On isomorphisms of Cayley digraphs on dicyclic groups

Hai-Cheng Ma

Department of Mathematics QingHai Nationalities College XiNing 810007 P.R.China

Abstract

In this paper we prove that for any $m \in \{1, 2, 3\}$, the dicyclic group B_{4n} $(n \neq 2)$ is an *m*-DCI group if and only if *n* is odd.

1. INTRODUCTION

Definition 1.1. Let G be a finite group and let $S \subseteq G \setminus \{1\}$. We define the Cayley digraph X = X(G, S) of G with respect to S by

$$V(X) = G,$$

 $E(X) = \{(g, sg) \mid g \in G, s \in S\}.$

It is well-known that any Cayley digraph X on G is vertex-transitive; X is connected if and only if $\langle S \rangle = G$, and X is undirected if and only if $S^{-1} = S$.

Definition 1.2. Let G be a finite group and let $S \subseteq G \setminus \{1\}$. We call S a CI-subset of G, if, for any graph isomorphism $X(G,S) \cong X(G,T)$, where $T \subseteq G \setminus \{1\}$, there exists $\alpha \in \operatorname{Aut} G$ such that $S^{\alpha} = T$.

Definition 1.3. Let G be a finite group and m a positive integer. We call G an m-DCI-group if every subset S of $G \setminus \{1\}$ with $|S| \leq m$ is a CI-set. We call G an m-CI-group if every subset S of $G \setminus \{1\}$ with $S^{-1} = S$ and $|S| \leq m$ is a CI-subset.

Necessary and sufficient conditions have been found for abelian groups and dihedral groups to be *m*-DCI-groups, for m = 1, 2, 3 (see [1-5,8,10]). The purpose of this paper is to discuss the same problem for dicyclic groups, B_{4n} . The group B_{4n} is defined by

$$B_{4n} = \langle a, b \mid a^{2n} = 1, b^2 = a^n, b^{-1}ab = a^{-1} \rangle, \ (n \ge 2).$$

If n = 2, B_{4n} is isomorphic to the quaternion group Q_8 of order 8, and Q_8 is a 3-DCI-group, [9]. Our main result is

Australasian Journal of Combinatorics 16(1997), pp.189-194

Theorem 1.4. The finite dicyclic group B_{4n} $(n \neq 2)$ is an *m*-DCI-group for m = 1, 2, 3 if and only if *n* is odd.

The notation and terminology used in this paper are standard in general; the reader is referred to [6,7] when necessary. Let X and Y be two isomorphic Cayley digraphs on G. We use I(X,Y) to denote the set of all isomorphisms ϕ from X to Y with $1^{\phi} = 1$. For any $u \in V(X)$ and each positive integer i, we write $X_i(u) = \{v \in V(X) \mid d(u,v) = i\}$, where d(u,v) is the distance from u to v.

2. Preliminary results

In this section we shall prove several lemmas which will be used in the proof of Theorem 1.4.

Lemma 2.1. Let G be a finite group and S, T subsets of $G \setminus \{1\}$ with $X = X(G,S) \cong X(G,T) = Y$.

- (i) If there exist $s \in S$, $t \in T$ such that $s^{\phi} = t$ holds for all $\phi \in I(X, Y)$, then $I(X, Y) \subseteq I(X(G, S \setminus \{s\}), X(G, T \setminus \{t\})).$
- (ii) If there exists $x \in G$ such that $x^{\phi} = x$ holds for all $\phi \in I(X,Y)$, then $I(X,Y) \subseteq I(X(G,xS^2 \setminus \{1\}), X(G,xT^2 \setminus \{1\}))$, where $xS^2 = \{xs_is_j \mid s_i, s_j \in S\}$ and $xT^2 = \{xt_it_j \mid t_i, t_j \in T\}$.

Proof. We use R(g) to denote the map from G to G defined by $x \to xg$.

