G to G defined by $x \rightarrow x g$.
(i) For any $g \in G$, since $\left.R(g) \phi R\left(\left(g^{\phi}\right)\right)^{-1}\right) \in I(X, Y)$, by assumption (i) we obtain that $s^{R(g) \phi R\left(\left(g^{\phi}\right)^{-1}\right)}=t$, so that $(s g)^{\phi}=t g^{\phi}$. So, for any $g_{1}, g_{2} \in G$, $g_{2}=s g_{1}$ if and only if $g_{2}^{\phi}=\left(s g_{1}\right)^{\phi}=t g_{1}^{\phi}$. That is, $\left(g_{1}, g_{2}\right) \in E(X(G$, $S \backslash\{s\})$) if and only if $\left(g_{1}^{\phi}, g_{2}^{\phi}\right) \in E(X(G, T \backslash\{t\}))$.
(ii) As in (i), with $s=t=x$, we have $(x g)^{\phi}=x g^{\phi}$ for any $g \in G$. If $\left(g_{1}, g_{2}\right) \in$ $E\left(X\left(G, x S^{2} \backslash\{1\}\right)\right)$, then there exist $s_{i}, s_{j} \in S$ such that $g_{2}=x s_{i} s_{j} g_{1}$ and $x s_{i} s_{j} \neq 1$, and so $g_{2}^{\phi}=\left(x s_{i} s_{j} g_{1}\right)^{\phi}=x\left(s_{i} s_{j} g_{1}\right)^{\phi}=x t_{k} t_{\ell} g_{1}^{\phi}$, where $t_{k}, t_{\ell} \in T$, and $x t_{k} t_{\ell} \neq 1$. Hence $\left(g_{1}^{\phi}, g_{2}^{\phi}\right) \in E\left(X\left(G, x T^{2} \backslash\{1\}\right)\right)$.

Lemma 2.2. ([10])
(i) For $m=1,2,3$, the finite cyclic group Z_{k} is an m-DCI group if $4 \nmid k$.
(ii) Any finite cyclic group Z_{k} is a $4-D C I$ group.

Lemma 2.3. For any $\pi \in \operatorname{Aut}\langle a\rangle$ and for any integer k, define the mapping $\pi^{\prime}: B_{4 n} \rightarrow B_{4 n}$ by

$$
\left(a^{i} b^{j}\right)^{\pi^{\prime}}=\left(a^{i}\right)^{\pi}\left(a^{k} b\right)^{j}, \quad(i=0,1, \ldots, 2 n-1, j=0,1)
$$

Then $\pi^{\prime} \in \operatorname{Aut} B_{4 n}$.
A finite group G is said to be homogeneous if for any two isomorphic subgroups H and K of G and any isomorphism σ from H to K, σ can be extended to an automorphism α of G. Obviously, the finite cyclic group Z_{k} is homogeneous.

Lemma 2.4. The finite dicyclic group $B_{4 n}$ is homogeneous if $2 \nmid n$.
Proof. Let H, K be two isomorphic subgroups of $B_{4 n}$ and let σ be an isomorphism from H to K.
Case 1. $H \leq\langle a\rangle$. Since $|H|=|K|$ and $4 \nmid|H|, K \leq\langle a\rangle$. The conclusion follows from Lemma 2.3 and the fact that the cyclic group is homogeneous.
Case 2. $H \cap\langle a\rangle b \neq \emptyset$. Then $K \cap\langle a\rangle b \neq \emptyset$. Since $|H: H \cap\langle a\rangle|=|K: K \cap\langle a\rangle|=2$, there are $i, j \in\{0,1, \ldots, 2 n-1\}$ such that $H=\left\langle H \cap\langle a\rangle, a^{i} b\right\rangle, K=\left\langle K \cap\langle a\rangle, a^{j} b\right\rangle$, and $\left(a^{i} b\right)^{\sigma}=a^{j} b$. Furthermore, $(H \cap\langle a\rangle)^{\sigma}=K \cap\langle a\rangle$. Thus there exists $\pi \in$ Aut $\langle a\rangle$ such that $\left.\pi\right|_{H \cap\langle a\rangle}=\left.\sigma\right|_{H \cap\langle a\rangle}$. By Lemma 2.3, there exists $\pi^{\prime} \in$ Aut $B_{4 n}$ such that $\left.\pi^{\prime}\right|_{\langle a\rangle}=\pi$ and $\left(a^{i} b\right)^{\pi^{\prime}}=a^{j} b$. Obviously, π^{\prime} is an extension of σ to $B_{4 n}$.

