On Vertex-disjoint Complete Subgraphs of a Graph

Hong Wang
Department of Mathematics
The University of New Orleans
New Orleans, Louisiana, USA 70148

Abstract

We conjecture that if G is a graph of order $s k$, where $s \geq 3$ and $k \geq 1$ are integers, and $d(x)+d(y) \geq 2(s-1) k$ for every pair of non-adjacent vertices x and y of G, then G contains k vertex-disjoint complete subgraphs of order s. This is true when $s=3,[6]$. Here we prove this conjecture for $k \leq 6$.

1 Introduction

We put forward a conjecture which would generalize a deep theorem proved by Hajnal and Szemerédi [4]. They proved that if G is a graph of order $s k$, where $s \geq 3$ and $k \geq 1$ are integers, and the minimum degree of G is at least $(s-1) k$, then G contains k vertex-disjoint complete subgraphs of order s. The case $s=3$ was first obtained by Corrádi and Hajnal [3]. We propose the following conjecture.
Conjecture A Let s and k be integers with $s \geq 3$ and $k \geq 1$. Let G be a graph of order sk. If $d(x)+d(y) \geq 2(s-1) k$ for every pair of non-adjacent vertices x and y of G, then G contains k vertex-disjoint complete subgraphs of order s.

Considering complements of graphs, this conjecture takes the following form.
Conjecture B Let s and k be integers with $s \geq 3$ and $k \geq 1$. Let G be a graph of order sk. If $d(x)+d(y) \leq 2 k-2$ for every pair of adjacent vertices x and y of G, then G contains k mutually disjoint independent sets of cardinality s.

In [6], we proved a stronger result than Conjecture A for the case $s=3$, that is, Theorem 1 Let k be an integer with $k \geq 1$. Let G be a graph of order $3 k$. If $d(x)+d(y) \geq 4 k-1$ for every pair of non-adjacent vertices x and y of G, then G contains k vertex-disjoint triangles.

It is well known $[2,5]$ that if a graph G of order $n \geq 3$ has a pair of non-adjacent vertices x and y with $d(x)+d(y) \geq n$, then G is Hamiltonian if and only if $G+x y$ is

Hamiltonian. If $n=2 k$ and $d(x)+d(y) \geq 2 k-1$ instead, then it is easy to see that G contains k vertex-disjoint copies of K_{2} if and only if $G+x y$ does. However, we have the following example for vertex-disjoint copies of K_{3} in a graph. Let G be a graph of order $3 k$ consisting of a path $P=x z y$ and a complete graph of order $3(k-1)$ such that they are vertex-disjoint, x and y are not adjacent, $d(x)=d(y)=3 k-2$ and $d(z)=2$. It is clear that G does not contain k vertex-disjoint copies of K_{3} but $G+x y$ does. It is also clear that y is the only vertex not adjacent to x and vice versa. As for vertex-disjoint copies of $K_{s}(s \geq 4)$ in a graph, this example can be easily generalized.

To further support the conjecture, we prove it for $k \leq 6$. We state the result as follows:
Theorem 2 Let s and k be integers with $s \geq 3$ and $1 \leq k \leq 6$. Let G be a graph of order sk. If $d(x)+d(y) \leq 2 k-2$ for every pair of adjacent vertices x and y of G, then G contains k mutually disjoint independent sets of cardinality s.

We shall deduce some general propositions based on Conjecture B being false. Then we use these propositions to prove Theorem 2. We will use the following terminology and notation. Let $G=(V, E)$ be a graph. Let $x \in V$ and $Y \subseteq V$. We use $N(x, Y)$ to denote the set of neighbors of x that are in Y and let $d(x, Y)=$ $|N(x, Y)|$. Thus $d(x, V)=d(x)$, i.e., the degree of x in G. For a subset $X \subseteq V$, $N(X, Y)=\cup_{x \in X} N(x, Y)$. A partition $\left(Y_{1}, Y_{2}, \ldots, Y_{m}\right)$ of Y is called an s-uniform partition (s-UP in short) of Y if $s=\left|Y_{i}\right|$ and Y_{i} is an independent set of G for all $i \in\{1,2, \ldots, m\}$, and it is called an s-chain of Y if Y_{i} is an independent set of G for all $i \in\{1,2, \ldots, m\}$ such that $s-1=\left|Y_{1}\right|, s+1=\left|Y_{m}\right|$ and $s=\left|Y_{i}\right|$ for all $i \in\{2,3, \ldots, m-1\}$. We define $d(x y)=d(x)+d(y)$ for each edge $x y \in E$. Let $\Delta_{2}(Y)$ be the maximum of $d(x y)$ for all $x y \in E$ with $\{x, y\} \subseteq Y$. Set $\Delta_{2}(G)=\Delta_{2}(V)$. For two disjoint subsets A and B of $V, E(A, B)$ is the set of edges of G between of A and B and let $e(A, B)=|E(A, B)|$. We consider only finite simple graphs. Unexplained terminology and notation are adopted from [1].

2 Preliminaries

First, we note that Conjecture A is true when $s \in\{1,2\}$. This is trivial if $s=1$. If $s=2, G$ contains k independent edges as G is Hamiltonian by Ore's theorem [5].

We suppose that Conjecture B fails. Let $G=(V, E)$ be a graph of order $s k$ with $s \geq 3, k \geq 1$ and $\Delta_{2}(G) \leq 2 k-2$ such that G is a counter-example to Conjecture B with $|E|$ as small as possible. We use the idea in [1, pp.351-357] to prove the following propositions.
Proposition 2.1. V has an s-chain.
Proof. Let $x y \in E$. By the minimality of G, V has a partition $\left(U_{1}, U_{2}, \ldots, U_{k}\right)$ such that $\left|U_{i}\right|=s$ and U_{i} is an independent set of $G-x y$ for all $i \in\{1,2, \ldots, k\}$. Hence $\{x, y\} \subseteq U_{i}$ for some $i \in\{1,2, \ldots, k\}$, say $\{x, y\} \subseteq U_{1}$. As $d(x y) \leq 2(k-1)$, we may assume that $d(x) \leq k-1$. Thus, $d\left(x, V-U_{1}\right) \leq k-2$. This implies that $d\left(x, U_{i}\right)=0$
for some $i \in\{2,3, \ldots, k\}$, say $d\left(x, U_{k}\right)=0$. Then $\left(U_{1}-\{x\}, U_{2}, \ldots, U_{k-1}, U_{k} \cup\{x\}\right)$ is an s-chain.

