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Abstract 

We conjecture that if G is a graph of order sk, where s ~3 and k 2: 1 are 
integers, and d(x)+d(y) ~ 2(s-1)k for every pair of non-adjacent vertices 
x and y of G, then G contains k vertex-disjoint complete subgraphs of 
order s. This is true when s = 3, [6]. Here we prove this conjecture for 
k ~ 6. 

1 Introduction 

We put forward a conjecture which would generalize a deep theorem proved by Hajnal 
and Szemeredi [4]. They proved that if G is a graph of order sk, where s ~ 3 and 
k ~ 1 are integers, and the minimum degree of G is at least (s l)k, then G contains 
k vertex-disjoint complete subgraphs of order s. The case s 3 was first obtained 
by Corradi and Hajnal [3]. We propose the following conjecture. 

Conjecture A Let sand k be integers with s ~ 3 and k ~ 1. Let G be a graph of 
order sk. If d(x) + d(y) ~ 2(s - l)k for every pair of non-adjacent vertices x and y 
of G, then G contains k vertex-disjoint complete subgraphs of order s. 

Considering complements of graphs, this conjecture takes the following form. 

Conjecture B Let sand k be integers with s 2: 3 and k ~ 1. Let G be a graph of 
order sk. If d(x) + d(y) ~ 2k - 2 for every pair of adjacent vertices x and y of G, 
then G contains k mutually disjoint independent sets of cardinality s. 

In [6], we proved a stronger result than Conjecture A for the case s = 3, that is, 

Theorem 1 Let k be an integer with k 2: 1. Let G be a graph of order 3k. If 
d(x) + d(y) ~ 4k - 1 for every pair of non-adjacent vertices x and y of G, then G 
contains k vertex-disjoint triangles. 

It is well known [2, 5] that if a graph G of order n 2: 3 has a pair of non-adjacent 
vertices x and y with d(x) + d(y) ~ n, then G is Hamiltonian if and only if G + xy is 
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Hamiltonian. If n = 2k and d(x) +d(y) 2:: 2k -1 instead, then it is easy to see that G 
contains k vertex-disjoint copies of K2 if and only if G + xy does. However, we have 
the following example for vertex-disjoint copies of K3 in a graph. Let G be a graph 
of order 3k consisting of a path P = xzy and a complete graph of order 3(k - 1) 
such that they are vertex-disjoint, x and yare not adjacent, d(x) = d(y) = 3k - 2 
and d(z) 2. It is clear that G does not contain k vertex-disjoint copies of K3 but 
G + xy does. It is also clear that y is the only vertex not adjacent to x and vice 
versa. As for vertex-disjoint copies of Ks (s 2:: 4) in a graph, this example can be 
easily generalized. 

To further support the conjecture, we prove it for k ::; 6. We state the result as 
follows: 

Theorem 2 Let sand k be integers with s 2:: 3 and 1 ::; k ::; 6. Let G be a graph of 
order sk. If d(x) + d(y) ::; 2k 2 for every pair of adjacent vertices x and y of G, 
then G contains k mutually disjoint independent sets of cardinality s. 

We shall deduce some general propositions based on Conjecture B being false. 
Then we use these propositions to prove Theorem 2. We will use the following 
terminology and notation. Let G = (V, E) be a graph. Let x E V and Y ~ V. 
We use N(x, Y) to denote the set of neighbors of x that are in Y and let d(x, Y) = 
IN(x, Y)I. Thus d(x, V) = d(x), i.e., the degree of x in G. For a subset X ~ V, 
N(X, Y) UxExN(x, Y). A partition (Y1, Y2, ... , Ym ) of Y is called an s-uniform 
partition (s-UP in short) of Y if s = IYiI and Yi is an independent set of G for all 
i E {I, 2, ... ,m}, and it is called an s-chain of Y if Yi is an independent set of G 
for all i E {I, 2, ... , m} such that s - 1 = IY11, s + 1 IYml and s = IYiI for all 
i E {2, 3, ... , m-1}. We define d(xy) = d(x)+d(y) for each edge xy E E. Let Ll2(Y) 
be the maximum of d(xy) for all xy E E with {x, y} ~ Y. Set .0..2(G) = Ll2(V), For 
two disjoint subsets A and B of V, E(A, B) is the set of edges of G between of A and 
B and let e(A, B) = IE(A, B)I. We consider only finite simple graphs. Unexplained 
terminology and notation are adopted from [1]. 