3. Proof of Theorem 1.4

We shall discuss, respectively, the cases $m=1,2,3$. Theorem 1.4 is proved by Lemmas 3.1, 3.2 and 3.4. Throughout this section, $B_{4 n}$ is assumed to be a fixed finite dicyclic group.

Lemma 3.1. $B_{4 n}(n \neq 2)$ is a 1-DCI-group if and only if n is odd.
Proof. "only if". Assume $2 \mid n$. Then o $\left(a^{\frac{n}{2}}\right)=4$, so $X\left(B_{4 n},\left\{a^{\frac{n}{2}}\right\}\right) \cong X\left(B_{4 n},\{b\}\right)$. Since $n \neq 2,\left\langle a^{\frac{n}{2}}\right\rangle$ is a characteristic subgroup of $B_{4 n}$. Thus $\left\{a^{\frac{n}{2}}\right\}$ is not a CI-subset of $B_{4 n}$, which contradicts the fact that $B_{4 n}$ is a 1-DCI group.
"if". This is trivial by Lemma 2.4.
Lemma 3.2. $B_{4 n}(n \neq 2)$ is a 2-DCI-group if and only if n is odd.
Proof. By Lemma 3.1, we need only prove that if $2 \nmid n, S \subseteq B_{4 n} \backslash\{1\}$ and $|S|=2$, then S is a CI-subset of $B_{4 n}$.

Assume $X=X\left(B_{4 n}, S\right) \cong X\left(B_{4 n}, T\right)=Y$.
Let $S=\left\{a^{n}, x\right\}$, where $x \in B_{4 n} \backslash\{1\}$. There are just one directed edge and one undirected edge starting from every vertex of $X\left(B_{4 n}, S\right)$, so we can assert that $T=\left\{a^{n}, y\right\}$. If we delete all undirected edges from $X\left(B_{4 n}, S\right)$ and $X\left(B_{4 n}, T\right)$, we obtain that $X\left(B_{4 n},\{x\}\right) \cong X\left(B_{4 n},\{y\}\right)$. By Lemma 3.1 there exists $\sigma \in$ Aut $B_{4 n}$ such that $x^{\sigma}=y$. Obviously, $S^{\sigma}=T$. Thus we shall assume that $S \neq\left\{a^{n}, x\right\}$.
Case 1. $|S \cap\langle a\rangle|=2$. Since $|\langle S\rangle|=|\langle T\rangle|$ and $4 \nmid|\langle S\rangle|,|T \cap\langle a\rangle|=2$. By Lemmas 2.2 and $2.3, S$ is a CI subset of $B_{4 n}$.