- (i) For any $g \in G$, since $R(g)\phi R((g^{\phi}))^{-1} \in I(X,Y)$, by assumption (i) we obtain that $s^{R(g)\phi R((g^{\phi})^{-1})} = t$, so that $(sg)^{\phi} = tg^{\phi}$. So, for any $g_1, g_2 \in G$, $g_2 = sg_1$ if and only if $g_2^{\phi} = (sg_1)^{\phi} = tg_1^{\phi}$. That is, $(g_1, g_2) \in E(X(G, S \setminus \{s\}))$ if and only if $(g_1^{\phi}, g_2^{\phi}) \in E(X(G, T \setminus \{t\}))$.
- (ii) As in (i), with s = t = x, we have $(xg)^{\phi} = xg^{\phi}$ for any $g \in G$. If $(g_1, g_2) \in E(X(G, xS^2 \setminus \{1\}))$, then there exist $s_i, s_j \in S$ such that $g_2 = xs_is_jg_1$ and $xs_is_j \neq 1$, and so $g_2^{\phi} = (xs_is_jg_1)^{\phi} = x(s_is_jg_1)^{\phi} = xt_kt_\ell g_1^{\phi}$, where $t_k, t_\ell \in T$, and $xt_kt_\ell \neq 1$. Hence $(g_1^{\phi}, g_2^{\phi}) \in E(X(G, xT^2 \setminus \{1\}))$.

Lemma 2.2. ([10])

- (i) For m = 1, 2, 3, the finite cyclic group Z_k is an m-DCI group if $4 \nmid k$.
- (ii) Any finite cyclic group Z_k is a 4-DCI group.

Lemma 2.3. For any $\pi \in Aut \langle a \rangle$ and for any integer k, define the mapping $\pi' : B_{4n} \to B_{4n}$ by

$$(a^i b^j)^{\pi'} = (a^i)^{\pi} (a^k b)^j, \quad (i = 0, 1, \dots, 2n - 1, \ j = 0, 1).$$

Then $\pi' \in \operatorname{Aut} B_{4n}$.

A finite group G is said to be *homogeneous* if for any two isomorphic subgroups H and K of G and any isomorphism σ from H to K, σ can be extended to an automorphism α of G. Obviously, the finite cyclic group Z_k is homogeneous.

Lemma 2.4. The finite dicyclic group B_{4n} is homogeneous if $2 \nmid n$.

Proof. Let H, K be two isomorphic subgroups of B_{4n} and let σ be an isomorphism from H to K.

Case 1. $H \leq \langle a \rangle$. Since |H| = |K| and $4 \nmid |H|$, $K \leq \langle a \rangle$. The conclusion follows from Lemma 2.3 and the fact that the cyclic group is homogeneous.

Case 2. $H \cap \langle a \rangle b \neq \emptyset$. Then $K \cap \langle a \rangle b \neq \emptyset$. Since $|H : H \cap \langle a \rangle| = |K : K \cap \langle a \rangle| = 2$, there are $i, j \in \{0, 1, \ldots, 2n-1\}$ such that $H = \langle H \cap \langle a \rangle, a^i b \rangle, K = \langle K \cap \langle a \rangle, a^j b \rangle$, and $(a^i b)^{\sigma} = a^j b$. Furthermore, $(H \cap \langle a \rangle)^{\sigma} = K \cap \langle a \rangle$. Thus there exists $\pi \in \operatorname{Aut} \langle a \rangle$ such that $\pi|_{H \cap \langle a \rangle} = \sigma|_{H \cap \langle a \rangle}$. By Lemma 2.3, there exists $\pi' \in \operatorname{Aut} B_{4n}$ such that $\pi'|_{\langle a \rangle} = \pi$ and $(a^i b)^{\pi'} = a^j b$. Obviously, π' is an extension of σ to B_{4n} .

3. Proof of Theorem 1.4

We shall discuss, respectively, the cases m = 1, 2, 3. Theorem 1.4 is proved by Lemmas 3.1, 3.2 and 3.4. Throughout this section, B_{4n} is assumed to be a fixed finite dicyclic group.