2 Preliminaries 

First, we note that Conjecture A is true when s E {1,2}. This is trivial if s = 1. If 
s = 2, G contains k independent edges as G is Hamiltonian by Ore's theorem [5]. 

We suppose that Conjecture B fails. Let G = (V, E) be a graph of order sk with 
s 2:: 3, k 2:: 1 and Ll2(G) ::; 2k - 2 such that G is a counter-example to Conjecture 
B with lEI as small as possible. We use the idea in [1, pp.351-357] to prove the 
following propositions. 

Proposition 2.1. V has an s-chain. 

Proof. Let xy E E. By the minimality of G, V has a partition (U1 , U2 , .. . , Uk) such 
that I Ui I = sand Ui is an independent set of G xy for all i E {l, 2, ... , k}. Hence 
{x, y} ~ Ui for some i E {l, 2, ... , k}, say {x, y} ~ U1 . As d(xy) :s; 2(k - 1), we may 
assume that d(x) ::; k -1. Thus, d(x, V - U1) ::; k - 2. This implies that d(x, Ui ) = 0 
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for some i E {2, 3, ... , k}, say d(x, Uk) = O. Then (UI 
is an s- chain. 

{x}, U2 , ... , Uk-I, Uk U {x} ) 
o 

Let (VI, V2 , •.. , Vk ) be an s-chain of V. We say that Vm is accessible if there 
are distinct indices iI, i2, ... ,in E {I, 2, ... , k} and a vertex Xij E Vi j for each j E 

{2, 3, ... , n} such that i l = 1, in = m and d(Xij' Vij-J 0 for all j E {2, 3, ... ,n}. In 
this case, we also say that Xin is accessible or an accessible vertex of Vin' Furthermore, 
we say that the set {Vi l , Vi2, ... , Vin} is a justification of the accessibility of Vin 

or Xin, respectively. Clearly, each Vij in this justification in accessible, too. In 
particular, VI is accessible. By this definition, Vk is not accessible. For if in = k 
in the above, then we obtain an s-UP (V{, V~, ... , Vn of V where V{ = VI U {Xi2}' 
v:~ = Vij U {Xij+J - {XiJ for all j E {2, 3, ... , n -I}, Vi Vk - {Xin} and V:' = Vi for 
each i E {I, 2, ... , k} {iI, i2 , ••. , in}. For two distinct accessible sets Vi and Vj, we 
write Vi -< Vj if every justification of the accessibility of Vj contains Vi. An accessible 
set vt is said to be terminal if vt f< Vi for every accessible set Vi. Clearly, there is 
a terminal set. From these definitions, it is easy to see that if vt is a terminal set 
such that vt =I- VI and x E vt, then x is accessible if and only if d(x, Vi) = 0 for some 
accessible set Vi =I- vt· 

Let A be the union of all accessible sets in (VI"'" Vk ) and set B = V-A. 
Assume that A includes p accessible sets Vi as subsets and so B includes q = k - P 
inaccessible sets Vj as subsets. 

Proposition 2.2. ,6,2(B) :::; 2(q - 1). Furthermore, for any non-empty set X ~ B 
with IXI == 0 (mod q), X has an s'-UP where s' = IXI/q. In particular, B - {x} has 
an s-UP for all x E B. 

Proof. As every vertex of B is inaccessible, we see that d(x, Vi) 2: 1 for each vertex 
x E B and each accessible set Vi. Therefore d(x, B) :::; d(x) - p for all x E B. This 
implies that ,6,2(B) :::; ,6,2(G) - 2p :::; 2(k - 1) - 2p 2(q 1). As ,6,2(X) :::; 2q - 2, 
the second statement of the proposition follows by the minimality of G. 0 

Proposition 2.3. Let vt be a terminal set. If vt =I- VI) then for each accessible 
vertex x E vt, (A vt) U {x} has an s- UP. 