Case 2. $|S \cap\langle a\rangle|=0$. By Lemma 2.3, without loss of generality, we may assume that $S=\left\{b, a^{i} b\right\}$. Since $\left|X_{1}(b) \cap X_{1}\left(a^{i} b\right)\right|=\left|\left\{a^{n}\right\}\right|=1$, we can assert that $|T \cap\langle a\rangle|=0$, and we may also assume that $T=\left\{b, a^{j} b\right\}$. Clearly, $\left(a^{n}\right)^{\phi}=a^{n}$ for all $\phi \in I\left((X, Y)\right.$. By Lemma 2.1(ii), we obtain that $X\left(B_{4 n}, a^{n} S^{2} \backslash\{1\}\right) \cong$ $X\left(B_{4 n}, a^{n} T^{2} \backslash\{1\}\right)$. Thus $X\left(\langle a\rangle,\left\{a^{ \pm i}\right\}\right) \cong X\left(\langle a\rangle,\left\{a^{ \pm j}\right\}\right)$. By Lemma 2.2, there exists $\pi \in$ Aut $\langle a\rangle$ such that $\left\{a^{ \pm i}\right\}^{\pi}=\left\{a^{ \pm j}\right\}$. We apply Lemma 2.3, with $k=1$ if $\left(a^{i}\right)^{\pi}=a^{j}$ or $k=j$ if $\left(a^{i}\right)^{\pi}=a^{-j}$. In either case, we obtain a map $\pi^{\prime} \in \operatorname{Aut} B_{4 n}$ such that $S^{\pi^{\prime}}=T$.
Case 3. $|S \cap\langle a\rangle|=1$. From the above analysis we may assume that $S=\left\{b, a^{i}\right\}$ and $T=\left\{b, a^{j}\right\}$ and, since $|\langle S\rangle|=|\langle T\rangle|, o\left(a^{i}\right)=\mathrm{o}\left(a^{j}\right)$. So there exists $\sigma \in$ Aut $B_{4 n}$ such that $S^{\sigma}=T$.

Lemma 3.3. ([8]). If $X\left(Z_{k}, S\right) \cong X\left(Z_{k}, T\right)$, where $S=\{ \pm i, \pm j, \pm(i-j)\}, T=$ $\{ \pm u, \pm v, \pm(u-v)\}$, and $|S|=|T|=6$, then there is an automorphism $\pi \in A u t Z_{k}$ such that $S^{\pi}=T$.

Remark. [8] requires that k be odd. However, the proof given in [8] does not need this restriction.

Lemma 3.4. $B_{4 n}(n \neq 2)$ is a 3-DCI-group if and only if n is odd.
Proof. By Lemma 3.2, we need only prove that if $2 \nmid n, S \subseteq B_{4 n} \backslash\{1\}$ and $|S|=3$, then S is a CI-subset of $B_{4 n}$.

Assume $X=X\left(B_{4 n}, S\right) \cong X\left(B_{4 n}, T\right)=Y$.
Let $S=\left\{a^{n}, x, y\right\}$, where $x, y \in B_{4 n} \backslash\{1\}$. It is easy to see that $a^{n} \in T$. Assume that $T=\left\{a^{n}, u, v\right\}$. If $x, y \in\langle a\rangle$, it is easy to see that S is a CI-subset of $B_{4 n}$.

If $x \neq y^{-1}$, it is obvious that $\left(a^{n}\right)^{\phi}=a^{n}$ for all $\phi \in I(X, Y)$.
If $x=y^{-1}=a^{i} b$, since $X_{2}(1) \cap X_{1}(1)=\left\{a^{n}\right\},\left(a^{n}\right)^{\phi}=a^{n}$ for all $\phi \in I(X, Y)$.
By Lemma 2.1(i), we obtain $X\left(B_{4 n},\{x, y\}\right) \cong X\left(B_{4 n},\{u, v\}\right)$. By Lemma 3.2, there exists $\sigma \in$ Aut $B_{4 n}$ such that $\{x, y\}^{\sigma}=\{u, v\}$. Obviously, $S^{\sigma}=T$. Thus we shall suppose that $S \neq\left\{a^{n}, x, y\right\}$ in the following. Now we discuss, respectively, $|S \cap\langle a\rangle|=0,1,2$ or 3 .
Case 1. $|S \cap\langle a\rangle|=3$. By the same argument as in Case 1 of Lemma 3.2, S is a CI-subset of $B_{4 n}$.
Case 2. $|S \cap\langle a\rangle|=2$. Without loss of generality, we may assume that $S=$ $\left\{b, a^{i}, a^{j}\right\}$.
(i) First we verify that there exists a fixed $t \in T$ such that $b^{\phi}=t$, for all $\phi \in I(X, Y)$. This is obvious if $a^{i}=a^{-j}$. Assume $a^{i} \neq a^{-j}$. We consider $X_{2}(1)=\left\{a^{2 i}, a^{2 j}, a^{i+j}, a^{n}, a^{i} b, a^{j} b, a^{-i} b, a^{-j} b\right\}$. Then $7 \leq\left|X_{2}(1)\right| \leq 8$.

