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Abstract 

Let S be a minimal generating subset of the finite abelian group G. We 
prove that if the Sylow 2-subgroup of G is cyclic, then Sand S U S-l are 
CI-subsets and the corresponding Cayley digraph and graph are normal. 

Let G be a finite group and let S be a subset of G not containing the identity 
element 1. The Cayley digraph X = Cay(G, S) of G with respect to S is defined by 

V(X) = G, 
E(X) = {(g,sg) I g E G,s E S}. 

Obviously we have the following basic facts. 

Proposition 1 Let X = Cay( G, S) be the Cayley digraph of G with respect to S. 
Then 

(1) Aut(X) contains the right regular representation R(G) of G. 
(2) X is connected if and only if G = (S). 
(3) X is undirected if and only if S-l = S. 

We call a subset S of G a CI-subset, if for any subset T of G with Cay(G, S) ~ 
Cay(G, T), there is an automorphism a of G such that So. = T. A Cayley digraph 
X = Cay(G, S) is called normal if R(G) <l A = Aut(X). 

Xu [1, Problem 6] asked the following Question (for part (1), see also [2, Problem 
8]). 

Question 2 Let G be a finite group and let S be a minimal generating set of G. 
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(1) Are Sand S U S-l CI-subsets ? 
(2) Are the corresponding Cayley digraph and graph normal? 

For cyclic groups, Huang and Meng [3, 4, 5] proved 

Proposition 3 Let G be a finite cyclic group and let S be a minimal generating set 
of G. Let X = Cay(G, S) and X = Cay(G, SUS-I). Let 0" be an automorphism 
of G such that gCT = g-\ \/g E G, and let 2: = (0"). Then Aut(X) = R(G) and 
Aut(X) = R(G)L.. The answers to both parts (1) and (2) in Question 2 are positive. 

There is a obvious error in the second assertion of this Proposition. (Let G = 
Z12 ~ (a) and S = {a3 ,a4

}. It is easy to check IAut(G,S U S-l)1 = 4 where 
Aut(G, SUS-I) = {a E Aut(G) 1 sa = S}, so Aut(X) -=I R(G)2:.). However it is 
true that the answers to both questions (1) and (2) are still positive; we prove this in 
the Theorem below for a larger family of finite abelian groups than the cyclic groups. 

For abelian groups, Li [6] gave an example which shows that the answer to ques­
tion (1) is negative in general. (This is also true for question (2); iflet G = Z4 X Z2 = 
(a) x (b) and S = {a, ab}, then both Cay(G, S) and Cay(G, SUS-I) are not normal.). 
However, if the group has odd order, then the answer to (1) is positive. Namely, he 
proved 

Proposition 4 (1) Let G = (a) x (x) x (e) ~ Z3 x Z4 X Z2 and let S = {x, xe, ax2} 
and T = {x, xe, ax2e}. Then S is a minimal generating subset of G and the Cayley 
digraph Cay(G, S) is isomorphic to Cay(G, T). However, there is no automorphism 
of G which maps S to T. In other words, S is not a CI-subset. 

(2) Every minimal generating subset of an abelian group of odd order is a CI­
subset. 

Feng and Xu [7] proved that all generating subsets of an abelian group G with 
the minimum number of generators are CI, that is, the answer to question (1) for 
minimum generating sets of a finite abelian group is positive. Actually they proved 

Proposition 5 Let G be a finite abelian group and let both Sand T be minimal 
generating subsets of G of minimum size. Suppose that X = Cay(G, S) and Y = 
Cay(G, T) are isomorphic. Then there exists an a E Aut(G) such that sa = T. 

Let G be Li's example in Proposition 4. Then the Sylow 2-subgroup of G is not 
cyclic. The main result of this paper is the following Theorem: 

Theorem Let G be a finite abelian group such that the Sylow 2-subgroup of G is 
cyclic. Let S be a minimal generating subset of G. We have 

(1) Sand S U S-l are CI-subsets. 
(2) The corresponding Cayley digraph and graph are normal. 

As a consequence of this, every minimal generating subset of a cyclic group is CI 
and every minimal generating subset of an abelian group of odd order is CI. (These 
are Huang and Meng's and Li's results.) 

Proof of Theorem: To prove the theorem, first we need the following. 
Fact 1: Let Xl, X2 E S and Xl -=I X2· Then xi -=I x§. 
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Proof of Fact 1: Assume xi = x~. Let m = O(Xl), the order of Xl. If m is odd 
then 1 xT' Xl . xT'-l = Xl . xr-1

, a contradiction to the minimality of S. If m is 

even then a ~ x"t is the unique involution in G. By xi x~ we have a = xl lx2; so 

X2 = aXl X( Xl, a similar contradiction. 0 

N ow we are ready to prove that 8 is CI. Let a be an isomorphism from X = 
Cay(G,8) to Y Cay(G,T) such that 10" = 1. Set 8 = {Xl,X2,"',Xn } and 
x~ = xi E T (1 :::; i :::; n). 