Proof. As x is accessible, there exists an accessible set Vm such that m =I- t and 
d(x, Vm ) = O. As vt is terminal, there is a justification {Vi l , Vi2 , •• • ,Vin } of the 
accessibility of Vm (with i 1 = 1 and in = m) such that vt does not belong to it. 
Let Xij E Vij be such that d(Xij' Vij-J = 0 for each j E {2, 3, ... ,n}. Clearly, 
(VI U {Xi2}' Vi2 U {Xi3} - {Xi2}"'" Vin U {Xin+J - {Xin}) is an s-UP of Uj=I Vi j U {x} 
where Xi n +1 X. This, together with accessible sets not in the justification except 
vt, forms an s-UP of (A - vt) U {x}. 0 

Proposition 2.4. Let vt be a terminal set. Let y E B and x E vt· Suppose "\It =1= VI, 
d(y, vt) = 1 and xy E E. Then x is inaccessible. 

Proof. If x is accessible, then by Proposition 2.3, (A - vt) U {x} has an s-UP. By 
Proposition 2.2, B - {y} has an s-UP. Clearly, vt U {y} - {x} is an independent set. 
Therefore V has an s-UP, a contradiction. 0 
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3 Proof of Theorem 2 

We still use notation and terminology of Section 2. Let G (V, E) be a counter
example to Conjecture B as defined in Section 2. We choose an s-chain of V, say 
(VI, V2,· .. , Vk) such that 

IAI is maximum. 

Subject to (1), we further choose (VI, V2, ... , Vk) such that 

e(A, B) is minimum. 

Let Vi be an arbitrary terminal set, and define 

Bt = {x E Bld(x, Vi) = I} and Rt = N(Bt, Vi); 
bt = IBtl and Tt = IRtl· 

(1) 

(2) 

(3) 
(4) 

We may assume that A = VI U 112 u ... U Vp and B = Vp+1 U ... U Vp+q where 
k = p + q. We shall prove p ~ 6 and therefore Theorem 2 follows. It is easy to see 
that Conjecture B is true when k = 1 or k = 2. Thus we have k ~ 3. 

Proposition 3.1. FOT each x E Vi, d(x, B) ::; 2k - p - 3. 

Proof. Let y be arbitrary in N(x, B). As y is inaccessible, d(y, Vi) ~ 1 for all i, 
1 ::; i ::; p. Therefore d(x, B) ::; d(xy) - d(y) ::; 2k - p - 2. If d(x, B) = 2k - p - 2, we 
must have that d(y, B) = 0, d(y, Vi) = 1 and d(x, Vi) = 0 for all i, 1 :s; i :s; p. If p ~ 2, 
then Vi =1= VI and therefore x is accessible. This is in contradiction to Proposition 2.4 
as d(y, Vi) 1. If p = 1, let (U2, U3, ... , Uk) be an (s I)-UP of B - {Xl, X2,· .. , Xk} 
where N(x, B) {Xl, X2, . .. , X2k-3}, whose existence is quaranteed by Proposition 
2.2. Clearly, some Ui does not contain any of Xk+!, . .. , X2k-3, and we may assume it 
is U2. Note that y is arbitrary in {Xl, X2, ... , X2k-3}' It follows that (Vi U {Xl, X2}
{X}, U2 U {X}, U3 U {X3}, ... , Uk U {Xk}) is an s-UP of V, a contradiction. 0 

Proposition 3.2. FOT each X E Rt , d(x, B) ::; k - p. 