Let $\left(V_{1}, V_{2}, \ldots, V_{k}\right)$ be an s-chain of V. We say that V_{m} is accessible if there are distinct indices $i_{1}, i_{2}, \ldots, i_{n} \in\{1,2, \ldots, k\}$ and a vertex $x_{i_{j}} \in V_{i_{j}}$ for each $j \in$ $\{2,3, \ldots, n\}$ such that $i_{1}=1, i_{n}=m$ and $d\left(x_{i_{j}}, V_{i_{j-1}}\right)=0$ for all $j \in\{2,3, \ldots, n\}$. In this case, we also say that $x_{i_{n}}$ is accessible or an accessible vertex of $V_{i_{n}}$. Furthermore, we say that the set $\left\{V_{i_{1}}, V_{i_{2}}, \ldots, V_{i_{n}}\right\}$ is a justification of the accessibility of $V_{i_{n}}$ or $x_{i_{n}}$, respectively. Clearly, each $V_{i_{j}}$ in this justification in accessible, too. In particular, V_{1} is accessible. By this definition, V_{k} is not accessible. For if $i_{n}=k$ in the above, then we obtain an s-UP $\left(V_{1}^{\prime}, V_{2}^{\prime}, \ldots, V_{k}^{\prime}\right)$ of V where $V_{1}^{\prime}=V_{1} \cup\left\{x_{i_{2}}\right\}$, $V_{i_{j}}^{\prime}=V_{i_{j}} \cup\left\{x_{i_{j+1}}\right\}-\left\{x_{i_{j}}\right\}$ for all $j \in\{2,3, \ldots, n-1\}, V_{k}^{\prime}=V_{k}-\left\{x_{i_{n}}\right\}$ and $V_{i}^{\prime}=V_{i}$ for each $i \in\{1,2, \ldots, k\}-\left\{i_{1}, i_{2}, \ldots, i_{n}\right\}$. For two distinct accessible sets V_{i} and V_{j}, we write $V_{i} \prec V_{j}$ if every justification of the accessibility of V_{j} contains V_{i}. An accessible set V_{t} is said to be terminal if $V_{t} \nprec V_{i}$ for every accessible set V_{i}. Clearly, there is a terminal set. From these definitions, it is easy to see that if V_{t} is a terminal set such that $V_{t} \neq V_{1}$ and $x \in V_{t}$, then x is accessible if and only if $d\left(x, V_{i}\right)=0$ for some accessible set $V_{i} \neq V_{t}$.

Let A be the union of all accessible sets in $\left(V_{1}, \ldots, V_{k}\right)$ and set $B=V-A$. Assume that A includes p accessible sets V_{i} as subsets and so B includes $q=k-p$ inaccessible sets V_{j} as subsets.
Proposition 2.2. $\Delta_{2}(B) \leq 2(q-1)$. Furthermore, for any non-empty set $X \subseteq B$ with $|X| \equiv 0(\bmod q), X$ has an s^{\prime}-UP where $s^{\prime}=|X| / q$. In particular, $B-\{x\}$ has an s-UP for all $x \in B$.
Proof. As every vertex of B is inaccessible, we see that $d\left(x, V_{i}\right) \geq 1$ for each vertex $x \in B$ and each accessible set V_{i}. Therefore $d(x, B) \leq d(x)-p$ for all $x \in B$. This implies that $\Delta_{2}(B) \leq \Delta_{2}(G)-2 p \leq 2(k-1)-2 p=2(q-1)$. As $\Delta_{2}(X) \leq 2 q-2$, the second statement of the proposition follows by the minimality of G.
Proposition 2.3. Let V_{t} be a terminal set. If $V_{t} \neq V_{1}$, then for each accessible vertex $x \in V_{t},\left(A-V_{t}\right) \cup\{x\}$ has an $s-U P$.
Proof. As x is accessible, there exists an accessible set V_{m} such that $m \neq t$ and $d\left(x, V_{m}\right)=0$. As V_{t} is terminal, there is a justification $\left\{V_{i_{1}}, V_{i_{2}}, \ldots, V_{i_{n}}\right\}$ of the accessibility of V_{m} (with $i_{1}=1$ and $i_{n}=m$) such that V_{t} does not belong to it. Let $x_{i_{j}} \in V_{i_{j}}$ be such that $d\left(x_{i_{j}}, V_{i_{j-1}}\right)=0$ for each $j \in\{2,3, \ldots, n\}$. Clearly, $\left(V_{1} \cup\left\{x_{i_{2}}\right\}, V_{i_{2}} \cup\left\{x_{i_{3}}\right\}-\left\{x_{i_{2}}\right\}, \ldots, V_{i_{n}} \cup\left\{x_{i_{n+1}}\right\}-\left\{x_{i_{n}}\right\}\right)$ is an s-UP of $\cup_{j=1}^{n} V_{i_{j}} \cup\{x\}$ where $x_{i_{n+1}}=x$. This, together with accessible sets not in the justification except V_{t}, forms an s-UP of $\left(A-V_{t}\right) \cup\{x\}$.
Proposition 2.4. Let V_{t} be a terminal set. Let $y \in B$ and $x \in V_{t}$. Suppose $V_{t} \neq V_{1}$, $d\left(y, V_{t}\right)=1$ and $x y \in E$. Then x is inaccessible.
Proof. If x is accessible, then by Proposition 2.3, $\left(A-V_{t}\right) \cup\{x\}$ has an s-UP. By Proposition 2.2, $B-\{y\}$ has an s-UP. Clearly, $V_{t} \cup\{y\}-\{x\}$ is an independent set. Therefore V has an s-UP, a contradiction.