Lemma 3.1. B_{4n} $(n \neq 2)$ is a 1-DCI-group if and only if n is odd.

Proof. "only if". Assume $2 \mid n$. Then $o(a^{\frac{n}{2}}) = 4$, so $X(B_{4n}, \{a^{\frac{n}{2}}\}) \cong X(B_{4n}, \{b\})$. Since $n \neq 2$, $\langle a^{\frac{n}{2}} \rangle$ is a characteristic subgroup of B_{4n} . Thus $\{a^{\frac{n}{2}}\}$ is not a CI-subset of B_{4n} , which contradicts the fact that B_{4n} is a 1-DCI group.

"if". This is trivial by Lemma 2.4.

Lemma 3.2. B_{4n} $(n \neq 2)$ is a 2-DCI-group if and only if n is odd.

Proof. By Lemma 3.1, we need only prove that if $2 \nmid n$, $S \subseteq B_{4n} \setminus \{1\}$ and |S| = 2, then S is a CI-subset of B_{4n} .

Assume $X = X(B_{4n}, S) \cong X(B_{4n}, T) = Y$.

Let $S = \{a^n, x\}$, where $x \in B_{4n} \setminus \{1\}$. There are just one directed edge and one undirected edge starting from every vertex of $X(B_{4n}, S)$, so we can assert that $T = \{a^n, y\}$. If we delete all undirected edges from $X(B_{4n}, S)$ and $X(B_{4n}, T)$, we obtain that $X(B_{4n}, \{x\}) \cong X(B_{4n}, \{y\})$. By Lemma 3.1 there exists $\sigma \in \operatorname{Aut} B_{4n}$ such that $x^{\sigma} = y$. Obviously, $S^{\sigma} = T$. Thus we shall assume that $S \neq \{a^n, x\}$. **Case 1.** $|S \cap \langle a \rangle| = 2$. Since $|\langle S \rangle| = |\langle T \rangle|$ and $4 \nmid |\langle S \rangle|$, $|T \cap \langle a \rangle| = 2$. By Lemmas 2.2 and 2.3, S is a CI subset of B_{4n} .

Case 2. $|S \cap \langle a \rangle| = 0$. By Lemma 2.3, without loss of generality, we may assume that $S = \{b, a^i b\}$. Since $|X_1(b) \cap X_1(a^i b)| = |\{a^n\}| = 1$, we can assert that $|T \cap \langle a \rangle| = 0$, and we may also assume that $T = \{b, a^j b\}$. Clearly, $(a^n)^{\phi} = a^n$ for all $\phi \in I((X,Y)$. By Lemma 2.1(ii), we obtain that $X(B_{4n}, a^n S^2 \setminus \{1\}) \cong X(B_{4n}, a^n T^2 \setminus \{1\})$. Thus $X(\langle a \rangle, \{a^{\pm i}\}) \cong X(\langle a \rangle, \{a^{\pm j}\})$. By Lemma 2.2, there exists $\pi \in \operatorname{Aut} \langle a \rangle$ such that $\{a^{\pm i}\}^{\pi} = \{a^{\pm j}\}$. We apply Lemma 2.3, with k = 1 if $(a^i)^{\pi} = a^j$ or k = j if $(a^i)^{\pi} = a^{-j}$. In either case, we obtain a map $\pi' \in \operatorname{Aut} B_{4n}$ such that $S^{\pi'} = T$.

Case 3. $|S \cap \langle a \rangle| = 1$. From the above analysis we may assume that $S = \{b, a^i\}$ and $T = \{b, a^j\}$ and, since $|\langle S \rangle| = |\langle T \rangle|$, $o(a^i) = o(a^j)$. So there exists $\sigma \in \text{Aut } B_{4n}$ such that $S^{\sigma} = T$.

Lemma 3.3. ([8]). If $X(Z_k, S) \cong X(Z_k, T)$, where $S = \{\pm i, \pm j, \pm (i - j)\}$, $T = \{\pm u, \pm v, \pm (u - v)\}$, and |S| = |T| = 6, then there is an automorphism $\pi \in \operatorname{Aut} Z_k$ such that $S^{\pi} = T$.