Proof. Suppose that there exists Xo E Rt such that d(xo, B) ~ k - p + 1. Let 
Xl E B t be such that XOXI E E. By Proposition 2.4, Xo is inaccessible and therefore 
d(xo, Vi) ~ 1 for all i =1= t, 1 ::; i :s; p. Thus d(xo) ~ k. By Proposition 2.2, B {xd 
has an s-UP (Vp+l ," ., Uk). As ~2(G) ::; 2k - 2, we have d(xo, B - {xd) ::; 2k - 2-
d(XI)-d(xo, A)-I::; 2k-2-2p = 2(q-l). This implies that some Vi, say Ui = Up+l , 
contains at most one neighbor of Xo. If Up+1 n N(xo, B) = 0, we add Xo to Up+!' If 
Up+!nN(xo, B) = {y}, then d(y, B) ::; 2k-2-d(xo) -d(y, A) :s; 2k-2-k-p = q-2. 
This implies d(y, Uj ) = 0 for some j,p + 2 ::; j ::; k. We then move y to Uj and add 
Xo to Up+l ' In either case, we obtain an s-chain (Vi - {xo}, V~+1' V~+2"'" Vn of 
B U Vi {Xl}' Let~' = Vi U {xd - {xo} and~' Vi for all i =1= t,1 ::; i ::; p. 
Then (V{, ... , Vn is an s-chain of V. Clearly, each accessible vertex with respect to 
(VI, ... , Vk) is still accessible with respect to (V{, ... , V~). Therefore V{, ... , V~ are 
accessible sets in (V{, ... , Vn. Let A' = Uf=I~' and B' V A'. Then we have 

e(A', B') ::; e(A, B) - d(xo, B) - d(XI' A) + d(xo, A) + d(XI' B) + 2 
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< e(A, B) + 2k - 2 2d(xo, B) - 2d(XI' A) + 2 

< e(A,B)+2k-2-2(k-p+1)-2p+2 

e(A, B) - 2. 

This is in contradiction with (2) while (1) is maintained. 

By Proposition 3.2, 

IRtl 2: IEtl/(k - p), i.e., (k - p)rt 2: bt. 

Let dt = max{d(x, E)lx E vt}. By Proposition 3.2, we obtain 

o 

(5) 

(k - p)IRtl + dt(s -IRtD 2: e(vt, B) 2: 2((k - p)s + 1) -IEtl. (6) 

Combining (5) and (6), we obtain 

(7) 

By Proposition 2.4, Rt =1= vt if vt =f. VI and so rt :::; S - 1. We deduce from (7) 
that dt > 2(k - p). As dt :::; 2k - p - 3 by Proposition 3.1, we obtain 

p 2: 4 and k 2: 5. (8) 

Let Ut = vt - Rt and St = S - rt = IUtl. Let Wt = E N(Rt, E). By Proposition 
3.2, IN(Rt, E)I :::; (k - p)rt. Hence IWtl 2: (k - p)St + 1. Clearly, 

e(Ut, Wt) = L d(x, Ut) 2: 21Wtl 2: 2(k - p)St + 2. (9) 
xEWt 

To show p 2: 6. We distinguish two cases: p = 4 or p = 5. 

Case 1. p = 4. 
In this case, d( u, Wt) ::; 2k - 7 for all u E Ut by Proposition 3.1. Let U; = {u E 

Utld(u, Wt) = 2k - 7} and W; = N(U;, Wt). By (9) with p = 4, U: =1= 0. We claim 

For every uw E E(U;, WI) with u E U; and w E WI, d(u, A) = 0, (10) 
d(w, Vi) = 1 for all i E {1, 2, 3, 4} - {t} and d(w, Ut) = 2. 

Proof of (10). As w rf. N(Rt, B) and w is inaccessible, we have d(w, Ut) 2: 2 and 
d(w, Vi) 2: 1 for all i E {1, 2, 3, 4} - {t}. As d(uw) ::; 2k - 2, (10) follows. 

Without loss of generality, assume V4 is terminal. We claim 

For every w E W~, there exists a unique Xw E U4 - U~ such that (11) 
wXw E E and d(xw, W4 ) ::; 2k - 10. 