3 Proof of Theorem 2

We still use notation and terminology of Section 2. Let $G=(V, E)$ be a counterexample to Conjecture B as defined in Section 2. We choose an s-chain of V, say $\left(V_{1}, V_{2}, \ldots, V_{k}\right)$ such that

$$
\begin{equation*}
|A| \text { is maximum. } \tag{1}
\end{equation*}
$$

Subject to (1), we further choose ($V_{1}, V_{2}, \ldots, V_{k}$) such that

$$
\begin{equation*}
e(A, B) \text { is minimum. } \tag{2}
\end{equation*}
$$

Let V_{t} be an arbitrary terminal set, and define

$$
\begin{align*}
& B_{t}=\left\{x \in B \mid d\left(x, V_{t}\right)=1\right\} \text { and } R_{t}=N\left(B_{t}, V_{t}\right) ; \tag{3}\\
& b_{t}=\left|B_{t}\right| \text { and } r_{t}=\left|R_{t}\right| . \tag{4}
\end{align*}
$$

We may assume that $A=V_{1} \cup V_{2} \cup \cdots \cup V_{p}$ and $B=V_{p+1} \cup \cdots \cup V_{p+q}$ where $k=p+q$. We shall prove $p \geq 6$ and therefore Theorem 2 follows. It is easy to see that Conjecture B is true when $k=1$ or $k=2$. Thus we have $k \geq 3$.
Proposition 3.1. For each $x \in V_{t}, d(x, B) \leq 2 k-p-3$.
Proof. Let y be arbitrary in $N(x, B)$. As y is inaccessible, $d\left(y, V_{i}\right) \geq 1$ for all i, $1 \leq i \leq p$. Therefore $d(x, B) \leq d(x y)-d(y) \leq 2 k-p-2$. If $d(x, B)=2 k-p-2$, we must have that $d(y, B)=0, d\left(y, V_{i}\right)=1$ and $d\left(x, V_{i}\right)=0$ for all $i, 1 \leq i \leq p$. If $p \geq 2$, then $V_{t} \neq V_{1}$ and therefore x is accessible. This is in contradiction to Proposition 2.4 as $d\left(y, V_{t}\right)=1$. If $p=1$, let $\left(U_{2}, U_{3}, \ldots, U_{k}\right)$ be an $(s-1)$-UP of $B-\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ where $N(x, B)=\left\{x_{1}, x_{2}, \ldots, x_{2 k-3}\right\}$, whose existence is quaranteed by Proposition 2.2. Clearly, some U_{i} does not contain any of $x_{k+1}, \ldots, x_{2 k-3}$, and we may assume it is U_{2}. Note that y is arbitrary in $\left\{x_{1}, x_{2}, \ldots, x_{2 k-3}\right\}$. It follows that $\left(V_{1} \cup\left\{x_{1}, x_{2}\right\}-\right.$ $\left.\{x\}, U_{2} \cup\{x\}, U_{3} \cup\left\{x_{3}\right\}, \ldots, U_{k} \cup\left\{x_{k}\right\}\right)$ is an s-UP of V, a contradiction.
Proposition 3.2. For each $x \in R_{t}, d(x, B) \leq k-p$.
Proof. Suppose that there exists $x_{0} \in R_{t}$ such that $d\left(x_{0}, B\right) \geq k-p+1$. Let $x_{1} \in B_{t}$ be such that $x_{0} x_{1} \in E$. By Proposition 2.4, x_{0} is inaccessible and therefore $d\left(x_{0}, V_{i}\right) \geq 1$ for all $i \neq t, 1 \leq i \leq p$. Thus $d\left(x_{0}\right) \geq k$. By Proposition 2.2, $B-\left\{x_{1}\right\}$ has an s-UP $\left(U_{p+1}, \ldots, U_{k}\right)$. As $\Delta_{2}(G) \leq 2 k-2$, we have $d\left(x_{0}, B-\left\{x_{1}\right\}\right) \leq 2 k-2-$ $d\left(x_{1}\right)-d\left(x_{0}, A\right)-1 \leq 2 k-2-2 p=2(q-1)$. This implies that some U_{i}, say $U_{i}=U_{p+1}$, contains at most one neighbor of x_{0}. If $U_{p+1} \cap N\left(x_{0}, B\right)=\emptyset$, we add x_{0} to U_{p+1}. If $U_{p+1} \cap N\left(x_{0}, B\right)=\{y\}$, then $d(y, B) \leq 2 k-2-d\left(x_{0}\right)-d(y, A) \leq 2 k-2-k-p=q-2$. This implies $d\left(y, U_{j}\right)=0$ for some $j, p+2 \leq j \leq k$. We then move y to U_{j} and add x_{0} to U_{p+1}. In either case, we obtain an s-chain $\left(V_{t}-\left\{x_{0}\right\}, V_{p+1}^{\prime}, V_{p+2}^{\prime}, \ldots, V_{k}^{\prime}\right)$ of $B \cup V_{t}-\left\{x_{1}\right\}$. Let $V_{t}^{\prime}=V_{t} \cup\left\{x_{1}\right\}-\left\{x_{0}\right\}$ and $V_{i}^{\prime}=V_{i}$ for all $i \neq t, 1 \leq i \leq p$. Then $\left(V_{1}^{\prime}, \ldots, V_{k}^{\prime}\right)$ is an s-chain of V. Clearly, each accessible vertex with respect to $\left(V_{1}, \ldots, V_{k}\right)$ is still accessible with respect to $\left(V_{1}^{\prime}, \ldots, V_{k}^{\prime}\right)$. Therefore $V_{1}^{\prime}, \ldots, V_{p}^{\prime}$ are accessible sets in $\left(V_{1}^{\prime}, \ldots, V_{k}^{\prime}\right)$. Let $A^{\prime}=\cup_{i=1}^{p} V_{i}^{\prime}$ and $B^{\prime}=V-A^{\prime}$. Then we have

$$
e\left(A^{\prime}, B^{\prime}\right) \leq e(A, B)-d\left(x_{0}, B\right)-d\left(x_{1}, A\right)+d\left(x_{0}, A\right)+d\left(x_{1}, B\right)+2
$$

$$
\begin{aligned}
& \leq e(A, B)+2 k-2-2 d\left(x_{0}, B\right)-2 d\left(x_{1}, A\right)+2 \\
& \leq e(A, B)+2 k-2-2(k-p+1)-2 p+2 \\
& =e(A, B)-2
\end{aligned}
$$

