On Vertex-disjoint Complete Subgraphs of a Graph

Hong Wang

Department of Mathematics The University of New Orleans New Orleans, Louisiana, USA 70148

Abstract

We conjecture that if G is a graph of order sk, where $s \ge 3$ and $k \ge 1$ are integers, and $d(x)+d(y) \ge 2(s-1)k$ for every pair of non-adjacent vertices x and y of G, then G contains k vertex-disjoint complete subgraphs of order s. This is true when s = 3, [6]. Here we prove this conjecture for $k \le 6$.

1 Introduction

We put forward a conjecture which would generalize a deep theorem proved by Hajnal and Szemerédi [4]. They proved that if G is a graph of order sk, where $s \ge 3$ and $k \ge 1$ are integers, and the minimum degree of G is at least (s-1)k, then G contains k vertex-disjoint complete subgraphs of order s. The case s = 3 was first obtained by Corrádi and Hajnal [3]. We propose the following conjecture.

Conjecture A Let s and k be integers with $s \ge 3$ and $k \ge 1$. Let G be a graph of order sk. If $d(x) + d(y) \ge 2(s-1)k$ for every pair of non-adjacent vertices x and y of G, then G contains k vertex-disjoint complete subgraphs of order s.

Considering complements of graphs, this conjecture takes the following form.

Conjecture B Let s and k be integers with $s \ge 3$ and $k \ge 1$. Let G be a graph of order sk. If $d(x) + d(y) \le 2k - 2$ for every pair of adjacent vertices x and y of G, then G contains k mutually disjoint independent sets of cardinality s.

In [6], we proved a stronger result than Conjecture A for the case s = 3, that is,

Theorem 1 Let k be an integer with $k \ge 1$. Let G be a graph of order 3k. If $d(x) + d(y) \ge 4k - 1$ for every pair of non-adjacent vertices x and y of G, then G contains k vertex-disjoint triangles.

It is well known [2, 5] that if a graph G of order $n \ge 3$ has a pair of non-adjacent vertices x and y with $d(x) + d(y) \ge n$, then G is Hamiltonian if and only if G + xy is

Australasian Journal of Combinatorics 16(1997), pp.165-173

Hamiltonian. If n = 2k and $d(x) + d(y) \ge 2k - 1$ instead, then it is easy to see that G contains k vertex-disjoint copies of K_2 if and only if G + xy does. However, we have the following example for vertex-disjoint copies of K_3 in a graph. Let G be a graph of order 3k consisting of a path P = xzy and a complete graph of order 3(k - 1) such that they are vertex-disjoint, x and y are not adjacent, d(x) = d(y) = 3k - 2 and d(z) = 2. It is clear that G does not contain k vertex-disjoint copies of K_3 but G + xy does. It is also clear that y is the only vertex not adjacent to x and vice versa. As for vertex-disjoint copies of K_s ($s \ge 4$) in a graph, this example can be easily generalized.

To further support the conjecture, we prove it for $k \leq 6$. We state the result as follows:

Theorem 2 Let s and k be integers with $s \ge 3$ and $1 \le k \le 6$. Let G be a graph of order sk. If $d(x) + d(y) \le 2k - 2$ for every pair of adjacent vertices x and y of G, then G contains k mutually disjoint independent sets of cardinality s.

We shall deduce some general propositions based on Conjecture *B* being false. Then we use these propositions to prove Theorem 2. We will use the following terminology and notation. Let G = (V, E) be a graph. Let $x \in V$ and $Y \subseteq V$. We use N(x, Y) to denote the set of neighbors of x that are in Y and let d(x, Y) = |N(x, Y)|. Thus d(x, V) = d(x), i.e., the degree of x in G. For a subset $X \subseteq V$, $N(X, Y) = \bigcup_{x \in X} N(x, Y)$. A partition (Y_1, Y_2, \ldots, Y_m) of Y is called an *s*-uniform partition (*s*-UP in short) of Y if $s = |Y_i|$ and Y_i is an independent set of G for all $i \in \{1, 2, \ldots, m\}$, and it is called an *s*-chain of Y if Y_i is an independent set of G for all $i \in \{2, 3, \ldots, m-1\}$. We define d(xy) = d(x) + d(y) for each edge $xy \in E$. Let $\Delta_2(Y)$ be the maximum of d(xy) for all $xy \in E$ with $\{x, y\} \subseteq Y$. Set $\Delta_2(G) = \Delta_2(V)$. For two disjoint subsets A and B of V, E(A, B) is the set of edges of G between of A and B and let e(A, B) = |E(A, B)|. We consider only finite simple graphs. Unexplained terminology and notation are adopted from [1].

2 Preliminaries

First, we note that Conjecture A is true when $s \in \{1, 2\}$. This is trivial if s = 1. If s = 2, G contains k independent edges as G is Hamiltonian by Ore's theorem [5].

