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1. Background 

There is a vast literature already in existence on colourings in graphs and designs. 
We refer the interested reader to [2, 7, 8, 11, 12]. A major application of such 
colourings is to sampling and scheduling problems. For an excellent consideration 
of designs for statistical purposes, see [13]; in [8], examples of graph colouring 
applications in scheduling are described. 

Let P be a point set and B a set of subsets of P which we shall call blocks. 
A colouring of (P, B) is a partition of the point set such that no element of B is 
entirely contained in an element of the partition. A colouring is a blocking set if it 
is a partition into precisely two classes. 

A colouring is equitable if the partition classes are of at most two consecutive 
sizes. 

Equitable colourings of Steiner triple systems have been studied by Colbourn, 
Linek and Rosa [9] and by Haddad [10]. 

For the five Witt systems based on the Mathieu groups, a thorough analysis of 
blocking sets has been done by Berardi, Eugeni and Ferri [3, 4, 5, 6]. In this paper 
we study equitable colourings of these designs. 

Let S = S(t, k, v) be a design. If S has an equitable colouring in which the s 
elements of the partition have the same size a, we refer to this as an as-colouring. 
If s elements of the partition have size a, and t have size b, where s, t 2: 1, we refer 
to this as an aSbt-colouring. For convenience in what follows, an aSbt-colouring 
with t = 0 is an as-colouring. 

We prove the following in section 2: 
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Theorem 1. Let 5 = 5(t, k, v) be a Witt design, and let v sa + t(a + 1) 
where s ~ 1, t ~ 0. Then, except for v = 12, a = 6, s = 2, there exists an 
as(a + 1)t-colouring of 8. 

We abbreviate the Witt systems as 8 11 , 8 12 , 522 , 523 , 524 . 

In section 3, we investigate more closely the non-trivial colourings in the large 
Witt systems, obtaining the following results: 

Theorem 2. In 522 and 524 , every set of points not on a block is contained in a 
blocking set. In 523 , every set of at most seven points not on a block is contained 
in a blocking set; this is false in general for sets of larger size. 

Theorem 3. In 522 , every set of at most eight points, not on a block, is contained 
in a colour class of a 7281-colouring. In 8 23 , every set of at most eight points, not 
on a block, is contained in a colour class of a 7182-colouring. In 524 , every set of at 
most eight points, not on a block, is contained in a colour class of an 83-colouring. 

We wish to thank Don Kreher for providing us with the tables for 523 , At the 
end of the paper, we point out the discrepancies in the table given in [4]. 

2. Theorem 1 

We rely heavily on the results of Berardi, Eugeni and Ferri, and will quote 
precisely the details we need in Results 1, 2, 3, 4 below. 

Result 1. [6] 511 contains no blocking sets. In 512 , the blocking sets are precisely 
the 6-sets which are not blocks. 

Result 2. [3] In 522 , blocking sets have precisely the sizes 7, 8, 9, 10, 11, 12, 13, 
14, 15. Those on seven points are the Fano sets, that is, the 7-sets which meet 
each block in one or three points. Those on eight points are the Fano sets union 
one additional point. There are three types of blocking sets on eleven points. 

Result 3. [4] In 523 , blocking sets have either eleven or twelve points. There are 
three types of blocking sets on eleven points; the twelve point blocking sets are the 
complements of these. 

Result 4. [5, 1] The blocking sets in 8 24 have eleven, twelve or thirteen points. 
The eleven point blocking sets have a unique structure, and therefore so do their 
complements, the thirteen point blocking sets. There are three types of blocking 
sets on twelve points. 

We remark here that in [5], the authors show that the Witt designs cannot be 
partitioned into more than two blocking sets. 

The following observation is simple but useful. If a + 1 < k, the block size, 
then 5 has an as(a + l)t-colouring precisely when the diophantine equation ax + 
(a + l)y 0 has a solution for x, y 2': O. We shall call such colourings trivial 
equitable colourings. 

Lemma 1. In 511 , only the trivial equitable colourings exist. In 512 , the only 
non-trivial equitable colouring is a 62-colouring. 
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Proof. This follows from Result 1. 0 

Lemma 2. In 8 22 , the non-trivial equitable colourings are precisely of the type 
5262 , 7281, 112. Every 6-set which is not a block is contained in a 5262-colouring in 
many ways. Every Fano set is a subset of a class of some 72 81-colouring. Moreover, 
the 112 -colourings arise solely from blocking sets. 

Proof. Because of Result 2, we need only consider the 5262-colourings. 
For the first, take any set of six points not forming a block. In the complement, 

again take any set of six points not forming a block. (Many such sets exist.) 
Finally, take the remaining ten points and divide them into two sets of five in any 
way whatever. 

We can easily construct 7281-colourings in the following way. Let one set be a 
Fano set. Divide the complement of this set in any way into a 7-set and an 8-set. 
This provides us with a 7281-colouring because of Result 2. 0 

Lemma 3. In 8 23 , the non-trivial equitable colourings are precisely of the type 
7182 and 111121. The 111121-colourings arise solely from blocking sets. In 824 , 

the non-trivial equitable colourings are precisely of the type 83 and 122. The 122-
colourings arise solely from blocking sets. 