This is in contradiction with (2) while (1) is maintained.
By Proposition 3.2,

$$
\begin{equation*}
\left|R_{t}\right| \geq\left|B_{t}\right| /(k-p), \text { i.e., }(k-p) r_{t} \geq b_{t} \tag{5}
\end{equation*}
$$

Let $d_{t}=\max \left\{d(x, B) \mid x \in V_{t}\right\}$. By Proposition 3.2, we obtain

$$
\begin{equation*}
(k-p)\left|R_{t}\right|+d_{t}\left(s-\left|R_{t}\right|\right) \geq e\left(V_{t}, B\right) \geq 2((k-p) s+1)-\left|B_{t}\right| \tag{6}
\end{equation*}
$$

Combining (5) and (6), we obtain

$$
\begin{equation*}
\left(2(k-p)-d_{t}\right) r_{t} \geq\left(2(k-p)-d_{t}\right) s+2 \tag{7}
\end{equation*}
$$

By Proposition 2.4, $R_{t} \neq V_{t}$ if $V_{t} \neq V_{1}$ and so $r_{t} \leq s-1$. We deduce from (7) that $d_{t}>2(k-p)$. As $d_{t} \leq 2 k-p-3$ by Proposition 3.1, we obtain

$$
\begin{equation*}
p \geq 4 \text { and } k \geq 5 \tag{8}
\end{equation*}
$$

Let $U_{t}=V_{t}-R_{t}$ and $s_{t}=s-r_{t}=\left|U_{t}\right|$. Let $W_{t}=B-N\left(R_{t}, B\right)$. By Proposition $3.2,\left|N\left(R_{t}, B\right)\right| \leq(k-p) r_{t}$. Hence $\left|W_{t}\right| \geq(k-p) s_{t}+1$. Clearly,

$$
\begin{equation*}
e\left(U_{t}, W_{t}\right)=\sum_{x \in W_{t}} d\left(x, U_{t}\right) \geq 2\left|W_{t}\right| \geq 2(k-p) s_{t}+2 \tag{9}
\end{equation*}
$$

To show $p \geq 6$. We distinguish two cases: $p=4$ or $p=5$.
Case 1. $p=4$.
In this case, $d\left(u, W_{t}\right) \leq 2 k-7$ for all $u \in U_{t}$ by Proposition 3.1. Let $U_{t}^{\prime}=\{u \in$ $\left.U_{t} \mid d\left(u, W_{t}\right)=2 k-7\right\}$ and $W_{t}^{\prime}=N\left(U_{t}^{\prime}, W_{t}\right)$. By (9) with $p=4, U_{t}^{\prime} \neq \emptyset$. We claim

For every $u w \in E\left(U_{t}^{\prime}, W_{t}^{\prime}\right)$ with $u \in U_{t}^{\prime}$ and $w \in W_{t}^{\prime}, d(u, A)=0$, $d\left(w, V_{i}\right)=1$ for all $i \in\{1,2,3,4\}-\{t\}$ and $d\left(w, U_{t}\right)=2$.

Proof of (10). As $w \notin N\left(R_{t}, B\right)$ and w is inaccessible, we have $d\left(w, U_{t}\right) \geq 2$ and $d\left(w, V_{i}\right) \geq 1$ for all $i \in\{1,2,3,4\}-\{t\}$. As $d(u w) \leq 2 k-2$, (10) follows.

Without loss of generality, assume V_{4} is terminal. We claim
For every $w \in W_{4}^{\prime}$, there exists a unique $x_{w} \in U_{4}-U_{4}^{\prime}$ such that $w x_{w} \in E$ and $d\left(x_{w}, W_{4}\right) \leq 2 k-10$.

Proof of (11). Let $u \in U_{4}^{\prime}$ be such that $u w \in E$. By (10), $d\left(w, U_{4}\right)=2$ and $d(w, A)=5$. Let $x_{w} \in U_{4}-\{w\}$ with $w x_{w} \in E$. We need to show that $d\left(x_{w}, W_{4}\right) \leq$ $2 k-10$. Suppose that $d\left(x_{w}, W_{4}\right) \geq 2 k-9$. As $d\left(w x_{w}\right) \leq 2 k-2, d\left(x_{w}, V_{i}\right)=0$ for some $i \in\{1,2,3\}$, i.e., x_{w} is accessible. By Proposition 2.3, $\left(A-V_{4}\right) \cup\left\{x_{w}\right\}$ has an s-UP $\left(V_{1}^{\prime}, V_{2}, V_{3}^{\prime}\right)$. As $d(u, A)=0$ by (10), $V_{2} \nprec V_{4}$ and $V_{3} \nprec V_{4}$. It follows that,
if $V_{2} \prec V_{3}$ then V_{3} is terminal, and if $V_{2} \nprec V_{3}$ then V_{2} is terminal. Without loss of generality, say V_{3} is terminal. By (10), there exists $v \in U_{3}^{\prime}$ such that $d(v, A)=0$. We have $d\left(w, V_{3}\right)=1$ by (10). By Proposition 2.4, wv $\notin E$ as v is accessible. Without loss of generality, say $v \in V_{3}^{\prime}$. Then $\left(V_{1}^{\prime}, V_{2}^{\prime}, V_{3}^{\prime} \cup\{u\}-\{v\}, V_{4}^{\prime} \cup\{v, w\}-\left\{u, x_{w}\right\}\right)$ together with an s-UP of $B-\{w\}$ forms an s-UP of V, a contradiction. So (11) holds.