We suppose that Conjecture B fails. Let G = (V, E) be a graph of order sk with $s \ge 3, k \ge 1$ and $\Delta_2(G) \le 2k - 2$ such that G is a counter-example to Conjecture B with |E| as small as possible. We use the idea in [1, pp.351–357] to prove the following propositions.

Proposition 2.1. V has an s-chain.

Proof. Let $xy \in E$. By the minimality of G, V has a partition (U_1, U_2, \ldots, U_k) such that $|U_i| = s$ and U_i is an independent set of G - xy for all $i \in \{1, 2, \ldots, k\}$. Hence $\{x, y\} \subseteq U_i$ for some $i \in \{1, 2, \ldots, k\}$, say $\{x, y\} \subseteq U_1$. As $d(xy) \leq 2(k-1)$, we may assume that $d(x) \leq k-1$. Thus, $d(x, V-U_1) \leq k-2$. This implies that $d(x, U_i) = 0$

for some $i \in \{2, 3, ..., k\}$, say $d(x, U_k) = 0$. Then $(U_1 - \{x\}, U_2, ..., U_{k-1}, U_k \cup \{x\})$ is an *s*-chain.

Let (V_1, V_2, \ldots, V_k) be an *s*-chain of *V*. We say that V_m is accessible if there are distinct indices $i_1, i_2, \ldots, i_n \in \{1, 2, \ldots, k\}$ and a vertex $x_{i_j} \in V_{i_j}$ for each $j \in \{2, 3, \ldots, n\}$ such that $i_1 = 1, i_n = m$ and $d(x_{i_j}, V_{i_{j-1}}) = 0$ for all $j \in \{2, 3, \ldots, n\}$. In this case, we also say that x_{i_n} is accessible or an accessible vertex of V_{i_n} . Furthermore, we say that the set $\{V_{i_1}, V_{i_2}, \ldots, V_{i_n}\}$ is a justification of the accessibility of V_{i_n} or x_{i_n} , respectively. Clearly, each V_{i_j} in this justification in accessible, too. In particular, V_1 is accessible. By this definition, V_k is not accessible. For if $i_n = k$ in the above, then we obtain an s-UP $(V'_1, V'_2, \ldots, V'_k)$ of *V* where $V'_1 = V_1 \cup \{x_{i_2}\}$, $V'_{i_j} = V_{i_j} \cup \{x_{i_{j+1}}\} - \{x_{i_j}\}$ for all $j \in \{2, 3, \ldots, n-1\}$, $V'_k = V_k - \{x_{i_n}\}$ and $V'_i = V_i$ for each $i \in \{1, 2, \ldots, k\} - \{i_1, i_2, \ldots, i_n\}$. For two distinct accessible sets V_i and V_j , we write $V_i \prec V_j$ if every justification of the accessibility of V_j contains V_i . An accessible set V_t is said to be terminal if $V_t \not\prec V_i$ for every accessible set V_i . Clearly, there is a terminal set. From these definitions, it is easy to see that if V_t is a terminal set such that $V_t \neq V_1$ and $x \in V_t$, then x is accessible if and only if $d(x, V_i) = 0$ for some accessible set $V_i \neq V_t$.

Let A be the union of all accessible sets in (V_1, \ldots, V_k) and set B = V - A. Assume that A includes p accessible sets V_i as subsets and so B includes q = k - p inaccessible sets V_j as subsets.

Proposition 2.2. $\Delta_2(B) \leq 2(q-1)$. Furthermore, for any non-empty set $X \subseteq B$ with $|X| \equiv 0 \pmod{q}$, X has an s'-UP where s' = |X|/q. In particular, $B - \{x\}$ has an s-UP for all $x \in B$.

Proof. As every vertex of B is *inaccessible*, we see that $d(x, V_i) \ge 1$ for each vertex $x \in B$ and each *accessible* set V_i . Therefore $d(x, B) \le d(x) - p$ for all $x \in B$. This implies that $\Delta_2(B) \le \Delta_2(G) - 2p \le 2(k-1) - 2p = 2(q-1)$. As $\Delta_2(X) \le 2q - 2$, the second statement of the proposition follows by the minimality of G. \Box

Proposition 2.3. Let V_t be a terminal set. If $V_t \neq V_1$, then for each accessible vertex $x \in V_t$, $(A - V_t) \cup \{x\}$ has an s-UP.

Proof. As x is accessible, there exists an accessible set V_m such that $m \neq t$ and $d(x, V_m) = 0$. As V_t is terminal, there is a justification $\{V_{i_1}, V_{i_2}, \ldots, V_{i_n}\}$ of the accessibility of V_m (with $i_1 = 1$ and $i_n = m$) such that V_t does not belong to it. Let $x_{i_j} \in V_{i_j}$ be such that $d(x_{i_j}, V_{i_{j-1}}) = 0$ for each $j \in \{2, 3, \ldots, n\}$. Clearly, $(V_1 \cup \{x_{i_2}\}, V_{i_2} \cup \{x_{i_3}\} - \{x_{i_2}\}, \ldots, V_{i_n} \cup \{x_{i_{n+1}}\} - \{x_{i_n}\})$ is an s-UP of $\bigcup_{j=1}^n V_{i_j} \cup \{x\}$ where $x_{i_{n+1}} = x$. This, together with accessible sets not in the justification except V_t , forms an s-UP of $(A - V_t) \cup \{x\}$.