Proof. Results 3 and 4 above verify the statements about 111121_ and 122-

colourings. The remainder of the proof follows from the lemmas below. 0 

We recall some of the properties of the designs 8 22 , 8 23 , 824 before proceeding 
with the construction of the colourings. 

The system 8 24 is an extension of 823 and 823 a contraction of 8 24 , Similarly for 
823 and 822 and for 8 22 and PG(2, 4). Thus, we can consider the point sets of each 
of these as a subset or a superset of points of the other systems. Following Todd 
[14], we let the point set of 8 22 be {I, 2, ... , 22}, that of 8 23 be {O, 1, 2, ... , 22} 

and that of 824 be {O, 1, 2, ... , 22, oo}. 

We shall repeatedly use, without necessarily referring to them, the facts that: 

- blocks in 822 intersect in 0 or 2 points; 
- blocks in 823 intersect in 1 or 3 points; 
- blocks in 824 intersect in 0, 2 or 4 points. 

Lemma 4. There exist 7182-colourings in 8 23 such that, when treated as an ex­
tension of 8 22 , one of the colour classes contains a Fano set of the 822 . 

Proof. We consider the blocks of 822 as 'blocks' of 8 23 by identifying each block 
B of 8 22 with the corresponding block B U {O} of 8 23 , This produces a map onto 
the blocks of 8 23 which are on {O}. 

Let F be a Fano set in 822 . In 822 , all blocks meet each other in 0 or 2 points and 
meet F in 1 or 3 points. Take blocks Band B' of 8 22 which do not intersect, and 
such that IB n FI = 3 and IB' n FI = 1. (These are seen to exist by checking, for 
instance, the tables given by Berardi in [3].) Now by [4], the set (BUB') \ {O} = X 
is a blocking set on 12 points in 823 , and its complement Y is a blocking set on 11 

points. It follows that neither X \ F nor Y \ F, each sets of 8 points, contains a 
block of 823 , These two sets, along with F, provide a 7182-colouring of 8 23 , 0 
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Lemma 5. There exist 83 -colourings in 824 such that, when treated as a double 
extension of 822 , one of the colour classes contains a Fano set of the 822 . 

Proof. The construction is identical to that of the previous proof with the addition 
of 0 and ex) to Band B'. Hence, let Band B' be disjoint blocks of 822 meeting 
the Fano set F: IB n FI = 3, IB' n FI = 1. In 824 , then, B n B' = {O, ex)} and 
(BUB') \ {O, (X)} is a blocking set on 12 points by [5]. The sets FU{O}, (BUB') \F 
and the remaining eight points form an 83-colouring unless F U {O} is a block of 
824 , in which case use F U {ex)} instead. 0 

It is not difficult to construct 7281_, 7182_ or 83-colourings which are not of this 
type, using the tables in [3, 4, 14]. A complete characterization seems difficult. 
We can, however, prove a partial converse to the above, in that we can show that 
an 83-colouring in 824 induces a 7l 82-colouring in 823 , and so on. 

Lemma 6. An 83-colouring of 824 induces a 71 82 -colouring in 823 ; a 71 82-colouring 
of 823 induces a 728l -colouring of 822 ; a 72 8l -colouring of 822 induces a 73-colouring 
of PG(2, 4). 

Proof. Consider an 83-colouring of 824 , It suffices to find an element x in 8 24 

such that for every block B on x, B \ {x} meets at least two of the colour classes. 
Suppose there is no such element x. Let the colour classes be AI, A2 , A3 . Then 

there are two points, xl, X2, of Al such that there exist blocks Bi on Xi with 
Bi \ {Xi} ~ A2 , say, i = 1,2. Since k = 8, t = 5 and IA21 = 8, this is not possible. 

For 823 , exactly the same argument can be made. 
For 822 , there exist points Xl and X2 as above in the 8-set, leading to a similar 

contradiction. 0 

We note that in the above proof, at most six points of 824 or of 823 are not 
suitable as choices of X; at most sixteen points of 822 are not suitable as choices 
for x. 

3. The 7i Sj - and 11 il2 j -colourings 

We begin with the proof of Theorem 2 which indicates that, despite the close 
connection between 822 , 823 and 824 , there are differences in terms of blocking set 
structure. 

Theorem 2. In 8 22 and 824 , every set of points not on a block is contained in a 
blocking set. In 823 , every set of at most seven points not on a block is contained 
in a blocking set; this is false in general for sets of larger size. 

Proof. In 8 22 or 824 , let A be a set of points on no block. Suppose AC contains 
a block B. Let X E B. Any block meeting B at x meets B, and hence A c, in a 
second point. (This is false in 823 .) Hence Au {x} still contains no block. We 
repeat this until we obtain a set A * ;2 A such that neither A * nor its complement 
contain a block. It follows that A * is a blocking set. 