By (10) and (11), $N\left(u, W_{4}\right) \cap N\left(v, W_{4}\right)=\emptyset$ for any $\{u, v\} \subseteq U_{4}^{\prime}$ with $u \neq v$. Hence $\left|W_{4}^{\prime}\right|=(2 k-7)\left|U_{4}^{\prime}\right|$. It follows that $\left|N\left(W_{4}^{\prime}, U_{4}-U_{4}^{\prime}\right)\right| \geq\left|W_{4}^{\prime}\right| /(2 k-10)>\left|U_{4}^{\prime}\right|$. Let $X \subseteq N\left(W_{4}^{\prime}, U_{4}-U_{4}^{\prime}\right)$ with $|X|=\left|U_{4}^{\prime}\right|$. Then $e\left(X, W_{4}\right)+e\left(U_{4}^{\prime}, W_{4}\right) \leq(2 k-10)|X|+$ $(2 k-7)\left|U_{4}^{\prime}\right|<(2 k-8)\left|X \cup U_{4}^{\prime}\right|$. It follows $e\left(U_{4}, W_{4}\right)<(2 k-8) s_{4}$, contradicting (9) with $t=p=4$.

The idea of Case 1 is used in Case 2. However, Case 2 is more complicated.
Case 2. $p=5$.
In this case, $d\left(u, W_{t}\right) \leq 2 k-8$ for all $u \in U_{t}$ by Proposition 3.1. Let

$$
\begin{aligned}
& U_{t}^{1}=\left\{u \in U_{t} \mid d\left(u, W_{t}\right)=2 k-8\right\} \\
& U_{t}^{2}=\left\{u \in U_{t} \mid d\left(u, W_{t}\right)=2 k-9\right\} \\
& U_{t}^{3}=U_{t}-\left(U_{t}^{1} \cup U_{t}^{2}\right) \text { and } W_{t}^{\prime}=N\left(U_{t}^{1} \cup U_{t}^{2}, W_{t}\right)
\end{aligned}
$$

By (9) with $p=5$, we see that $U_{t}^{1} \cup U_{t}^{2} \neq \emptyset$. Similar to the proof of (10), we can readily show

For every $u w \in E\left(U_{t}^{1} \cup U_{t}^{2}, W_{t}^{\prime}\right)$ with $u \in U_{t}^{1} \cup U_{t}^{2}$ and $w \in W_{t}^{\prime}$,
$d(u, A) \leq 1,1 \leq d\left(w, V_{i}\right) \leq 2$ for all $i \in\{1,2,3,4,5\}-\{t\}$ and $2 \leq d\left(w, U_{t}\right) \leq 3$.

We divide case 2 into the following two subcases.
Case 2.1. There exist two distinct terminal sets V_{i} and V_{j} such that $d\left(x, V_{j}\right) \geq 1$ for all $x \in V_{i}$.

Without loss of generality, say $i=5$ and $j=4$. As $\Delta_{2}(G) \leq 2 k-2$ and by (12) with $t=5$, we have

For every $u w \in E\left(U_{5}^{1} \cup U_{5}^{2}, W_{5}^{\prime}\right)$ with $u \in U_{5}^{1} \cup U_{5}^{2}$ and $w \in W_{5}^{\prime}$, $d\left(u, V_{1} \cup V_{2} \cup V_{3}\right)=0, d\left(u, V_{4}\right)=1, d\left(u, W_{5}\right)=2 k-9, d\left(w, V_{i}\right)=$ 1 for all $i \in\{1,2,3,4\}$ and $d\left(w, U_{5}\right)=2$.

By (13), $U_{5}^{1}=\emptyset$. We claim that one of V_{2} and V_{3} is terminal. To see this, let $u_{0} \in U_{5}^{2}$ and $u_{0}^{\prime} \in U_{4}^{1} \cup U_{4}^{2}$. By (12), $d\left(u_{0}^{\prime}, A\right) \leq 1$. As $d\left(u_{0}, V_{1}\right)=0, V_{2} \nprec V_{5}$ and $V_{3} \nprec V_{5}$. As either $d\left(u_{0}^{\prime}, V_{1}\right)=0$ or $d\left(u_{0}^{\prime}, V_{5}\right)=0$, we see that $V_{2} \nprec V_{4}$ and $V_{3} \nprec V_{4}$. It follows that, if $V_{2} \prec V_{3}$ then V_{3} is terminal, and if $V_{2} \nprec V_{3}$ then V_{2} is terminal. This shows the claim.