Proposition 2.4. Let V_t be a terminal set. Let $y \in B$ and $x \in V_t$. Suppose $V_t \neq V_1$, $d(y, V_t) = 1$ and $xy \in E$. Then x is inaccessible.

Proof. If x is accessible, then by Proposition 2.3, $(A - V_t) \cup \{x\}$ has an s-UP. By Proposition 2.2, $B - \{y\}$ has an s-UP. Clearly, $V_t \cup \{y\} - \{x\}$ is an independent set. Therefore V has an s-UP, a contradiction.

3 Proof of Theorem 2

We still use notation and terminology of Section 2. Let G = (V, E) be a counterexample to Conjecture *B* as defined in Section 2. We choose an *s*-chain of *V*, say (V_1, V_2, \ldots, V_k) such that

$$|A| is maximum. \tag{1}$$

Subject to (1), we further choose (V_1, V_2, \ldots, V_k) such that

$$e(A, B)$$
 is minimum. (2)

Let V_t be an arbitrary terminal set, and define

$$B_t = \{x \in B | d(x, V_t) = 1\} \text{ and } R_t = N(B_t, V_t);$$
(3)

$$b_t = |B_t| \text{ and } r_t = |R_t|. \tag{4}$$

We may assume that $A = V_1 \cup V_2 \cup \cdots \cup V_p$ and $B = V_{p+1} \cup \cdots \cup V_{p+q}$ where k = p + q. We shall prove $p \ge 6$ and therefore Theorem 2 follows. It is easy to see that Conjecture B is true when k = 1 or k = 2. Thus we have $k \ge 3$.

Proposition 3.1. For each $x \in V_t$, $d(x, B) \leq 2k - p - 3$.

Proof. Let y be arbitrary in N(x, B). As y is *inaccessible*, $d(y, V_i) \ge 1$ for all i, $1 \le i \le p$. Therefore $d(x, B) \le d(xy) - d(y) \le 2k - p - 2$. If d(x, B) = 2k - p - 2, we must have that d(y, B) = 0, $d(y, V_i) = 1$ and $d(x, V_i) = 0$ for all $i, 1 \le i \le p$. If $p \ge 2$, then $V_t \ne V_1$ and therefore x is accessible. This is in contradiction to Proposition 2.4 as $d(y, V_t) = 1$. If p = 1, let (U_2, U_3, \ldots, U_k) be an (s - 1)-UP of $B - \{x_1, x_2, \ldots, x_k\}$ where $N(x, B) = \{x_1, x_2, \ldots, x_{2k-3}\}$, whose existence is quaranteed by Proposition 2.2. Clearly, some U_i does not contain any of $x_{k+1}, \ldots, x_{2k-3}$, and we may assume it is U_2 . Note that y is arbitrary in $\{x_1, x_2, \ldots, x_{2k-3}\}$. It follows that $(V_1 \cup \{x_1, x_2\} - \{x\}, U_2 \cup \{x\}, U_3 \cup \{x_3\}, \ldots, U_k \cup \{x_k\})$ is an s-UP of V, a contradiction.

Proposition 3.2. For each $x \in R_t$, $d(x, B) \le k - p$.

Proof. Suppose that there exists $x_0 \in R_t$ such that $d(x_0, B) \ge k - p + 1$. Let $x_1 \in B_t$ be such that $x_0x_1 \in E$. By Proposition 2.4, x_0 is *inaccessible* and therefore $d(x_0, V_i) \ge 1$ for all $i \ne t, 1 \le i \le p$. Thus $d(x_0) \ge k$. By Proposition 2.2, $B - \{x_1\}$ has an s-UP (U_{p+1}, \ldots, U_k) . As $\Delta_2(G) \le 2k-2$, we have $d(x_0, B - \{x_1\}) \le 2k-2 - d(x_1) - d(x_0, A) - 1 \le 2k - 2 - 2p = 2(q-1)$. This implies that some U_i , say $U_i = U_{p+1}$, contains at most one neighbor of x_0 . If $U_{p+1} \cap N(x_0, B) = \emptyset$, we add x_0 to U_{p+1} . If $U_{p+1} \cap N(x_0, B) = \{y\}$, then $d(y, B) \le 2k-2-d(x_0) - d(y, A) \le 2k-2-k-p = q-2$. This implies $d(y, U_j) = 0$ for some $j, p+2 \le j \le k$. We then move y to U_j and add x_0 to U_{p+1} . In either case, we obtain an s-chain $(V_t - \{x_0\}, V'_{p+1}, V'_{p+2}, \ldots, V'_k)$ of $B \cup V_t - \{x_1\}$. Let $V'_t = V_t \cup \{x_1\} - \{x_0\}$ and $V'_i = V_i$ for all $i \ne t, 1 \le i \le p$. Then (V'_1, \ldots, V'_k) is still accessible with respect to (V'_1, \ldots, V'_k) . Therefore V'_1, \ldots, V'_p are accessible sets in (V'_1, \ldots, V'_k) . Let $A' = \cup_{i=1}^p V'_i$ and B' = V - A'. Then we have