Remark. [8] requires that k be odd. However, the proof given in [8] does not need this restriction.

Lemma 3.4. B_{4n} $(n \neq 2)$ is a 3-DCI-group if and only if n is odd.

Proof. By Lemma 3.2, we need only prove that if $2 \nmid n, S \subseteq B_{4n} \setminus \{1\}$ and |S| = 3, then S is a CI-subset of B_{4n} .

Assume $X = X(B_{4n}, S) \cong X(B_{4n}, T) = Y$.

Let $S = \{a^n, x, y\}$, where $x, y \in B_{4n} \setminus \{1\}$. It is easy to see that $a^n \in T$. Assume that $T = \{a^n, u, v\}$. If $x, y \in \langle a \rangle$, it is easy to see that S is a CI-subset of B_{4n} .

If $x \neq y^{-1}$, it is obvious that $(a^n)^{\phi} = a^n$ for all $\phi \in I(X, Y)$.

If $x = y^{-1} = a^i b$, since $X_2(1) \cap X_1(1) = \{a^n\}, (a^n)^{\phi} = a^n$ for all $\phi \in I(X, Y)$.

By Lemma 2.1(i), we obtain $X(B_{4n}, \{x, y\}) \cong X(B_{4n}, \{u, v\})$. By Lemma 3.2, there exists $\sigma \in \operatorname{Aut} B_{4n}$ such that $\{x, y\}^{\sigma} = \{u, v\}$. Obviously, $S^{\sigma} = T$. Thus we shall suppose that $S \neq \{a^n, x, y\}$ in the following. Now we discuss, respectively, $|S \cap \langle a \rangle| = 0, 1, 2 \text{ or } 3$.

Case 1. $|S \cap \langle a \rangle| = 3$. By the same argument as in Case 1 of Lemma 3.2, S is a CI-subset of B_{4n} .

Case 2. $|S \cap \langle a \rangle| = 2$. Without loss of generality, we may assume that $S = \{b, a^i, a^j\}$.

(i) First we verify that there exists a fixed $t \in T$ such that $b^{\phi} = t$, for all $\phi \in I(X, Y)$. This is obvious if $a^i = a^{-j}$. Assume $a^i \neq a^{-j}$. We consider $X_2(1) = \{a^{2i}, a^{2j}, a^{i+j}, a^n, a^i b, a^j b, a^{-i} b, a^{-j} b\}$. Then $7 \leq |X_2(1)| \leq 8$. If $|X_2(1)| = 8$, since $|X_1(a^i) \cap X_1(a^j)| = 1$, $|X_1(b) \cap X_1(a^i)| = |X_1(b) \cap X_1(a^j)| = 0$.

If $|X_2(1)| = 7$, since $X_2(a^i) \cap X_2(a^j) \cap X_1(1) = \{b\}, X_2(a^i) \cap X_2(b) \cap X_1(1) = X_2(a^j) \cap X_2(b) \cap X_1(1) = \emptyset$.

(ii) Secondly, by Lemma 2.1(i), we obtain $X(B_{4n}, \{b\}) \cong X(B_{4n}, \{t\})$. Thus, by Lemma 3.2, $|T \cap \langle a \rangle| = 2$. We can also assume that $T = \{b, a^u, a^v\}$ and $b^{\phi} = b$ for all $\phi \in I(X, Y)$. So we obtain $X(\langle a \rangle, \{a^i, a^j\}) \cong X(\langle a \rangle, \{a^u, a^v\})$. Hence, by Lemmas 2.2 and 2.3, we obtain that S is a CI-subset of B_{4n} .