Proof of (11). Let u E U~ be such that uw E E. By (10), d(w, U4 ) = 2 and 
d( w, A) = 5. Let Xw E U4 - {w} with wXw E E. We need to show that d(xw, W4) :::; 

2k - 10. Suppose that d(xw, W4 ) 2: 2k - 9. As d(wxw) :::; 2k - 2, d(xw, Vi) = 0 for 
some i E {1, 2, 3}, i.e., Xw is accessible. By Proposition 2.3, (A - V4) u {xw} has an 
s-UP (V{, V2 , VD. As d(u, A) = 0 by (10), V2 -I< V4 and V3 -I< V4 . It follows that, 
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if V2 -< V3 then V3 is terminal, and if V; f< V3 then V2 is terminal. Without loss of 
generality, say 113 is terminal. By (10), there exists v E U~ such that d(v, A) = O. We 
have d(w, V3 ) = 1 by (10). By Proposition 2.4, wv tf- E as v is accessible. Without 
loss of generality, say v E V;' Then (V{, V~, V; U {u} {v}, V~ U {v, w} {u, xw}) 
together with an s-UP of B - {w} forms an s-UP of V, a contradiction. So (ll) 
holds. 

By (10) and (11), N(u, W4 )nN(v, W4 ) = 0 for any {u, v} ~ U~ with u :f- v. Hence 
IW~I = (2k - 7)IU~I. It follows that IN(W~, U4 - U~)I 2: IW~I/(2k - 10) > IU~I. Let 
X ~ N(W~, U4 - Un with IXI = IU~I· Then e(X, W4 ) + e(U~, W4 ) ::; (2k - 10)IXI + 
(2k - 7)IU~1 < (2k - 8)IX U U~I. It follows e(U4 , W4) < (2k - 8)84, contradicting (9) 
with t = P = 4. 

The idea of Case 1 is used in Case 2. However, Case 2 is more complicated. 

Case 2. p = 5. 
In this case, d( u, Wt ) ::; 2k - 8 for all u E Ut by Proposition 3.1. Let 

ui = {u E Utld(u, Wt) = 2k 8}; 

ui = {u E Utld(u, Wt) = 2k - 9}; 

Ut
3 = Ut - (Ui u Un and W; = N(Ui U Ut

2
, Wt). 

By (9) with p = 5, we see that Ul U Ut
2 :f- 0. Similar to the proof of (10), we can 

readily show 

For every uw E E(Ul U Ui, Wi) with u E Ul U Ui and W E WI, (12) 
d(u, A) ::; 1, 1::; d(w, Vi)::; 2 for all i E {1,2,3,4,5} - {t} and 
2 ::; d ( w, Ut ) ::; 3. 

We divide case 2 into the following two subcases. 

Case 2.1. There exist two distinct terminal sets Vi and Vj such that d(x, Vj) 2: 1 
for all x E Vi, 

Without loss of generality, say i = 5 and j = 4. As ~2( G) ::; 2k 2 and by (12) 
with t = 5, we have 

For every uw E E(UJ U U;, W~) with u E UJ U U; and w E W~, (13) 
d(u, VI UV;UV3) = 0, d(u, V4 ) = 1, d(u, W5 ) = 2k-9, d(w, Vi) = 
1 for all i E {1,2,3,4} and d(w,U5 ) = 2. 

By (13), UJ = 0. We claim that one of V2 and V3 is terminal. To see this, let 
Uo E U; and u~ E Ui U Ul- By (12), d(u~, A) ::; 1. As d(uo, Vl) = 0, V 2 f< V5 and 
V3 f< V5 · As either d( u~, VI) = 0 or d( u~, V5) = 0, we see that V2 -I< V4 and V3 f< V4 . 

It follows that, if V2 -< V3 then V3 is terminal, and if V2 -I< V3 then V2 is terminal. 
This shows the claim. 