$$e(A',B') \leq e(A,B) - d(x_0,B) - d(x_1,A) + d(x_0,A) + d(x_1,B) + 2$$

$$\leq e(A, B) + 2k - 2 - 2d(x_0, B) - 2d(x_1, A) + 2$$

$$\leq e(A, B) + 2k - 2 - 2(k - p + 1) - 2p + 2$$

$$= e(A, B) - 2.$$

This is in contradiction with (2) while (1) is maintained.

By Proposition 3.2,

$$|R_t| \ge |B_t|/(k-p), \ i.e., \ (k-p)r_t \ge b_t.$$
 (5)

Let $d_t = \max\{d(x, B) | x \in V_t\}$. By Proposition 3.2, we obtain

$$(k-p)|R_t| + d_t(s-|R_t|) \ge e(V_t, B) \ge 2((k-p)s+1) - |B_t|.$$
(6)

Combining (5) and (6), we obtain

$$(2(k-p) - d_t)r_t \ge (2(k-p) - d_t)s + 2.$$
(7)

By Proposition 2.4, $R_t \neq V_t$ if $V_t \neq V_1$ and so $r_t \leq s - 1$. We deduce from (7) that $d_t > 2(k-p)$. As $d_t \leq 2k-p-3$ by Proposition 3.1, we obtain

$$p \ge 4 \text{ and } k \ge 5. \tag{8}$$

Let $U_t = V_t - R_t$ and $s_t = s - r_t = |U_t|$. Let $W_t = B - N(R_t, B)$. By Proposition 3.2, $|N(R_t, B)| \le (k - p)r_t$. Hence $|W_t| \ge (k - p)s_t + 1$. Clearly,

$$e(U_t, W_t) = \sum_{x \in W_t} d(x, U_t) \ge 2|W_t| \ge 2(k - p)s_t + 2.$$
(9)

To show $p \ge 6$. We distinguish two cases: p = 4 or p = 5. Case 1. p = 4.

In this case, $d(u, W_t) \leq 2k - 7$ for all $u \in U_t$ by Proposition 3.1. Let $U'_t = \{u \in U_t | d(u, W_t) = 2k - 7\}$ and $W'_t = N(U'_t, W_t)$. By (9) with $p = 4, U'_t \neq \emptyset$. We claim

For every $uw \in E(U'_t, W'_t)$ with $u \in U'_t$ and $w \in W'_t$, d(u, A) = 0, (10) $d(w, V_i) = 1$ for all $i \in \{1, 2, 3, 4\} - \{t\}$ and $d(w, U_t) = 2$.

Proof of (10). As $w \notin N(R_t, B)$ and w is inaccessible, we have $d(w, U_t) \ge 2$ and $d(w, V_i) \ge 1$ for all $i \in \{1, 2, 3, 4\} - \{t\}$. As $d(uw) \le 2k - 2$, (10) follows.

Without loss of generality, assume V_4 is terminal. We claim

For every $w \in W'_4$, there exists a unique $x_w \in U_4 - U'_4$ such that (11) $wx_w \in E$ and $d(x_w, W_4) \le 2k - 10$.

Proof of (11). Let $u \in U'_4$ be such that $uw \in E$. By (10), $d(w, U_4) = 2$ and d(w, A) = 5. Let $x_w \in U_4 - \{w\}$ with $wx_w \in E$. We need to show that $d(x_w, W_4) \leq 2k - 10$. Suppose that $d(x_w, W_4) \geq 2k - 9$. As $d(wx_w) \leq 2k - 2$, $d(x_w, V_i) = 0$ for some $i \in \{1, 2, 3\}$, i.e., x_w is accessible. By Proposition 2.3, $(A - V_4) \cup \{x_w\}$ has an s-UP (V'_1, V_2, V'_3) . As d(u, A) = 0 by (10), $V_2 \not\prec V_4$ and $V_3 \not\prec V_4$. It follows that,

if $V_2 \prec V_3$ then V_3 is terminal, and if $V_2 \not\prec V_3$ then V_2 is terminal. Without loss of generality, say V_3 is terminal. By (10), there exists $v \in U'_3$ such that d(v, A) = 0. We have $d(w, V_3) = 1$ by (10). By Proposition 2.4, $wv \notin E$ as v is accessible. Without loss of generality, say $v \in V'_3$. Then $(V'_1, V'_2, V'_3 \cup \{u\} - \{v\}, V'_4 \cup \{v, w\} - \{u, x_w\})$ together with an s-UP of $B - \{w\}$ forms an s-UP of V, a contradiction. So (11) holds.