Case 3. $|S \cap \langle a \rangle| = 0$. Assume $S = \{b, a^i b, a^j b\}$. Since $|X_1(b) \cap X_1(a^i b) \cap X_1(a^i b)| = |\{a^n\}| = 1$, we deduce that $|T \cap \langle a \rangle| = 0$, and we can assume that $T = \{b, a^u b, a^v b\}$. Clearly, $(a^n)^{\phi} = a^n$ for all $\phi \in I(X, Y)$. By Lemma 2.1(ii), we obtain $X(B_{4n}, \{a^{\pm i}, a^{\pm j}, a^{\pm (i-j)}\}) \cong X(B_{4n}, \{a^{\pm u}, a^{\pm v}, a^{\pm (u-v)}\})$. Hence $X(\langle a \rangle, \{a^{\pm i}, a^{\pm j}, a^{\pm (i-j)}\}) \cong X(\langle a \rangle, \{a^{\pm u}, a^{\pm v}, a^{\pm (u-v)}\})$. If $|\{a^{\pm i}, a^{\pm j}, a^{\pm (i-j)}\}| = 2$ or 4, by Lemma 2,2 there exists $\pi \in \operatorname{Aut} \langle a \rangle$ such that $\{a^{\pm i}, a^{\pm j}, a^{\pm (i-j)}\}^{\pi} = \{a^{\pm u}, a^{\pm v}, a^{\pm (u-v)}\}$. So the conclusion is immediate.

Now suppose $|\{a^{\pm i}, a^{\pm j}, a^{\pm (i-j)}\}| = 6$. By Lemma 3.3. there exists $\pi \in \operatorname{Aut} \langle a \rangle$ such that $\{a^{\pm i}, a^{\pm j}, a^{\pm (i-j)}\}^{\pi} = \{a^{\pm u}, a^{\pm v}, a^{\pm (u-v)}\}$. Without loss of generality, we may assume $(a^i)^{\pi} = a^u$. Then $(a^{-i})^{\pi} = a^{-u}$.

(1) If $(a^j)^{\pi} = a^{-v}$, then $2u \equiv 0$ or $2v \equiv 0 \pmod{2n}$, which contradicts the

fact that $|\{a^{\pm i}, a^{\pm j}, a^{\pm (i-j)}\}| = 6.$

- (2) If $(a^j)^{\pi} = a^{-(u-v)}$, we can get a similar contradiction.
- (3) If $(a^j)^{\pi} = a^v$, it is obvious that S is a CI-subset of B_{4n} .
- (4) If $(a^j)^{\pi} = a^{(u-v)}$, by Lemma 2.3 there exists $\pi' \in \operatorname{Aut} B_{4n}$ such that $b^{\pi'} = a^u b$ and $(a^m)^{\pi'} = [(a^m)^{\pi}]^{-1}$. So $S^{\pi'} = T$.

Case 4. $|S \cap \langle a \rangle| = 1$. By the above analysis, we get immediately that $|T \cap \langle a \rangle| = 1$. Assume $S = \{b, a^i b, a^j\}$ and $T = \{b, a^u b, a^v\}$ $(j \neq n, v \neq n)$.

(i) First we verify that $(a^j)^{\phi} = a^v$ for all $\phi \in I(X, Y)$. This is obvious if $b = (a^i b)^{-1}$. Assume $b \neq (a^i b)^{-1}$. We consider

$$X_2(1) = \{a^{2j}, a^n, a^{i+n}, a^{-i+n}, a^j b, a^{-j} b, a^{i+j} b, a^{i-j} b\}.$$

Then $7 \le |X_2(1)| \le 8$.

Suppose $|X_2(1)| = 8$. Since $|X_1(b) \cap X_1(a^1b)| = 1$, $|X_1(b) \cap X_2(a^j)| = |X_1(a^ib) \cap X_1(a^j)| = 0$.

Suppose $|X_2(1)| = 7$. Then exactly one of the following congruence formulae holds:

$$i + n \equiv 2j, -i + n \equiv 2j, 1 + 2j \equiv 0 \text{ or } -i + 2j \equiv 0 \pmod{2n}.$$

- (1) If $i + n \equiv 2j$ or $-i + n \equiv 2j \pmod{2n}$, then $|X_1(1) \cap X_2(a^j)| = |\{b, a^j\}| = 2$, $|X_1(1) \cap X_2(b)| \leq 1$ and $|X_1(1) \cap X_2(a^i b)| \leq 1$, so the result follows.
- (2) If $i+2j \equiv 0$ or $-i+2j \equiv 0 \pmod{2n}$, then $|X_1(1) \cap X_3(1)| = |\{b, a^ib\}|$ and the result follows.