Without loss of generality, say V3 is terminal. We shall show that d(x, V5 ) 2: 1 for 
all x E V3 . To see this, we suppose that d(vo, V5 ) = 0 for some Va E V3 , and therefore 
Vo is accessible. Then we claim that, for each w E W~, there exists a unique Xw E Ul 
such that wXw E E and d(xw, W5 ) ::; 2k-12. By (13), d(w, U5 ) = 2. Let N(w, U5 ) = 
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{U, xw} with U E Ur We need to show that d(xw, W5) ::; 2k - 12. Suppose instead 
that d(xw, W5) 2: 2k-11. As d(wxw) ::; 2k-2 and d(w,A) 6 by (13), d(xw, Vi) = 0 
for some i E {I, 2, 3}. Hence Xw is accessible. Note that as d(w, V3) = 1 by (13), 
VOW f:- E by Proposition 2.4. Let N(u, V4) = {u'}. If (A - V5) U {xw} has an s-UP 
(V{, V~, V{, Vi) such that {va, u'} Cl Vi' for every i E {I, 2, 3, 4}, say without loss of 
generality va E Vi, then (V{, V~, V{, Vi U {u} - {vo}, Vs U {w, vo} - {u, xw}) together 
with an s-UP of B - {w} forms an s-UP of V, a contradiction. Therefore, all we 
need is to show that there is such an s-UP of (A - V5) U {xw }. This is obvious if 
there exists a justification of the accessibility of Xw which does not contain V3 or 
114. In particular, this is true if d(a, VI) = 0 for some a E V3 and d(b, Vl) = 0 for 
some b E 114. Therefore we may assume that either d(z, VI) 2: 1 for all z E V3, or 
d(z, Vl) 2: 1 for all z E V4. Without loss of generality, say the former holds. Similar 
to obtaining (13), we see that Ui = 0 and d(z, A) = 1 = d(z, Vl) for all z E Ur 
By (9) with p 5 and t = 3, Ul has at least two distinct vertices, say Vl and v~. 
Without loss of generality, say v~ = Vo. Clearly, any justification containing no V5 of 
the accessiblity of V3 is a justification of the accessibility of both Vo and Vl. Then we 
see that a desired s-UP of (A V5 ) U {xw} is yielded from any given justification of 
the accessibility of Xw' Therefore our claim is true. This claim, together with (13), 
implies that N(u, W5) n N(v, W5) = 0 for any {u,v} ~ Ul with u i= v. Therefore 
IW~I = (2k 9)IUll and IN(W~, Ul)1 ~ IW~I/(2k - 12) > lUll. As in Case 1, it 
follows that e(U5, W5) ::; (2k - 10)s5, contradicting (9) with t = P = 5. This shows 
that d(x, V5) ~ 1 for all x E 113. 

With 113,114 and V5 playing the roles of V5, V3 and V4, respectively in the above 
argument, we obtain d(x, V3) ~ 1 for all x E 114. Similar to obtaining (13), we see 
that for each i E {3, 4, 5}, there exists a vertex Ui E Ul such that d(Ui' Vl U V2) = 
O. Therefore V2 is terminal. By (12), there is a vertex U2 E Ui U Ui such that 
d(Ul' A) ::; 1. Hence d(U2' Vi) = 0 for some i E {3, 4, 5}, say without loss of generality 
d(U2' lis) O. With V2 playing the role of V3 in the above argument, we again obatin 
e(U5, W5) ::; (2k - 10)s5, a contradiction. 

Case 2.2. For any two distinct terminal sets Vi and Vj, there exist x E Vi and 
y E Vj such that d(x, Vj) = 0 and d(y, Vi) = O. 