We now turn to 823 , and, without loss of generality, assume that A is a set 
of seven points on no block. Let A = {all a2, a3, a4, bl , b2, b3}. Let B = 
{aI, a2, a3, a4, a5, a6, a7} be the unique block on aI, a2, a3, a4. Let B' = {bl, b2, 
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b3, b4, b5 , b6 , a7} be the unique block on bl , b2, b3, a7. Then IB n B'I = 1 or 3. 
If IB n B'I = 1, then by [4, §4]' (B U B') \ (B n B') is a blocking set contain­
ing A. If IB n B'I = 3, then A =f. (B U B') \ (B n B'). Hence B say, contains a 
point u rt. Au B'. If B' contains a point v rt. Au B, then by Theorem 4.2 of [4], 
(B U B') \ {u, v} U {a, b} contains A and is contained in an eleven point blocking 
set. If B' contains no such point v, then aI, a2, a3 or a4 is in B' \ B which is a 
contradiction. 

It remains to consider sets of larger size in 8 23 , Here, we need simply note that 
the set {3, 4, 5, 13, 14, 16, 17, 22} is not contained in any blocking set of 823 . (The 
listing of 823 as in [4] is used, with the corrections noted at the end of this paper.) 
o 

Corollary. In 822 , respectively 824 , any set of size greater than fifteen, respec­
tively fourteen, contains a block. 

Theorem 3. In 8 22 , every set of at most eight points, not on a block, is contained 
in a colour class of a 7281-colouring. In 8 23 , every set of at most eight points, not 
on a block, is contained in a colour class of a 7182-colouring. In 8 24 , every set of at 
most eight points, not on a block, is contained in a colour class of an 83 -colouring. 

Proof. We begin with 824 , Let Al be an 8-set (a set of eight points). Then 
Al is contained in a blocking set X by Theorem 2, on eleven, twelve or thirteen 
points. Let be an 8-set on X \ AI, not a block, and disjoint from AI. Let 
A3 = 8 24 \ (AI U A2)' Then {AI, A21 A3} is an 83-colouring. 

In 8 23 , we begin with a 7-set AI. By Theorem 2, Al is contained in a blocking 
set X on eleven or twelve points. Choose a 7-set, not a block, on X \ Al and 
disjoint from AI. Let this set be Z. We claim that Z is in some 8-set, disjoint from 
A l , which is on no block. Suppose, to the contrary, that for any choice of x =f. y in 
823 \ (X U Z), the sets Z U {x} and Z U {y} both contain blocks. Then these blocks 
must intersect in at least five points, which is a contradiction since they must be 
distinct. 

Thus, let A2 be an 8-set on X \ AI, not on a block, and disjoint from AI. Let 
A3 = 8 23 \ (AI U A2)' Then {AI, A 2, A3} is a 7I 82-colouring. 

Now suppose that Al is an 8-set not on a block in 823 , We cannot apply Theo­
rem 2 and so must devise a different proof. 823 \AI is not a blocking set and so must 
contain a block B, say. Write B = {bI, b2, b3, b4, b5 , b6 , b7}. We shall build sets 
A2 and A3, putting bl , b2, b3, b4 E A2 and b5 , b6 , b7 E A 3. The points b5 , b6 , b7 are 
together on precisely five blocks [4]. Let B I, B 2, B 3, B4 be those blocks distinct 
from B. We now choose Xi E Bi \ {b5 , b6 , b7} subject to the condition that the 
points Xl, X2, X3, X4 form no block with any 3-subset of {bl, b2, b3, b4}. (If for some 
choice of Xl, X2, X3, X4, this does happen, replace Xl by YI E BI \ {Xl, b5 , b6 , b7}. 
By using block intersection sizes, the set B' = {YI1 X2, X3, X4, b5 , b6 , b7} can­
not be a block; nor can the set YI, X2, X3, X4 form a block with any 3-subset of 
{h, b2, b3, b4}.) Let A2 = {bl' b2, b3, b4, Xl, X2, X3, X4}, A3 = 823 \ (AI U A2)' 
Clearly, A3 is not a block. Moreover, because of the choices of Xl, X2, X3, X4, A2 
contains no block. It follows that {AI, A2, A 3} is a 7I 82-colouring. 
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Finally, consider 8 22 • Let Al be an 8-set contained in the blocking set X, using 
Theorem 2. Let Z be a 6-set, not a block, containing X \ Al and disjoint from AI. 
The argument used in 8 23 implies that Z is in some 7-set, A 2 , disjoint from Al 
and on no block. Let A3 = 822 \ (AI UA2 ). Then {AI, A2 , A3} is a 7281-colouring. 
D 

4. Corrections to the table for 8 23 

With reference to the table given for 8 23 in [4], we make the following additions 
and corrections. 

additions: 2 10 11 14 15 17 18 
2 12 13 15 18 20 22 

corrections: 0 1 3 7 9 16 18 
0 3 5 8 11 16 22 
0 4 6 8 16 18 19 
1 9 11 12 16 20 22 
1 10 13 19 20 21 22 
1 11 12 14 17 19 21 
2 8 12 16 19 21 22 
5 8 14 15 16 17 19 
5 9 13 16 18 19 22 
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