If $\left|X_{2}(1)\right|=8$, since $\left|X_{1}\left(a^{i}\right) \cap X_{1}\left(a^{j}\right)\right|=1,\left|X_{1}(b) \cap X_{1}\left(a^{i}\right)\right|=\mid X_{1}(b) \cap$ $X_{1}\left(a^{j}\right) \mid=0$.

If $\left|X_{2}(1)\right|=7$, since $X_{2}\left(a^{i}\right) \cap X_{2}\left(a^{j}\right) \cap X_{1}(1)=\{b\}, X_{2}\left(a^{i}\right) \cap X_{2}(b) \cap$ $X_{1}(1)=X_{2}\left(a^{j}\right) \cap X_{2}(b) \cap X_{1}(1)=\emptyset$.
(ii) Secondly, by Lemma 2.1(i), we obtain $X\left(B_{4 n},\{b\}\right) \cong X\left(B_{4 n},\{t\}\right)$. Thus, by Lemma 3.2, $|T \cap\langle a\rangle|=2$. We can also assume that $T=\left\{b, a^{u}, a^{v}\right\}$ and $b^{\phi}=b$ for all $\phi \in I(X, Y)$. So we obtain $X\left(\langle a\rangle,\left\{a^{i}, a^{j}\right\}\right) \cong X\left(\langle a\rangle,\left\{a^{u}, a^{v}\right\}\right)$. Hence, by Lemmas 2.2 and 2.3, we obtain that S is a CI-subset of $B_{4 n}$.
Case 3. $|S \cap\langle a\rangle|=0$. Assume $S=\left\{b, a^{i} b, a^{j} b\right\}$. Since $\mid X_{1}(b) \cap X_{1}\left(a^{i} b\right) \cap$ $X_{1}\left(a^{j} b\right)\left|=\left|\left\{a^{n}\right\}\right|=1\right.$, we deduce that $| T \cap\langle a\rangle \mid=0$, and we can assume that $T=$ $\left\{b, a^{u} b, a^{v} b\right\}$. Clearly, $\left(a^{n}\right)^{\phi}=a^{n}$ for all $\phi \in I(X, Y)$. By Lemma 2.1(ii), we obtain $X\left(B_{4 n},\left\{a^{ \pm i}, a^{ \pm j}, a^{ \pm(i-j)}\right\}\right) \cong X\left(B_{4 n},\left\{a^{ \pm u}, a^{ \pm v}, a^{ \pm(u-v)}\right\}\right)$. Hence $X\left(\langle a\rangle,\left\{a^{ \pm i}\right.\right.$, $\left.\left.a^{ \pm j}, a^{ \pm(i-j}\right\}\right) \cong X\left(\langle a\rangle,\left\{a^{ \pm u}, a^{ \pm v}, a^{ \pm(u-v}\right\}\right)$. If $\left|\left\{a^{ \pm i}, a^{ \pm j}, a^{ \pm(i-j)}\right\}\right|=2$ or 4 , by Lemma 2,2 there exists $\pi \in \operatorname{Aut}\langle a\rangle$ such that $\left\{a^{ \pm i}, a^{ \pm j}, a^{ \pm(i-j)}\right\}^{\pi}=\left\{a^{ \pm u}, a^{ \pm v}\right.$, $\left.a^{ \pm(u-v)}\right\}$. So the conclusion is immediate.