In this subcase, we claim first that Vi is terminal for all i E {2, 3, 4, 5}. As there 
is a terminal set, say without loss of generality Vs is terminal. Let U5 E Ui U Ul. 
Then d(U5, A) ::; 1 by (12). If d(U5, Vl) = 0, then Vi -I< V5 for all i E {2, 3, 4}, and 
consequently, Vi is terminal for some i E {2, 3, 4}. If d(U5, Vl) = 1, then d(U5, A -
Vl ) = 0 and there exists exactly one of 112, V3 and V4 , say 112, such that V2 -< V5 . Then 
113 -I< V2 and V4 -I< V2. Therefore one of V3 and 114 is terminal. In either case, say 
without loss of generality 114 is terminal. Let U4 E UluUl. Then d(U4' A) ::; 1 by (12). 
If 112 -< V3, then for each i E {4,5}, V3 -I< Vi as either d(Ui' Vl) 0 or d(Ui' 112) = 0, 
and consequently, V3 is terminal. If V2 -I< 113 and V2 is not terminal, then V2 -< 114 
or 112 -< V5· Say without loss of generality 112 -< Vs. Then d( U5, Vl) = 1 = d( U5, A), 
V3 -I< Vs and there exists a E V2 such that d(a, Vl) = O. Thus V3 -I< V2. As either 
d( U4, Vl) 0 or d( U4, Vs) = 0, we see that V3 -I< 114, and consequently V3 is terminal. 
Finally, we need to show that V2 is terminal. If V2 is not terminal, then V2 -< Vi 

171 



for some i E {3, 4, 5}, say without loss of generality 112 -< Vs. Then d(u, VI) ~ 1 
for all u E Vs and d(a, VI) = 0 for some a E V2. Similar to obtaining (13), with 
d(u, VI) = 1 replacing d(u, V4) = 1, we see that all the other equalities in (13) hold. 
Then for each wE W£, it is easy to see that if N(w, Us) = {u,xw} with u E Ul and 
d(xw, Vi) = 0 for some i E {2, 3, 4}, then Xw is accessible and (A - 115) u {xw} has an 
s-UP (V{, V~, V;, VD with Xw 1: V{ ;2 VI' Moreover, either Va 1: V{ or VI 1: V{ where 
d(va, Vs) = 0 and d(VI' Vs) = 0 with Va E V3 and VI E V4. Say w.l.o.g, d(va, Vs) = 0 
and Va E V1- Then (V{, V~, V;, V; u { u} - {va}, Vs U {va, w} - { u, xw}) together with 
an s-UP of B - {w} forms an s-UP of V, a contradiction. Hence d(xw, Vi) ~ 1 
for all i E {I, 2,3, 4}, and therefore d(xw, Ws) ~ 2k - 12 as d(wxw) ~ 2k - 2 and 
d(w, A) = 6. As in Case 2.1, this yields e(Us, Ws) :::; (2k 10)ss, a contradiction. 
Hence we conclude that Vi is terminal for all i E {2, 3, 4, 5}. 

For each i E {2, 3, 4}, let ai E Vi be such that d(ai' Vs) = O. So each ai(2 ~ i ~ 4) 
is accessible. We claim 

For every w E W£, there exists Xw E Ul such that wXw E E and (14) 
d(xw, W s) ~ 2k - 12. 

Proof of (14). Let u E Ul U Ul be such that uw E W. By (12), we may set 
N(w,Us) = {u,xw,x~} with Xw = x~ if d(w,Us) = 2. Suppose, for a contradiction, 
that d(xw, Ws) ~ 2k - 11 and d(x~, Ws) ~ 2k - 11. Assume first that d(w, Us) = 3. 
As d(uw) ~ 2k 2 and by (12), we see that d(u, A) = 0 and d(w, Vi) = 1 for 
all i E {I, 2, 3, 4}. As d(wxw) ~ 2k - 2 and d(wx~) ~ 2k - 2, it follows that 
d(xw, A) :::; 2 and d(x~, A) ~ 2. Hence there exists {i, j} ~ {I, 2, 3, 4} with i ::J. j 
such that d(xw, Vi) = 0 and d(x~, Vj) = O. Let r E {1,2,3,4} - {i,j} be such that 
r = 1 if 1 1: {i, j}. Without loss of generality, say r = 1, i = 2 and j = 3. By 
Proposition 2.4, a2w 1: E and a3w rf. E. Then (VI U {u}, V2 U {xw} - {a2}, V3 U 
{x~} - {a3}, V4, Vs U {w, a2, a3} - {u, xw, x~}) together with an s-UP of B {w} 
forms an s-UP of V, a contradiction. Hence Xw = x~. Then we see that d(xw, A) ~ 3 
as d(wxw) :::; 2k-2. Hence d(xW1 Vi) = 0 for some i E {I, 2, 3, 4}, i.e., Xw is accessible. 
Clearly, (A - Vs) U {xw} has an s-UP (V{, V~, V;, VD such that {a2' a3, a4} Cl Vi' for 
all i E {I, 2, 3, 4}. As d(uw) ~ 2k - 2 and by (12), we see that if d(u, A) = 1, 
then d(w, Vi) = 1 and therefore wai 1: E by Proposition 2.4 for all i E {2, 3, 4}, and 
if d(u, A) = 0, then d(w, Vi) ~ 2 for at most one i E {I, 2, 3, 4}, and therefore by 
Proposition 2.4, aiw E E for at most one i E {2, 3, 4}. Hence we can always choose 
an aj and a Y:' such that aj E Vi', ajw 1: E and d( u, VI) = O. Without loss of 
generality, say i = j = 4. Then (V{, V~, VI, V; U {u} - {a4}, 115 U {w,a4} - {u,xw}) 
together with an s-UP of B - { w} forms an s-UP of V, a contradiction. This proves 
(14). 