By (10) and (11), $N(u, W_4) \cap N(v, W_4) = \emptyset$ for any $\{u, v\} \subseteq U'_4$ with $u \neq v$. Hence $|W'_4| = (2k-7)|U'_4|$. It follows that $|N(W'_4, U_4 - U'_4)| \ge |W'_4|/(2k-10) > |U'_4|$. Let $X \subseteq N(W'_4, U_4 - U'_4)$ with $|X| = |U'_4|$. Then $e(X, W_4) + e(U'_4, W_4) \le (2k-10)|X| + (2k-7)|U'_4| < (2k-8)|X \cup U'_4|$. It follows $e(U_4, W_4) < (2k-8)s_4$, contradicting (9) with t = p = 4.

The idea of Case 1 is used in Case 2. However, Case 2 is more complicated. Case 2. p = 5.

In this case, $d(u, W_t) \leq 2k - 8$ for all $u \in U_t$ by Proposition 3.1. Let

$$\begin{split} U_t^1 &= \{ u \in U_t | d(u, W_t) = 2k - 8 \}; \\ U_t^2 &= \{ u \in U_t | d(u, W_t) = 2k - 9 \}; \\ U_t^3 &= U_t - (U_t^1 \cup U_t^2) \text{ and } W_t' = N(U_t^1 \cup U_t^2, W_t) \end{split}$$

By (9) with p = 5, we see that $U_t^1 \cup U_t^2 \neq \emptyset$. Similar to the proof of (10), we can readily show

For every $uw \in E(U_t^1 \cup U_t^2, W_t')$ with $u \in U_t^1 \cup U_t^2$ and $w \in W_t'$, (12) $d(u, A) \le 1, 1 \le d(w, V_t) \le 2$ for all $i \in \{1, 2, 3, 4, 5\} - \{t\}$ and $2 \le d(w, U_t) \le 3$.

We divide case 2 into the following two subcases.

Case 2.1. There exist two distinct terminal sets V_i and V_j such that $d(x, V_j) \ge 1$ for all $x \in V_i$.

Without loss of generality, say i = 5 and j = 4. As $\Delta_2(G) \leq 2k - 2$ and by (12) with t = 5, we have

For every
$$uw \in E(U_5^1 \cup U_5^2, W_5')$$
 with $u \in U_5^1 \cup U_5^2$ and $w \in W_5'$, (13)
 $d(u, V_1 \cup V_2 \cup V_3) = 0, d(u, V_4) = 1, d(u, W_5) = 2k - 9, d(w, V_i) = 1$
1 for all $i \in \{1, 2, 3, 4\}$ and $d(w, U_5) = 2$.

By (13), $U_5^1 = \emptyset$. We claim that one of V_2 and V_3 is terminal. To see this, let $u_0 \in U_5^2$ and $u'_0 \in U_4^1 \cup U_4^2$. By (12), $d(u'_0, A) \leq 1$. As $d(u_0, V_1) = 0$, $V_2 \not\ll V_5$ and $V_3 \not\ll V_5$. As either $d(u'_0, V_1) = 0$ or $d(u'_0, V_5) = 0$, we see that $V_2 \not\ll V_4$ and $V_3 \not\ll V_4$. It follows that, if $V_2 \prec V_3$ then V_3 is terminal, and if $V_2 \not\ll V_3$ then V_2 is terminal. This shows the claim.