Now suppose $\left|\left\{a^{ \pm i}, a^{ \pm j}, a^{ \pm(i-j)}\right\}\right|=6$. By Lemma 3.3. there exists $\pi \in \operatorname{Aut}\langle a\rangle$ such that $\left\{a^{ \pm i}, a^{ \pm j}, a^{ \pm(i-j)}\right\}^{\pi}=\left\{a^{ \pm u}, a^{ \pm v}, a^{ \pm(u-v)}\right\}$. Without loss of generality, we may assume $\left(a^{i}\right)^{\pi}=a^{u}$. Then $\left(a^{-i}\right)^{\pi}=a^{-u}$.
(1) If $\left(a^{j}\right)^{\pi}=a^{-v}$, then $2 u \equiv 0$ or $2 v \equiv 0(\bmod 2 n)$, which contradicts the
fact that $\left|\left\{a^{ \pm i}, a^{ \pm j}, a^{ \pm(i-j)}\right\}\right|=6$.
(2) If $\left(a^{j}\right)^{\pi}=a^{-(u-v)}$, we can get a sinilar contradiction.
(3) If $\left(a^{j}\right)^{\pi}=a^{v}$, it is obvious that S is a CI-subset of $B_{4 n}$.
(4) If $\left(a^{j}\right)^{\pi}=a^{(u-v)}$, by Lemma 2.3 there exists $\pi^{\prime} \in$ Aut $B_{4 n}$ such that $b^{\pi^{\prime}}=a^{u} b$ and $\left(a^{m}\right)^{\pi^{\prime}}=\left[\left(a^{m}\right)^{\pi}\right]^{-1}$. So $S^{\pi^{\prime}}=T$.
Case 4. $|S \cap\langle a\rangle|=1$. By the above analysis, we get immediately that $|T \cap\langle a\rangle|=1$. Assume $S=\left\{b, a^{i} b, a^{j}\right\}$ and $T=\left\{b, a^{u} b, a^{v}\right\}(j \neq n, v \neq n)$.
(i) First we verify that $\left(a^{j}\right)^{\phi}=a^{v}$ for all $\phi \in I(X, Y)$. This is obvious if $b=\left(a^{i} b\right)^{-1}$. Assume $b \neq\left(a^{i} b\right)^{-1}$. We consider

$$
X_{2}(1)=\left\{a^{2 j}, a^{n}, a^{i+n}, a^{-i+n}, a^{j} b, a^{-j} b, a^{i+j} b, a^{i-j} b\right\}
$$

Then $7 \leq\left|X_{2}(1)\right| \leq 8$.
Suppose $\left|X_{2}(1)\right|=8$. Since $\left|X_{1}(b) \cap X_{1}\left(a^{1} b\right)\right|=1,\left|X_{1}(b) \cap X_{2}\left(a^{j}\right)\right|=$ $\left|X_{1}\left(a^{i} b\right) \cap X_{1}\left(a^{j}\right)\right|=0$.

Suppose $\left|X_{2}(1)\right|=7$. Then exactly one of the following congruence formulae holds:

$$
i+n \equiv 2 j,-i+n \equiv 2 j, 1+2 j \equiv 0 \text { or }-i+2 j \equiv 0(\bmod 2 n)
$$

(1) If $i+n \equiv 2 j$ or $-i+n \equiv 2 j(\bmod 2 n)$, then $\left|X_{1}(1) \cap X_{2}\left(a^{j}\right)\right|=$ $\left|\left\{b, a^{j}\right\}\right|=2,\left|X_{1}(1) \cap X_{2}(b)\right| \leq 1$ and $\left|X_{1}(1) \cap X_{2}\left(a^{i} b\right)\right| \leq 1$, so the result follows.
(2) If $i+2 j \equiv 0$ or $-i+2 j \equiv 0(\bmod 2 n)$, then $\left|X_{1}(1) \cap X_{3}(1)\right|=\left|\left\{b, a^{i} b\right\}\right|$ and the result follows.
(ii) Secondly, since $\left(a^{n}\right)^{\phi}=a^{n}$ for all $\phi \in I(X, Y)$, by Lemma 2.1(i) for all $\phi \in$ $I(X, Y)$ we have $\phi \in I\left(X\left(B_{4 n}, a^{n} S^{2} \backslash\{1\}\right), X\left(B_{4 n}, a^{n} T^{2} \backslash\{1\}\right)\right)$, where $S^{\prime}=\left\{b, a^{i} b\right\}, T^{\prime}=\left\{b, a^{u} b\right\}$, and hence $\phi \in I\left(X\left(B_{4 n},\left\{a^{i}, a^{-i}\right\}\right), X\left(B_{4 n}\right.\right.$, $\left.\left\{a^{u}, a^{-u}\right\}\right)$).