Let {Ui' u~} (1 :::; i ~ r) be a list of all distinct pairs of vertices of Ul U Ul such 
that N(Ui' Ws) n N(u~, Ws) ::J. (/) for all i E {I, 2, ... , r}. As ~2(G) :::; 2k - 2 and 
by (12) and (14), we see that for each i E {1,2, ... ,r}, {Ui,Ua ~ Ul, and Xw E Ul 
and d(w, Us) = 3 for all w E N(Ui' Ws) n N(u~, Ws). For each i E {I, 2, ... , r}, we 
choose a fixed Wi E N(Ui' Ws) n N(u~, Ws). Then wi(1 :::; i :::; r) are distinct. Let 
Vi (1 ~ i :::; n) be a list of the vertices in Ul U Ul - {Ui' u~ 11 :::; i :::; r}. Let Q be the 

172 



bipartite graph induced by the edges in {wiui,wiu~ll::; i::; r}. Then dQ(Wi) = 2 for 
all i E {I, 2, ... , r}. This implies that each block of Q is either a cycle or an edge. 
Let A = V(Q) n U5 and D = V(Q) n W5 • Let Qi(1 ::; i ::; m) be a list of components 
of Q. For each i E {I, 2, ... , m}, let Ai = V(Qi) n A and Di = V(Qi) n D, and then 
we see that IAi I ::; IDi I + 1. Furthermore, we have 

N(Ai' W5) n N(Aj, W5) = 0,1 ::; i < j ::; m; (15) 
N(Ai' W5 ) n N(vj, W5 ) = 0,1 ::; i ::; m and 1 ::; j ::; n; (16) 
N(Vi' W5 ) n N(vj, W5 ) = 0,1 ::; i < j::; n. (17) 

By (15)-(17), IW~I 2: (2k - 9)(n + m). Let X = {xwlw E Wn· Then IXI 2: 
(2k - 9)(n + m)/(2k - 12) > n + m. Let Y ~ X with IYI = n + m. If Z = 
U5 - (A u Y u {Vi 11 ::; i ::; n}), then 

n 

L d(x, W5 ) + L d(x, W5 ) + Ld(Vi' W5 ) + L d(x, W5 ) 

xEA xEY i=l xEZ 

< (2k - 9)IAI + (n + m)(2k - 12) + (2k - 8)n + (2k -lO)IZI 
< (2k - 10)IAI + (IDI + m) + (2k - 12)m + 2(2k - 10)n + (2k - 10)IZI 
< (2k - 10)35 + IDI, 

and on the other hand, we have 

L d(x, U5 ) + L d(y, U5 ) 

xED yEW5-D 

> IDI + 21W51 ~ IDI + 2(k - 5)35 + 2. 

This is a contradiction. This completes the proof of the theorem. 

Remarks. It seems possible to prove the conjecture for more small values of k by 
refining the above idea. However, it seems very difficult to prove the conjecture in 
general. It would be interesting to prove it for 3 = 4. 
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