Without loss of generality, say V_{3} is terminal. We shall show that $d\left(x, V_{5}\right) \geq 1$ for all $x \in V_{3}$. To see this, we suppose that $d\left(v_{0}, V_{5}\right)=0$ for some $v_{0} \in V_{3}$, and therefore v_{0} is accessible. Then we claim that, for each $w \in W_{5}^{\prime}$, there exists a unique $x_{w} \in U_{5}^{3}$ such that $w x_{w} \in E$ and $d\left(x_{w}, W_{5}\right) \leq 2 k-12$. By $(13), d\left(w, U_{5}\right)=2$. Let $N\left(w, U_{5}\right)=$
$\left\{u, x_{w}\right\}$ with $u \in U_{t}^{2}$. We need to show that $d\left(x_{w}, W_{5}\right) \leq 2 k-12$. Suppose instead that $d\left(x_{w}, W_{5}\right) \geq 2 k-11$. As $d\left(w x_{w}\right) \leq 2 k-2$ and $d(w, A)=6$ by $(13), d\left(x_{w}, V_{i}\right)=0$ for some $i \in\{1,2,3\}$. Hence x_{w} is accessible. Note that as $d\left(w, V_{3}\right)=1$ by (13), $v_{0} w \notin E$ by Proposition 2.4. Let $N\left(u, V_{4}\right)=\left\{u^{\prime}\right\}$. If $\left(A-V_{5}\right) \cup\left\{x_{w}\right\}$ has an s-UP $\left(V_{1}^{\prime}, V_{2}^{\prime}, V_{3}^{\prime}, V_{4}^{\prime}\right)$ such that $\left\{v_{0}, u^{\prime}\right\} \nsubseteq V_{i}^{\prime}$ for every $i \in\{1,2,3,4\}$, say without loss of generality $v_{0} \in V_{4}^{\prime}$, then $\left(V_{1}^{\prime}, V_{2}^{\prime}, V_{3}^{\prime}, V_{4}^{\prime} \cup\{u\}-\left\{v_{0}\right\}, V_{5} \cup\left\{w, v_{0}\right\}-\left\{u, x_{w}\right\}\right)$ together with an s-UP of $B-\{w\}$ forms an s-UP of V, a contradiction. Therefore, all we need is to show that there is such an s-UP of $\left(A-V_{5}\right) \cup\left\{x_{w}\right\}$. This is obvious if there exists a justification of the accessibility of x_{w} which does not contain V_{3} or V_{4}. In particular, this is true if $d\left(a, V_{1}\right)=0$ for some $a \in V_{3}$ and $d\left(b, V_{1}\right)=0$ for some $b \in V_{4}$. Therefore we may assume that either $d\left(z, V_{1}\right) \geq 1$ for all $z \in V_{3}$, or $d\left(z, V_{1}\right) \geq 1$ for all $z \in V_{4}$. Without loss of generality, say the former holds. Similar to obtaining (13), we see that $U_{3}^{1}=\emptyset$ and $d(z, A)=1=d\left(z, V_{1}\right)$ for all $z \in U_{3}^{2}$. By (9) with $p=5$ and $t=3, U_{3}^{2}$ has at least two distinct vertices, say v_{1} and v_{1}^{\prime}. Without loss of generality, say $v_{1}^{\prime}=v_{0}$. Clearly, any justification containing no V_{5} of the accessiblity of V_{3} is a justification of the accessibility of both v_{0} and v_{1}. Then we see that a desired s-UP of $\left(A-V_{5}\right) \cup\left\{x_{w}\right\}$ is yielded from any given justification of the accessibility of x_{w}. Therefore our claim is true. This claim, together with (13), implies that $N\left(u, W_{5}\right) \cap N\left(v, W_{5}\right)=\emptyset$ for any $\{u, v\} \subseteq U_{5}^{2}$ with $u \neq v$. Therefore $\left|W_{5}^{\prime}\right|=(2 k-9)\left|U_{5}^{2}\right|$ and $\left|N\left(W_{5}^{\prime}, U_{5}^{3}\right)\right| \geq\left|W_{5}^{\prime}\right| /(2 k-12)>\left|U_{5}^{2}\right|$. As in Case 1, it follows that $e\left(U_{5}, W_{5}\right) \leq(2 k-10) s_{5}$, contradicting (9) with $t=p=5$. This shows that $d\left(x, V_{5}\right) \geq 1$ for all $x \in V_{3}$.

With V_{3}, V_{4} and V_{5} playing the roles of V_{5}, V_{3} and V_{4}, respectively in the above argument, we obtain $d\left(x, V_{3}\right) \geq 1$ for all $x \in V_{4}$. Similar to obtaining (13), we see that for each $i \in\{3,4,5\}$, there exists a vertex $u_{i} \in U_{i}^{2}$ such that $d\left(u_{i}, V_{1} \cup V_{2}\right)=$ 0 . Therefore V_{2} is terminal. By (12), there is a vertex $u_{2} \in U_{2}^{1} \cup U_{2}^{2}$ such that $d\left(u_{1}, A\right) \leq 1$. Hence $d\left(u_{2}, V_{i}\right)=0$ for some $i \in\{3,4,5\}$, say without loss of generality $d\left(u_{2}, V_{5}\right)=0$. With V_{2} playing the role of V_{3} in the above argument, we again obatin $e\left(U_{5}, W_{5}\right) \leq(2 k-10) s_{5}$, a contradiction.
Case 2.2. For any two distinct terminal sets V_{i} and V_{j}, there exist $x \in V_{i}$ and $y \in V_{j}$ such that $d\left(x, V_{j}\right)=0$ and $d\left(y, V_{i}\right)=0$.

In this subcase, we claim first that V_{i} is terminal for all $i \in\{2,3,4,5\}$. As there is a terminal set, say without loss of generality V_{5} is terminal. Let $u_{5} \in U_{5}^{1} \cup U_{5}^{2}$. Then $d\left(u_{5}, A\right) \leq 1$ by (12). If $d\left(u_{5}, V_{1}\right)=0$, then $V_{i} \nprec V_{5}$ for all $i \in\{2,3,4\}$, and consequently, V_{i} is terminal for some $i \in\{2,3,4\}$. If $d\left(u_{5}, V_{1}\right)=1$, then $d\left(u_{5}, A-\right.$ $\left.V_{1}\right)=0$ and there exists exactly one of V_{2}, V_{3} and V_{4}, say V_{2}, such that $V_{2} \prec V_{5}$. Then $V_{3} \nprec V_{2}$ and $V_{4} \nprec V_{2}$. Therefore one of V_{3} and V_{4} is terminal. In either case, say without loss of generality V_{4} is terminal. Let $u_{4} \in U_{4}^{1} \cup U_{4}^{2}$. Then $d\left(u_{4}, A\right) \leq 1$ by (12). If $V_{2} \prec V_{3}$, then for each $i \in\{4,5\}, V_{3} \nprec V_{i}$ as either $d\left(u_{i}, V_{1}\right)=0$ or $d\left(u_{i}, V_{2}\right)=0$, and consequently, V_{3} is terminal. If $V_{2} \nprec V_{3}$ and V_{2} is not terminal, then $V_{2} \prec V_{4}$ or $V_{2} \prec V_{5}$. Say without loss of generality $V_{2} \prec V_{5}$. Then $d\left(u_{5}, V_{1}\right)=1=d\left(u_{5}, A\right)$, $V_{3} \nprec V_{5}$ and there exists $a \in V_{2}$ such that $d\left(a, V_{1}\right)=0$. Thus $V_{3} \nprec V_{2}$. As either $d\left(u_{4}, V_{1}\right)=0$ or $d\left(u_{4}, V_{5}\right)=0$, we see that $V_{3} \nprec V_{4}$, and consequently V_{3} is terminal. Finally, we need to show that V_{2} is terminal. If V_{2} is not terminal, then $V_{2} \prec V_{i}$
for some $i \in\{3,4,5\}$, say without loss of generality $V_{2} \prec V_{5}$. Then $d\left(u, V_{1}\right) \geq 1$ for all $u \in V_{5}$ and $d\left(a, V_{1}\right)=0$ for some $a \in V_{2}$. Similar to obtaining (13), with $d\left(u, V_{1}\right)=1$ replacing $d\left(u, V_{4}\right)=1$, we see that all the other equalities in (13) hold. Then for each $w \in W_{5}^{\prime}$, it is easy to see that if $N\left(w, U_{5}\right)=\left\{u, x_{w}\right\}$ with $u \in U_{5}^{2}$ and $d\left(x_{w}, V_{i}\right)=0$ for some $i \in\{2,3,4\}$, then x_{w} is accessible and $\left(A-V_{5}\right) \cup\left\{x_{w}\right\}$ has an s-UP $\left(V_{1}^{\prime}, V_{2}^{\prime}, V_{3}^{\prime}, V_{4}^{\prime}\right)$ with $x_{w} \notin V_{1}^{\prime} \supseteq V_{1}$. Moreover, either $v_{0} \notin V_{1}^{\prime}$ or $v_{1} \notin V_{1}^{\prime}$ where $d\left(v_{0}, V_{5}\right)=0$ and $d\left(v_{1}, V_{5}\right)=0$ with $v_{0} \in V_{3}$ and $v_{1} \in V_{4}$. Say w.l.o.g, $d\left(v_{0}, V_{5}\right)=0$ and $v_{0} \in V_{4}^{\prime}$. Then $\left(V_{1}^{\prime}, V_{2}^{\prime}, V_{3}^{\prime}, V_{4}^{\prime} \cup\{u\}-\left\{v_{0}\right\}, V_{5} \cup\left\{v_{0}, w\right\}-\left\{u, x_{w}\right\}\right)$ together with an s-UP of $B-\{w\}$ forms an s-UP of V, a contradiction. Hence $d\left(x_{w}, V_{i}\right) \geq 1$ for all $i \in\{1,2,3,4\}$, and therefore $d\left(x_{w}, W_{5}\right) \leq 2 k-12$ as $d\left(w x_{w}\right) \leq 2 k-2$ and $d(w, A)=6$. As in Case 2.1, this yields $e\left(U_{5}, W_{5}\right) \leq(2 k-10) s_{5}$, a contradiction. Hence we conclude that V_{i} is terminal for all $i \in\{2,3,4,5\}$.