Assume XiXk = XjXI (i f- j) where Xi, Xj, Xk, Xl E 8. By the minimality of S we 
have k i or j. Similarly l = i or j. Since x; f- xJ (Fact 1), we have Xk = Xj and 
Xl = Xi. Thus the intersection of the out-neighborhoods Xl(Xi) and Xl(Xj) of Xi and 
Xj in the digraph X is 

Since xixj E Yl(xi) n Yl(xj) (i f- j), we must have (XiXj)U = xixj x~xj 
(i =1= j), and hence also (x;Y = (xi)2 = (xD 2 (1 :::; i :::; n). Thus 

where iI, i2, ... , in are non-negative integers and il + i2 + ... + in :::; 2. 
Assume XU x', (XXi)U = X'X~ (1 :::; i :::; n). The same argument as in the proof 

of (*) will give 

where iI, i2 , •• " in are non-negative integers and il + i2 + ... + in :::; 2. 
N ow we shall prove that (*) holds for any non-negative integers iI, i2, .. " in. We 

use induction on i l + i2 + ... + in. 
Assume that i l + i2 + ... + in > 2. Taking X = X{l X~2 ... x~n such that a ::; jk :::; ik 

(k = 1,2, .. " n) and jl + 12 + ... + jn = i l + i2 + ... + in - 2, the inductive hypothesis 
will give XU x' (xDh(x~)h ... (x~)jn and (XXi)U = X'X~ (1 :::; i :::; n). Then (**) 
will give the desired result. This shows that a E Aut(G), so 8 is a CI-subset. 

Next we shall prove that S U S- l is CI. Let a be an isomorphism from X = 
Cay(G,8 U 8-1) to Y = Cay(G, T) such that 1Q 1. Put T = 8 Q. We still set 
8 = {Xl, X2,"', xn} and x~ = xi E T (1 :::; i :::; n). In order to prove that S U S-1 is 
CI, we need the following Fact 2. 

Fact 2: Let Xi E 8. Then (xil)Q = (Xi)-I. 
Proof of Fact 2: We have two cases. 
(1) O(Xi) f- 2,4. 
Suppose Xix~j = xilx%k (8k,8j = ±1) where Xj, Xk E 8. Clearly {x~\ X~2, . ", x~n} 

(8i = ±1, i = 1,2" ", n) are minimal generating subsets of G, and hence we have 
j = k. Since O(Xi) f- 2,4 and for m f- n, x~ =1= x~, (X~1)2 (Fact 1), we obtain that 

Dj -1 Dk - - -1 - --1 Xj Xi andxk = Xi· ThusX1(Xi)nXI(Xi ) ={l}whereXI(Xi) andXl(Xi ) 
denote the neighborhoods of Xi and xiI in the graph X. On the other hand if yET 
and y f- (xit\ then IYl(xi) nYl(y)l;:::: 2 (since 1,xiY E Yl(Xi) nYI(y)). Hence 
(xil)Q = (xi)-l. 
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(2) O(Xi) = 2 or 4. 
If O(Xi) = 2 then for arbitrary XES, o(x) -# 4 by the minimality of S (for if 

O(Xi) = 4, then Xi = X2). If O(Xi) = 4 then similarly for arbitrary xES, o(x) -# 
2. Thus \Ix E S\{xi,xi l }, (x-l)a = (xat l by (1). Noting that G has only one 
involution, we have (xil)a = (Xi)-I. 0 

By Fact 2, we have T = T U T- l and (T) = G. Thus we can use the method of 
proving S is CI to prove S U S-1 is CI. 

Assume XiX~k = XjXfl (6k,6l = ±1, i -# j) where Xi, Xj, Xk, Xl E S. By the 
minimality of {x~\ X~2, .. " x~n} (6i = ±1, i 1,2,,,,, n), k = i or j and 1 = i or 
j. Since x; -# x; (Fact 1), we can easily obtain X l (Xi) nXl (Xj) = {l,xixj} (i -#j). 
Since xj -# (Xi)-l (by Fact 2, (xily~ = (xf)-I) and xixj E Yl(xf) n Yl(xj), we 
have (XiXjy~ = xixj (i -# j). 

Similarly (XiX.t)a xi(xjl)a = xi(xjt l (i -# j). Thus (xn a = (Xi)2 (i = 
1,2,"',n) and so 

where iI, i 2 , .• " in are non-negative integers and il + i2 + ... + in S 2. 
With the same argument by which we prove that (*) holds for any non-negative 

integers iI, i2 , •• " in, we have (* * *) holds for any non-negative integers iI, i2 , •• " in. 
Thus a E Aut(G), so S U S-l is CI. Thus (1) of the theorem holds. 

Remember that X Cay(G, S) and X Cay(G, SUS-I). Let A Aut(X) and 
A Aut(X). Godsil [8] proved that NA(R(G)) = R(G) . Aut(G, S). It is easy to 
see that X is normal if and only if Al = Aut(G, S), where Al is the stabilizer of the 
identity element 1 in A. Similarly X is normal if and only ifA1 = Aut(G, SUS-I). 

Taking T = Sand T = S U S-1 respectively in the proofs of 8 and S U 8-1 being 
CI, the same arguments will give (J' E Aut( G) and a E Aut( G), which means that 
Al ~ Aut(G, 8) and Al S Aut(G, SUS-I). The converses are obvious. This finishes 
the proof of (2). 0 
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