Without loss of generality, say V_3 is terminal. We shall show that $d(x, V_5) \ge 1$ for all $x \in V_3$. To see this, we suppose that $d(v_0, V_5) = 0$ for some $v_0 \in V_3$, and therefore v_0 is *accessible*. Then we claim that, for each $w \in W'_5$, there exists a unique $x_w \in U_5^3$ such that $wx_w \in E$ and $d(x_w, W_5) \le 2k - 12$. By (13), $d(w, U_5) = 2$. Let $N(w, U_5) =$ $\{u, x_w\}$ with $u \in U_t^2$. We need to show that $d(x_w, W_5) \leq 2k - 12$. Suppose instead that $d(x_w, W_5) \ge 2k - 11$. As $d(wx_w) \le 2k - 2$ and d(w, A) = 6 by (13), $d(x_w, V_i) = 0$ for some $i \in \{1, 2, 3\}$. Hence x_w is accessible. Note that as $d(w, V_3) = 1$ by (13), $v_0 w \notin E$ by Proposition 2.4. Let $N(u, V_4) = \{u'\}$. If $(A - V_5) \cup \{x_w\}$ has an s-UP (V'_1, V'_2, V'_3, V'_4) such that $\{v_0, u'\} \not\subseteq V'_i$ for every $i \in \{1, 2, 3, 4\}$, say without loss of generality $v_0 \in V'_4$, then $(V'_1, V'_2, V'_3, V'_4 \cup \{u\} - \{v_0\}, V_5 \cup \{w, v_0\} - \{u, x_w\})$ together with an s-UP of $B - \{w\}$ forms an s-UP of V, a contradiction. Therefore, all we need is to show that there is such an s-UP of $(A - V_5) \cup \{x_w\}$. This is obvious if there exists a justification of the accessibility of x_w which does not contain V_3 or V_4 . In particular, this is true if $d(a, V_1) = 0$ for some $a \in V_3$ and $d(b, V_1) = 0$ for some $b \in V_4$. Therefore we may assume that either $d(z, V_1) \geq 1$ for all $z \in V_3$, or $d(z, V_1) \geq 1$ for all $z \in V_4$. Without loss of generality, say the former holds. Similar to obtaining (13), we see that $U_3^1 = \emptyset$ and $d(z, A) = 1 = d(z, V_1)$ for all $z \in U_3^2$. By (9) with p = 5 and t = 3, U_3^2 has at least two distinct vertices, say v_1 and v'_1 . Without loss of generality, say $v'_1 = v_0$. Clearly, any justification containing no V_5 of the accessibility of V_3 is a justification of the accessibility of both v_0 and v_1 . Then we see that a desired s-UP of $(A - V_5) \cup \{x_w\}$ is yielded from any given justification of the accessibility of x_w . Therefore our claim is true. This claim, together with (13), implies that $N(u, W_5) \cap N(v, W_5) = \emptyset$ for any $\{u, v\} \subseteq U_5^2$ with $u \neq v$. Therefore $|W_5'| = (2k-9)|U_5^2|$ and $|N(W_5', U_5^3)| \ge |W_5'|/(2k-12) > |U_5^2|$. As in Case 1, it follows that $e(U_5, W_5) \leq (2k - 10)s_5$, contradicting (9) with t = p = 5. This shows that $d(x, V_5) \ge 1$ for all $x \in V_3$.

With V_3, V_4 and V_5 playing the roles of V_5, V_3 and V_4 , respectively in the above argument, we obtain $d(x, V_3) \ge 1$ for all $x \in V_4$. Similar to obtaining (13), we see that for each $i \in \{3, 4, 5\}$, there exists a vertex $u_i \in U_i^2$ such that $d(u_i, V_1 \cup V_2) =$ 0. Therefore V_2 is terminal. By (12), there is a vertex $u_2 \in U_2^1 \cup U_2^2$ such that $d(u_1, A) \le 1$. Hence $d(u_2, V_i) = 0$ for some $i \in \{3, 4, 5\}$, say without loss of generality $d(u_2, V_5) = 0$. With V_2 playing the role of V_3 in the above argument, we again obtain $e(U_5, W_5) \le (2k - 10)s_5$, a contradiction.

Case 2.2. For any two distinct terminal sets V_i and V_j , there exist $x \in V_i$ and $y \in V_j$ such that $d(x, V_j) = 0$ and $d(y, V_i) = 0$.

In this subcase, we claim first that V_i is terminal for all $i \in \{2, 3, 4, 5\}$. As there is a terminal set, say without loss of generality V_5 is terminal. Let $u_5 \in U_5^1 \cup U_5^2$. Then $d(u_5, A) \leq 1$ by (12). If $d(u_5, V_1) = 0$, then $V_i \not\prec V_5$ for all $i \in \{2, 3, 4\}$, and consequently, V_i is terminal for some $i \in \{2, 3, 4\}$. If $d(u_5, V_1) = 1$, then $d(u_5, A - V_1) = 0$ and there exists exactly one of V_2, V_3 and V_4 , say V_2 , such that $V_2 \prec V_5$. Then $V_3 \not\prec V_2$ and $V_4 \not\prec V_2$. Therefore one of V_3 and V_4 is terminal. In either case, say without loss of generality V_4 is terminal. Let $u_4 \in U_4^1 \cup U_4^2$. Then $d(u_4, A) \leq 1$ by (12). If $V_2 \prec V_3$, then for each $i \in \{4, 5\}, V_3 \not\prec V_i$ as either $d(u_i, V_1) = 0$ or $d(u_i, V_2) = 0$, and consequently, V_3 is terminal. If $V_2 \not\prec V_3$ and V_2 is not terminal, then $V_2 \prec V_4$ or $V_2 \prec V_5$. Say without loss of generality $V_2 \prec V_5$. Then $d(u_5, V_1) = 1 = d(u_5, A)$, $V_3 \not\prec V_5$ and there exists $a \in V_2$ such that $d(a, V_1) = 0$. Thus $V_3 \not\prec V_2$. As either $d(u_4, V_1) = 0$ or $d(u_4, V_5) = 0$, we see that $V_3 \not\prec V_4$, and consequently V_3 is terminal. Finally, we need to show that V_2 is terminal. If V_2 is not terminal, then $V_2 \prec V_5$. for some $i \in \{3, 4, 5\}$, say without loss of generality $V_2 \prec V_5$. Then $d(u, V_1) \ge 1$ for all $u \in V_5$ and $d(a, V_1) = 0$ for some $a \in V_2$. Similar to obtaining (13), with $d(u, V_1) = 1$ replacing $d(u, V_4) = 1$, we see that all the other equalities in (13) hold. Then for each $w \in W'_5$, it is easy to see that if $N(w, U_5) = \{u, x_w\}$ with $u \in U_5^2$ and $d(x_w, V_i) = 0$ for some $i \in \{2, 3, 4\}$, then x_w is accessible and $(A - V_5) \cup \{x_w\}$ has an s-UP (V'_1, V'_2, V'_3, V'_4) with $x_w \notin V'_1 \supseteq V_1$. Moreover, either $v_0 \notin V'_1$ or $v_1 \notin V'_1$ where $d(v_0, V_5) = 0$ and $d(v_1, V_5) = 0$ with $v_0 \in V_3$ and $v_1 \in V_4$. Say w.l.o.g, $d(v_0, V_5) = 0$ and $v_0 \in V'_4$. Then $(V'_1, V'_2, V'_3, V'_4 \cup \{u\} - \{v_0\}, V_5 \cup \{v_0, w\} - \{u, x_w\})$ together with an s-UP of $B - \{w\}$ forms an s-UP of V, a contradiction. Hence $d(x_w, V_i) \ge 1$ for all $i \in \{1, 2, 3, 4\}$, and therefore $d(x_w, W_5) \le 2k - 12$ as $d(wx_w) \le 2k - 2$ and d(w, A) = 6. As in Case 2.1, this yields $e(U_5, W_5) \le (2k - 10)s_5$, a contradiction. Hence we conclude that V_i is terminal for all $i \in \{2, 3, 4, 5\}$.