For each $i \in\{2,3,4\}$, let $a_{i} \in V_{i}$ be such that $d\left(a_{i}, V_{5}\right)=0$. So each $a_{i}(2 \leq i \leq 4)$ is accessible. We claim

> For every $w \in W_{5}^{\prime}$, there exists $x_{w} \in U_{5}^{3}$ such that $w x_{w} \in E$ and $d\left(x_{w}, W_{5}\right) \leq 2 k-12$.

Proof of (14). Let $u \in U_{5}^{1} \cup U_{5}^{2}$ be such that $u w \in W$. By (12), we may set $N\left(w, U_{5}\right)=\left\{u, x_{w}, x_{w}^{\prime}\right\}$ with $x_{w}=x_{w}^{\prime}$ if $d\left(w, U_{5}\right)=2$. Suppose, for a contradiction, that $d\left(x_{w}, W_{5}\right) \geq 2 k-11$ and $d\left(x_{w}^{\prime}, W_{5}\right) \geq 2 k-11$. Assume first that $d\left(w, U_{5}\right)=3$. As $d(u w) \leq 2 k-2$ and by (12), we see that $d(u, A)=0$ and $d\left(w, V_{i}\right)=1$ for all $i \in\{1,2,3,4\}$. As $d\left(w x_{w}\right) \leq 2 k-2$ and $d\left(w x_{w}^{\prime}\right) \leq 2 k-2$, it follows that $d\left(x_{w}, A\right) \leq 2$ and $d\left(x_{w}^{\prime}, A\right) \leq 2$. Hence there exists $\{i, j\} \subseteq\{1,2,3,4\}$ with $i \neq j$ such that $d\left(x_{w}, V_{i}\right)=0$ and $d\left(x_{w}^{\prime}, V_{j}\right)=0$. Let $r \in\{1,2,3,4\}-\{i, j\}$ be such that $r=1$ if $1 \notin\{i, j\}$. Without loss of generality, say $r=1, i=2$ and $j=3$. By Proposition 2.4, $a_{2} w \notin E$ and $a_{3} w \notin E$. Then $\left(V_{1} \cup\{u\}, V_{2} \cup\left\{x_{w}\right\}-\left\{a_{2}\right\}, V_{3} \cup\right.$ $\left.\left\{x_{w}^{\prime}\right\}-\left\{a_{3}\right\}, V_{4}, V_{5} \cup\left\{w, a_{2}, a_{3}\right\}-\left\{u, x_{w}, x_{w}^{\prime}\right\}\right)$ together with an s-UP of $B-\{w\}$ forms an s-UP of V, a contradiction. Hence $x_{w}=x_{w}^{\prime}$. Then we see that $d\left(x_{w}, A\right) \leq 3$ as $d\left(w x_{w}\right) \leq 2 k-2$. Hence $d\left(x_{w}, V_{i}\right)=0$ for some $i \in\{1,2,3,4\}$, i.e., x_{w} is accessible. Clearly, $\left(A-V_{5}\right) \cup\left\{x_{w}\right\}$ has an s-UP $\left(V_{1}^{\prime}, V_{2}^{\prime}, V_{3}^{\prime}, V_{4}^{\prime}\right)$ such that $\left\{a_{2}, a_{3}, a_{4}\right\} \nsubseteq V_{i}^{\prime}$ for all $i \in\{1,2,3,4\}$. As $d(u w) \leq 2 k-2$ and by (12), we see that if $d(u, A)=1$, then $d\left(w, V_{i}\right)=1$ and therefore $w a_{i} \notin E$ by Proposition 2.4 for all $i \in\{2,3,4\}$, and if $d(u, A)=0$, then $d\left(w, V_{i}\right) \geq 2$ for at most one $i \in\{1,2,3,4\}$, and therefore by Proposition 2.4, $a_{i} w \in E$ for at most one $i \in\{2,3,4\}$. Hence we can always choose an a_{j} and a V_{i}^{\prime} such that $a_{j} \in V_{i}^{\prime}, a_{j} w \notin E$ and $d\left(u, V_{i}^{\prime}\right)=0$. Without loss of generality, say $i=j=4$. Then $\left(V_{1}^{\prime}, V_{2}^{\prime}, V_{3}^{\prime}, V_{4}^{\prime} \cup\{u\}-\left\{a_{4}\right\}, V_{5} \cup\left\{w, a_{4}\right\}-\left\{u, x_{w}\right\}\right)$ together with an s-UP of $B-\{w\}$ forms an s-UP of V, a contradiction. This proves (14).