On the other hand, from the proof of Lemma 2.1(i), $\left(a^{j} g\right)^{\phi}=a^{v} g^{\phi}$ holds for any $g \in B_{4 n}$. So it is easy to show that $X\left(B_{4 n},\left\{a^{i}, a^{-i}, a^{j}\right\}\right) \cong$ $X\left(B_{4 n},\left\{a^{u}, a^{-u}, a^{v}\right\}\right)$, and so $X\left(\langle a\rangle,\left\{a^{i}, a^{-i}, a^{j}\right\}\right) \cong X\left(\langle a\rangle,\left\{a^{u}, a^{-u}, a^{v}\right\}\right)$. By Lemma 2.2, there exists $\pi \in$ Aut $\langle a\rangle$ such that $\left\{a^{ \pm i}\right\}^{\pi}=\left\{a^{ \pm u}\right\}$ and $\left(a^{j}\right)^{\pi}=a^{v}$. We apply Lemma 2.3, with $k=1$ if $\left(a^{i}\right)^{\pi}=a^{u}$ or $k=u$ if $\left(a^{i}\right)^{\pi}=a^{-u}$. In either event we obtain a map $\pi^{\prime} \in \operatorname{Aut} B_{4 n}$ such that $S^{\pi^{\prime}}=T$.

It is easy to see that $B_{4 n}$ is a 1-CI-group for any $n \geq 2$. From the above Lemmas we have the following:

Corollary 3.5. $B_{4 n}(n \neq 2)$ is an m-CI-group, $m=2,3$ if and only if n is odd.

Acknowledgement

The author thanks the Department of Mathematics, Peking University, where the work was done, for its hospitality.

References

[1]. Xin-Gui Fang, A characterization of finite abelian 2-DCI-groups, (in Chinese), J. Math. (Wunan) 8 (1988), 315-317.
[2]. Xin-Gui Fang, Abelian 3-DCI-groups of even order, Ars Combin. 32 (1991), 263-267.
[3]. Xin-Gui Fang and Min Wang, Isomorphisms of Cayley graphs of valency $m(\leq 5)$ for a finite abelian group, (in Chinese), Chinese Ann. Math. Ser. A 13 (1992), (suppl.) 7-14.
[4]. Xin-Gui Fang and Ming-Yau Xu, Abelian 3-DCI-groups of odd order, Ars Combin. 28 (1989), 247-251.
[5]. Xin-Gui Fang and Ming-Yau Xu, On isomorphisms of Cayley graphs of small valency, Algebra Colloq. 1 (1994), 67-76.
[6]. F. Harary, Graph Theory, Addison-Wesley, Reading, Mass., 1969.
[7]. B. Huppert, Endliche Gruppen, I, Springer-Verlag, Berlin, Heidelberg, New York, 1967.
[8]. Hai-Peng Qu and Jin-Sung Yu, On isomorphisms of Cayley graphs on dihedral groups, Australas. J. Combin. 15 (1997), 213-220.
[9]. Ming-Yau Xu, DCI- and CI-groups of order p^{3}, Adv. in Math. 17, No. 4 (1981), 427-428.
[10]. Ming-Yau Xu, Some work on vertex-transitive graphs by Chinese mathematicians, Group Theory in China, Science Publishing House, 1995.