For each $i \in \{2, 3, 4\}$, let $a_i \in V_i$ be such that $d(a_i, V_5) = 0$. So each $a_i (2 \le i \le 4)$ is *accessible*. We claim

For every $w \in W'_5$, there exists $x_w \in U^3_5$ such that $wx_w \in E$ and (14) $d(x_w, W_5) \le 2k - 12.$

Proof of (14). Let $u \in U_5^1 \cup U_5^2$ be such that $uw \in W$. By (12), we may set $N(w, U_5) = \{u, x_w, x'_w\}$ with $x_w = x'_w$ if $d(w, U_5) = 2$. Suppose, for a contradiction, that $d(x_w, W_5) \ge 2k - 11$ and $d(x'_w, W_5) \ge 2k - 11$. Assume first that $d(w, U_5) = 3$. As $d(uw) \leq 2k-2$ and by (12), we see that d(u,A) = 0 and $d(w,V_i) = 1$ for all $i \in \{1, 2, 3, 4\}$. As $d(wx_w) \leq 2k - 2$ and $d(wx'_w) \leq 2k - 2$, it follows that $d(x_w, A) \leq 2$ and $d(x'_w, A) \leq 2$. Hence there exists $\{i, j\} \subseteq \{1, 2, 3, 4\}$ with $i \neq j$ such that $d(x_w, V_i) = 0$ and $d(x'_w, V_j) = 0$. Let $r \in \{1, 2, 3, 4\} - \{i, j\}$ be such that r = 1 if $1 \notin \{i, j\}$. Without loss of generality, say r = 1, i = 2 and j = 3. By Proposition 2.4, $a_2w \notin E$ and $a_3w \notin E$. Then $(V_1 \cup \{u\}, V_2 \cup \{x_w\} - \{a_2\}, V_3 \cup \{x_w\})$ $\{x'_w\} - \{a_3\}, V_4, V_5 \cup \{w, a_2, a_3\} - \{u, x_w, x'_w\}$ together with an s-UP of $B - \{w\}$ forms an s-UP of V, a contradiction. Hence $x_w = x'_w$. Then we see that $d(x_w, A) \leq 3$ as $d(wx_w) \leq 2k-2$. Hence $d(x_w, V_i) = 0$ for some $i \in \{1, 2, 3, 4\}$, i.e., x_w is accessible. Clearly, $(A - V_5) \cup \{x_w\}$ has an s-UP (V'_1, V'_2, V'_3, V'_4) such that $\{a_2, a_3, a_4\} \not\subseteq V'_i$ for all $i \in \{1, 2, 3, 4\}$. As $d(uw) \leq 2k - 2$ and by (12), we see that if d(u, A) = 1, then $d(w, V_i) = 1$ and therefore $wa_i \notin E$ by Proposition 2.4 for all $i \in \{2, 3, 4\}$, and if d(u, A) = 0, then $d(w, V_i) \ge 2$ for at most one $i \in \{1, 2, 3, 4\}$, and therefore by Proposition 2.4, $a_i w \in E$ for at most one $i \in \{2, 3, 4\}$. Hence we can always choose an a_j and a V'_i such that $a_j \in V'_i$, $a_j w \notin E$ and $d(u, V'_i) = 0$. Without loss of generality, say i = j = 4. Then $(V'_1, V'_2, V'_3, V'_4 \cup \{u\} - \{a_4\}, V_5 \cup \{w, a_4\} - \{u, x_w\})$ together with an s-UP of $B - \{w\}$ forms an s-UP of V, a contradiction. This proves (14).