Let $\left\{u_{i}, u_{i}^{\prime}\right\}(1 \leq i \leq r)$ be a list of all distinct pairs of vertices of $U_{5}^{1} \cup U_{5}^{2}$ such that $N\left(u_{i}, W_{5}\right) \cap N\left(u_{i}^{\prime}, W_{5}\right) \neq \emptyset$ for all $i \in\{1,2, \ldots, r\}$. As $\Delta_{2}(G) \leq 2 k-2$ and by (12) and (14), we see that for each $i \in\{1,2, \ldots, r\},\left\{u_{i}, u_{i}^{\prime}\right\} \subseteq U_{5}^{2}$, and $x_{w} \in U_{5}^{3}$ and $d\left(w, U_{5}\right)=3$ for all $w \in N\left(u_{i}, W_{5}\right) \cap N\left(u_{i}^{\prime}, W_{5}\right)$. For each $i \in\{1,2, \ldots, r\}$, we choose a fixed $w_{i} \in N\left(u_{i}, W_{5}\right) \cap N\left(u_{i}^{\prime}, W_{5}\right)$. Then $w_{i}(1 \leq i \leq r)$ are distinct. Let $v_{i}(1 \leq i \leq n)$ be a list of the vertices in $U_{5}^{1} \cup U_{5}^{2}-\left\{u_{i}, u_{i}^{\prime} \mid 1 \leq i \leq r\right\}$. Let Q be the
bipartite graph induced by the edges in $\left\{w_{i} u_{i}, w_{i} u_{i}^{\prime} \mid 1 \leq i \leq r\right\}$. Then $d_{Q}\left(w_{i}\right)=2$ for all $i \in\{1,2, \ldots, r\}$. This implies that each block of Q is either a cycle or an edge. Let $A=V(Q) \cap U_{5}$ and $D=V(Q) \cap W_{5}$. Let $Q_{i}(1 \leq i \leq m)$ be a list of components of Q. For each $i \in\{1,2, \ldots, m\}$, let $A_{i}=V\left(Q_{i}\right) \cap A$ and $D_{i}=V\left(Q_{i}\right) \cap D$, and then we see that $\left|A_{i}\right| \leq\left|D_{i}\right|+1$. Furthermore, we have

$$
\begin{align*}
& N\left(A_{i}, W_{5}\right) \cap N\left(A_{j}, W_{5}\right)=\emptyset, 1 \leq i<j \leq m ; \tag{15}\\
& N\left(A_{i}, W_{5}\right) \cap N\left(v_{j}, W_{5}\right)=\emptyset, 1 \leq i \leq m \text { and } 1 \leq j \leq n ; \tag{16}\\
& N\left(v_{i}, W_{5}\right) \cap N\left(v_{j}, W_{5}\right)=\emptyset, 1 \leq i<j \leq n . \tag{17}
\end{align*}
$$

By (15)-(17), $\left|W_{5}^{\prime}\right| \geq(2 k-9)(n+m)$. Let $X=\left\{x_{w} \mid w \in W_{5}^{\prime}\right\}$. Then $|X| \geq$ $(2 k-9)(n+m) /(2 k-12)>n+m$. Let $Y \subseteq X$ with $|Y|=n+m$. If $Z=$ $U_{5}-\left(A \cup Y \cup\left\{v_{i} \mid 1 \leq i \leq n\right\}\right)$, then

$$
\begin{aligned}
e\left(U_{5}, W_{5}\right) & =\sum_{x \in A} d\left(x, W_{5}\right)+\sum_{x \in Y} d\left(x, W_{5}\right)+\sum_{i=1}^{n} d\left(v_{i}, W_{5}\right)+\sum_{x \in Z} d\left(x, W_{5}\right) \\
& \leq(2 k-9)|A|+(n+m)(2 k-12)+(2 k-8) n+(2 k-10)|Z| \\
& \leq(2 k-10)|A|+(|D|+m)+(2 k-12) m+2(2 k-10) n+(2 k-10)|Z| \\
& \leq(2 k-10) s_{5}+|D|,
\end{aligned}
$$

and on the other hand, we have

$$
\begin{aligned}
e\left(U_{5}, W_{5}\right) & =\sum_{x \in D} d\left(x, U_{5}\right)+\sum_{y \in W_{5}-D} d\left(y, U_{5}\right) \\
& \geq|D|+2\left|W_{5}\right| \geq|D|+2(k-5) s_{5}+2
\end{aligned}
$$

This is a contradiction. This completes the proof of the theorem.
Remarks. It seems possible to prove the conjecture for more small values of k by refining the above idea. However, it seems very difficult to prove the conjecture in general. It would be interesting to prove it for $s=4$.

4 References

[1] B. Bollobás, Extremal Graph Theory, Academic Press, London(1978).
[2] J.A. Bondy and V. Chvátal, A method in graph theory, Discrete Mathematics, 15(1976), 111-135.
[3] K. Corrádi and A. Hajnal, On the maximal number of independent circuits in a graph, Acta Math. Acad. Sci. Hungar. 14(1963), 423-439.
[4] A. Hajnal and E. Szemerédi, Proof of a conjecture of Erdös, in "Combinatorial Theory and its Application", Vol. II (P. Erdös, A. Renyi and V. Sós, eds), Colloq. Math. Soc. J. Bolyai 4, North-Holland, Amsterdam, 1970, pp. 601-623.
[5] O. Ore, Note on Hamilton circuits, Amer. Math. Monthly, 67(1960), 55.
[6] H . Wang, On the maximum number of independent cycles in a graph, submitted.