(ii) Secondly, since $(a^n)^{\phi} = a^n$ for all $\phi \in I(X, Y)$, by Lemma 2.1(i) for all $\phi \in I(X, Y)$ we have $\phi \in I(X(B_{4n}, a^n S'^2 \setminus \{1\}), X(B_{4n}, a^n T'^2 \setminus \{1\}))$, where $S' = \{b, a^i b\}, T' = \{b, a^u b\}$, and hence $\phi \in I(X(B_{4n}, \{a^i, a^{-i}\}), X(B_{4n}, \{a^u, a^{-u}\}))$.

On the other hand, from the proof of Lemma 2.1(i), $(a^j g)^{\phi} = a^v g^{\phi}$ holds for any $g \in B_{4n}$. So it is easy to show that $X(B_{4n}, \{a^i, a^{-i}, a^j\}) \cong$ $X(B_{4n}, \{a^u, a^{-u}, a^v\})$, and so $X(\langle a \rangle, \{a^i, a^{-i}, a^j\}) \cong X(\langle a \rangle, \{a^u, a^{-u}, a^v\})$. By Lemma 2.2, there exists $\pi \in \text{Aut} \langle a \rangle$ such that $\{a^{\pm i}\}^{\pi} = \{a^{\pm u}\}$ and $(a^j)^{\pi} = a^v$. We apply Lemma 2.3, with k = 1 if $(a^i)^{\pi} = a^u$ or k = uif $(a^i)^{\pi} = a^{-u}$. In either event we obtain a map $\pi' \in \text{Aut} B_{4n}$ such that $S^{\pi'} = T$.

It is easy to see that B_{4n} is a 1-CI-group for any $n \ge 2$. From the above Lemmas we have the following:

Corollary 3.5. B_{4n} $(n \neq 2)$ is an m-CI-group, m = 2, 3 if and only if n is odd.

ACKNOWLEDGEMENT

The author thanks the Department of Mathematics, Peking University, where the work was done, for its hospitality.

References

- Xin-Gui Fang, A characterization of finite abelian 2-DCI-groups, (in Chinese), J. Math. (Wunan) 8 (1988), 315–317.
- [2]. Xin-Gui Fang, Abelian 3-DCI-groups of even order, Ars Combin. 32 (1991), 263-267.
- [3]. Xin-Gui Fang and Min Wang, Isomorphisms of Cayley graphs of valency m(≤ 5) for a finite abelian group, (in Chinese), Chinese Ann. Math. Ser. A 13 (1992), (suppl.) 7–14.
- [4]. Xin-Gui Fang and Ming-Yau Xu, Abelian 3-DCI-groups of odd order, Ars Combin. 28 (1989), 247–251.
- [5]. Xin-Gui Fang and Ming-Yau Xu, On isomorphisms of Cayley graphs of small valency, Algebra Colloq. 1 (1994), 67–76.
- [6]. F. Harary, Graph Theory, Addison-Wesley, Reading, Mass., 1969.
- [7]. B. Huppert, Endliche Gruppen, I, Springer-Verlag, Berlin, Heidelberg, New York, 1967.
- [8]. Hai-Peng Qu and Jin-Sung Yu, On isomorphisms of Cayley graphs on dihedral groups, Australas. J. Combin. 15 (1997), 213-220.
- [9]. Ming-Yau Xu, DCI- and CI-groups of order p³, Adv. in Math. 17, No. 4 (1981), 427–428.
- [10]. Ming-Yau Xu, Some work on vertex-transitive graphs by Chinese mathematicians, Group Theory in China, Science Publishing House, 1995.

(Received 30/9/96; revised 7/4/97)