Let $\{u_i, u'_i\}(1 \le i \le r)$ be a list of all distinct pairs of vertices of $U_5^1 \cup U_5^2$ such that $N(u_i, W_5) \cap N(u'_i, W_5) \ne \emptyset$ for all $i \in \{1, 2, \ldots, r\}$. As $\Delta_2(G) \le 2k-2$ and by (12) and (14), we see that for each $i \in \{1, 2, \ldots, r\}$, $\{u_i, u'_i\} \subseteq U_5^2$, and $x_w \in U_5^3$ and $d(w, U_5) = 3$ for all $w \in N(u_i, W_5) \cap N(u'_i, W_5)$. For each $i \in \{1, 2, \ldots, r\}$, we choose a fixed $w_i \in N(u_i, W_5) \cap N(u'_i, W_5)$. Then $w_i(1 \le i \le r)$ are distinct. Let $v_i(1 \le i \le n)$ be a list of the vertices in $U_5^1 \cup U_5^2 - \{u_i, u'_i|1 \le i \le r\}$. Let Q be the

bipartite graph induced by the edges in $\{w_i u_i, w_i u'_i | 1 \le i \le r\}$. Then $d_Q(w_i) = 2$ for all $i \in \{1, 2, ..., r\}$. This implies that each block of Q is either a cycle or an edge. Let $A = V(Q) \cap U_5$ and $D = V(Q) \cap W_5$. Let $Q_i(1 \le i \le m)$ be a list of components of Q. For each $i \in \{1, 2, ..., m\}$, let $A_i = V(Q_i) \cap A$ and $D_i = V(Q_i) \cap D$, and then we see that $|A_i| \le |D_i| + 1$. Furthermore, we have

$$N(A_i, W_5) \cap N(A_j, W_5) = \emptyset, 1 \le i < j \le m;$$

$$(15)$$

$$N(A_i, W_5) \cap N(v_j, W_5) = \emptyset, 1 \le i \le m \text{ and } 1 \le j \le n;$$

$$(16)$$

$$N(v_i, W_5) \cap N(v_j, W_5) = \emptyset, 1 \le i < j \le n.$$
 (17)

By (15)-(17), $|W'_5| \ge (2k-9)(n+m)$. Let $X = \{x_w | w \in W'_5\}$. Then $|X| \ge (2k-9)(n+m)/(2k-12) > n+m$. Let $Y \subseteq X$ with |Y| = n+m. If $Z = U_5 - (A \cup Y \cup \{v_i | 1 \le i \le n\})$, then

$$e(U_5, W_5) = \sum_{x \in A} d(x, W_5) + \sum_{x \in Y} d(x, W_5) + \sum_{i=1}^n d(v_i, W_5) + \sum_{x \in Z} d(x, W_5)$$

$$\leq (2k - 9)|A| + (n + m)(2k - 12) + (2k - 8)n + (2k - 10)|Z|$$

$$\leq (2k - 10)|A| + (|D| + m) + (2k - 12)m + 2(2k - 10)n + (2k - 10)|Z|$$

$$\leq (2k - 10)s_5 + |D|,$$

and on the other hand, we have

$$e(U_5, W_5) = \sum_{x \in D} d(x, U_5) + \sum_{y \in W_5 - D} d(y, U_5)$$

$$\geq |D| + 2|W_5| \geq |D| + 2(k - 5)s_5 + 2.$$

This is a contradiction. This completes the proof of the theorem.

Remarks. It seems possible to prove the conjecture for more small values of k by refining the above idea. However, it seems very difficult to prove the conjecture in general. It would be interesting to prove it for s = 4.

4 References

[1] B. Bollobás, Extremal Graph Theory, Academic Press, London(1978).

[2] J.A. Bondy and V. Chvátal, A method in graph theory, Discrete Mathematics, 15(1976), 111–135.

[3] K. Corrádi and A. Hajnal, On the maximal number of independent circuits in a graph, Acta Math. Acad. Sci. Hungar. 14(1963), 423–439.

[4] A. Hajnal and E. Szemerédi, Proof of a conjecture of Erdös, in "Combinatorial Theory and its Application", Vol. II (P. Erdös, A. Renyi and V. Sós, eds), Colloq. Math. Soc. J. Bolyai 4, North-Holland, Amsterdam, 1970, pp. 601–623.

[5] O. Ore, Note on Hamilton circuits, Amer. Math. Monthly, 67(1960), 55.

[6] H. Wang, On the maximum number of independent cycles in a graph, submitted.

(Received 31/7/96)